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Order of Accuracy of Functional Fitting
Runge-Kutta-Nystrom Formula

Kazufumi Ozawa (/MN& —X) *
Graduate School of Information Science
Tohoku University, Sendai 980-8577 Japan

1 Introduction

In this paper we introduce functional fitting Runge-Kutta-Nystrom method which inte-
grates some set of functions exactly. The method proposed here is a generalization of
exponentially or trigonometrically fitting Runge-Kutta-Nystrom methods.

2 Functional fitting Runge-Kutta-Nystrom method

Consider the variable coefficient Runge-Kutta-Nystrom method

4

8
Yntl = Yn + hyﬁ, + h? ZBi(tm h) f(tn + cih, Y),

i=1

Qthir =Y+ 1> biltn, B) f(tn + i, Vi), (1)

i=1

Y; = ynteihyy + 8D it h) f(tn + ¢, Y),
j=1

\

for solving the second order ODE of the form

v'(t) = f(ty), y0) =y, ¥(0) =y, tE€ltoT] (2)

We will call the method functional fitting Runge-Kutta-Nystrom (FRKN) method, when
the method is designed to integrate some functions exactly. The coefficients a; ;, b; and
b; of the FRKN to be considered here are determined by the simultaneous equation

( 8
Um(t + B) = wm(t) + Ry, () + 1) bilt, h) u (¢ + cih),

=1

0o (t+h) =)+ hi: bilt, h) ul(t + cih), (3)

i=1

m(t+ GR) = Un(t) + iRl (8) + 12 S @iyt R ul(t+ch), i=1,2,...,5,
j=1

\
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where the functions u/,(t) = @ (t) are linearly independent on [to, T, that is the Wron-
skian matrix W given by

ort) Pit) - e
W(pnon - s = | 2200 @0 - e D) @)
olt) 1) A

is nonsingular for all ¢ € [to, T']. For the uniqueness of the coefficients we have:

Theorem 1 The coefficients a; ;(t, h), bi(t, h) and b;(t,h) determined by (3) are unique
for small h > 0, if the functions pn,(t) are sufficiently smooth and linearly independent.

Proof. Tt is clear from (3) that these coefficients are unique, if the matrix given by

Y1 (t + CIZ) ©1 (t + CQZ) N/ (t + CSZ)

t+ t+ t+cs
B(t, h) = 902(:01)%02(:02) 902(:0)
Ps(t + ah) @s(t+ch) ... ps(t + csh)

is nonsingular. The matrix ¢ can be expressed as

1 1 1
cih ch .- csh
O(t, h) = W(p1, 2, ,¥s) : : .. | o).
(clh)”"l (czh)s_l (csh28—1

(s—1)1 s=nr 77 (-l

Since W is assumed to be nonsingular, and the second matrix in the right-hand side is
also nonsingular from the assumption that c; are different from each other, then we have
the nonsingularity of ®(¢, h) for sufficiently small » > 0. ]

Hereafter, we simply denote the coefficients by @; j, b; and b;, and denote their power
series expansions in h by

Gy = a0 +adh+aih? +--o, b =b" + bk + bR +

B S (5)
bi = b + bR + BPh? +

If we take u” (t) = t™ 1 (m =1,2,...,s8) in (3), then @, ; = a(o) b; = b, and b; = b(o)
and the method reduces to the du‘ect collocation Runge—Kutta—NJystrom method proposed
by Van der Houwen et al [5].

Here we consider the order of accuracy of the FRKN method. The order of accuracy
of the FRKN is defined to be p = min{p;, p»}, where p; and p, are the integers satisfying

E = yns1 — Y(tnp1) = OB, E' =1y} — Y (tns1) = O(RP**), h—0, (6)
and the stage order is defined to be the minimum of the r; (i = 1,2,... , s) satisfying

e; =Y —y(t, +cih) =O(R™™), h—0, i=12,...,s. (7
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In these definitions, like in the case of constant coefficient methods, the localizing as-
sumption y, = y(t,), y,, = ¥'(t,) is of course made, and unlike in that case, the errors are
considered in the situation that the coefficients are being changed as the functions of h,
when h — 0.

In order to analyze the order of accuracy of the FRKN, let us define the quantities:

° 1 _ - 1
B(g)=) b c;-"l - -, B(q) = bl — ,
Z; q 2 q(g+1)

i=1
g+1 (8)
Z} g =1,2,...,s
Z,] J q+1) < H
In (3) expanding u! (t) = ¢ (t) into their power series, we find
5 B9 hagte-ne) o )
= @-
o0
Z(f_(ql R =0, i=12,...,s+1, (10)

where we set ¢;11 = 1, @511,; = b; and Cyy1(q) = B(q). For the orders of B(q) and C;(q)
we have the following lemma:

Lemma 1 Let the orders of B(q), B(q) and Ci(q) (i =1,2,...,s) be
~ B(g)=0(W4), B(g)=0(h"), Cilq)=0(h"»),
then forq=1,2,.
pPe=>85+1—q, fg=>2s+1—q, v;q>s+1—q, i=12,...,s. (11)
Proof. Let us define the power series expansion of B(q) as
B(g) = B9(¢) + BY(q) + BP(g)h* + - -,

then (9) means

(Z (qﬁl)(t) 1(;1,)) =0, m=12...,s
=1

g=1

Since the coefficients of k! are 0 for all I, we have for [ =1,2,...,s
By Big - -0 PBus
0 Bog - - [os
W(QOI,QDL’a--«,(Ps) 0 0 el e een =O,
0 0 - 0 A

where we set 3, ; = B“"9(q)/(g — 1)! From the nonsingularity of W, we have

ﬂq,q:ﬁq,qﬂ ="'=:3q,s:Oa q=12,...,s,

which proves the first inequality in (11). The second and third ones are proved in the
same way. |



197

Corollary 1. The constant terms of the ezpansions of a; j, b; and b; satisfy the so-called
simplifying assumption:

Zb“” g-1 % g=12...,s, | (12)
Zb“” o1 19 N (13)
~ g(g+1)’ v
8 q-{-]_ v .

‘3’ -1 - ﬁl—)— i=1,2...,s, ¢=12...,s. (14)
j=1

These equations determine ai J), b(o) and b(o) uniquely, since ¢; are assumed to be different
from each other. '

Lemma 2 Ify; 4,1 and fig are equal to their lower bounds in (11), i.e.
Vig=le=fg=5+1—¢q, ¢=12,... 8, | (15)

then for any sufficiently smooth function g(t), we have

g(cih) = g(0) + cihg'(0) + B> a5 6" (c;h) + O(h*+?)
7=t ‘
= 9(0) + c:ihg(0) + h? Zaﬁ‘;’ g”(c,-h) +0(h**?), i=1,2,...,8+1, (16)
J=1 '
g(h)=g'(0)+h sz g"(cih) + O(h**) = ¢'(0) + R Z b g (csh) + O(RH). (17)
i=1 =1

Proof. Let g(t) be a sufficiently smooth function, then

g(cih)=g<0)+cihg'(0)+h22(q1 (0O A 1(Za”c“ a—(q))
g=1 j=1

- g(O) + c,-hg'(O) + h2 Zai,j g”(th) _ Z (C (ql))' hatl ((1+1)(0) + O(hs+2)
j=1 g=1

(18)
In this expression we have from the assumption of this lemma C;(q)h?t! = O(h*+2), which
leads to the first relations in (16). The second relation is also proved by noting that (18)
is valid even for the case that ¢, (t) = t™! (m=1,2,...,s), in which case a;; = Ezg)j.
The proof of (17) is done by the straightforward manner.

Next we consider the stage order of the FRKN for the case that (15) holds. If the solution
y(t) of (2) is sufficiently smooth, then we have from the result of Lemma 2

= (1 - h2 fy (-li’i)—lhz Z(di,jej fy + 0(63) ) + O(h3+2), 1= 1, 2, cee 9 8, (19)

J#i
j=1
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where f, is the partial derivative of f with respect to y, and is assumed to be bounded.
Since e; = O(h™*!) we have from (19) r = min;{r;} = min{r + 2, s + 1}, which means
r = s+ 1, i.e. the stage order of the method is s + 1.

Next we consider the order of accuracy of the FRKN. We have also from (15)

E=y — y(h) = h%fyZBz e; + O(hs+2) — O(hs+2),
is=1 (20)
E =y —y'(h) =hf,Y_biei+O(h*) = O(h*),

i=1
which means that the order of accuracy of the method is s. Thus we have proved:

- Theorem 2 The stage order of the functional fitting Runge-Kutta-Nystrom method is

s+ 1, and the order of accuracy of the method is s, when (15) holds.

-3 Higher order formula

Here we consider the order of accuracy of the FRKN for the cases that the relations
pg=s+1—gq, pg=>2s+1-—gq

hold for ¢ = 1,2,...,s. We note again that the constant terms 89 5@ and aﬁ‘;), which

are determined uniquely by (12), (13) and (14), respectively, are the coefficients of the
" direct collocation Runge-Kutta-Nystrom method proposed by Van der Houwen et. al [5].
According to [1] and [5], if we take the abscissae ¢; such that

1 8
/tq‘IH(t—ci)dt=0, g=12,...,v, 1<v<s, (21)
0 i=1
then for the bgﬂ) determined by (12), the stronger relation is in fact valid:
g 1
pr)cg—l:E, g=1,2...,5+v. (22)
=1

Moreover for the B§°) determined (13) are related to the b§°’ by

B0 =" (1-c), i=12...,s. (23)
As a result we have instead of (13)
i5§0)03_1= 1 , ¢q=12,...,s4+v—1 (24)
pury q(g+1)

Thus from (22) and (24) we have
BO(g)=0, ¢=1,2,...,s+v, BO@g)=0, ¢=1,2,...,s+v—1. (25)

When v > 1 in (21) we have the following lemma:
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Lemma 3 Ifv>1thenfor1<{<v-—1,

s | £+l cs 1 ‘
b,@ c§_ld(°.) — p© (CJ_ - 24 _> . 26
200 =Y ey T e (26)

Proof. Let a; be

E+1 Cs 1
— b(O) f -1~ (0) b(O) (_&____ A + —-——) =1,2,...,s,
=3 v \eern "etev1) ?

1=1

then from (22) we have 3°°_; a;c] 1 =0(g=12...,5), which means o; = 0 (j =
1,2,...,s), since c; are dlfferent from each other. |

Next we define the quantity D(q, &) by

s ' ‘
D(q, §) =D b &Cilq) = Zd ——q+1 SO e, (27)
i=1

i=1

where we set d; = D 0_ b9 §1a; ; jand d; = d(0 + d(l)h +---. For D(q, &) we can find

=10 "€
the two relations which are similar to ( 10) and’ (25). The ﬁrst one is

> LB ) =0, (28)
q=1

which is easily derived by multiplying both sides of (10) by b§°) &t

i
The second one is

D9(q, €)=0, ¢=1,2,...,s+v—-€—-1, £€=1,2,...,v—1, v>1, (29)

and summing over i.

which can be shown by Lemma 3.

Lemmé 4 Consider the function F(q) defined by
Fl)=)_filh) ™ —n, q=12,... s,
=1

where fi(h) is analytic at h = 0, and n, depends only on q. If the function F(q) satisfies

Z(QF_(ql))y WD) =0, m=1,2,...,s, (30)

 and for some k >0
FO@Q =0, ¢=1,2,...,5+k,
then we have

F(q)=0(h™), my=max{s+k+1—-q,k+1}, ¢=1,2,...,8+k,
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SO — £i(h) gleih) = O(B*), ey

=1

where fi(o) are the constant terms of the power series ezpansions of fi(h), and g(t) is a
sufficiently smooth function.

Proof. The prdof of this theorem is done in the same mannerb as in the proof of Lemma
4 in [3]. .

Corollary 2 For the orders of B(q), B(q) and D(q, £), we have for v > 1
B(g) = O(h*), po=max{s+v+1-qv+1}, g=12...,5+v,
B(q) = O(h™), pg=max{s+v—gq,v}, ¢=12,...,5+v~—1,

D(q’ §)=O(h)‘q’£)a )\q,§=max{s+v——£——q,u—§}, q=1a2"'- ,3+V_£—1a

and from (31) we have

8

S0 - b g(eh) = O(™), S 6 — b) g(cih) = O+,

_ 1.—1 i=1 (32)
S - d) gleh) = O, > 1.
i=1

Lemma 5 If relation (21) holds, then for any sufficiently smooth function g(t)

o(h) = 9(0) + h/(0) + B3 e (csh) + O(h+*+1)

j=1
=9(0) + hg'(0) + h? Z 520) g"(c;h) + O(hs+u+1),
j=1
g'(h)=4'(0) + th ¢(csh) + O(H) = ¢ (0) + b 36D ¢ (cih) + O(h++Y).
i=1 ey

Proof. This lemma is proved in the same way as Lemma 2.

Lemma 6 Ifv>1, thenfor§=1,2,... ,v—1,

O -1 g, — (2 o _&™ a1 ‘ stu—g+1
):b = (h%f,) Zb 5(“1) PRI ei + O(h ).
i=1
Proof. Multiplying both sides of -
/ 2 - = hatt (g+1)
y(cih) = yo + cihyp + B2 D a5y (cih) — = 1)!Cz-(q)y 72(0), (33)

j=1 g=1
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by b(O)cg—l’ and summing for i, we have

1
me) T y(h) = yo+§+1hyo+h2 Z b & ai; 9 (c;h)
o1 (34)
s+v—{—1 ha+1

_ Z (q—_l)' D(q, &) y(q+1)(0) + O(hs+u—§+1).

g=1
Taking into account the relation
g+14+Xe>2s+v—-§+1, for ¢q=1,2,...,s+v—-€—1,
and using (32), we have
> 1
| Z bﬁo) & y(eh) = £ —Yo + —— hyo + h? Z b0 ¢ lafg)’ y"(c;h) +O(hs+”“5+1) (35)

€ +1 1, j=1

Therefore we have from Lemma 3

Zb(o) §-1 e =h2 EbO) £-1 (0) (fye]+0( ))+O(hs+u~€+1)

¢
=1 i,7=1

=(h2f)ib('o) c§+l _ﬁ_}_L e,+0(hs+u—€+1)
V2 \EerD) €T ENL) !

where e; = O(h**2) is used. i

Next we consider the order of accuracy of the method, for the two cases, v =1and v > 1.
If v =1 then we have from (23) and the result of Lemma 5

(36)

E =y —9y(h)= hfy,Zbgo) e; + O(hs+2) - O(hs+2)’

=1
E=y —yh)=h?£, > b e; + O(h*+?) = O(h**?),
=1

so that the method is of order s+ I. For » > 1, we have from Lemma. 6

E' =hf,Y 0 e+ O+
i=1 '

&

=W (2 Y 5@ (2 t 2) e+ O(E "+

=1
s (37)
At (f,) et Z b§°’ Q.(c;) e; + O(h*t11), v =even

— z—-l

R (fy) T+ Zb“’) Qu_1(c)) e + O(h+1), v =odd
i=1

= O(h*++),
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where @,(c;) is a polynomial in ¢; of degree v. On the other hand, E is given by

E=hE —h £, b7 cie; + O(h*++).

=1

Evaluating the sum in this expression in the same way, we have E = O(h****+!). Thus we
have: :

Theorem 3 If the abscissae c; are taken to satisfy (21), then the order of accuracy of
the FRKN is s+ v, for anyv (1 <v < s).

Note that this theorem is a generalization of the theorem (Theorem 3.4 of [5]) which has
proved that the order of accuracy of the direct collocation Runge-Kutta-Nystrom method
with the same abscissae is being s + v.

Corollary 3 The attainable order of the FRKN method is 2s.

4 Numerical examples

Consider the 3-stage FRKN method with the abscissae ¢; = 0, c; = 0.5, ¢3 = 1, and with
p1(t) = coswt, o(t) = sinwt, p3(t) = 1, which are linearly independent functions when
w > 0. This method is expected to be of order 4, since orthogonal condition (21) holds
with s =3 and v = 1. The equation to be solved is

Y = —y+ecost, y0)=1 (0)=1, - (38)

which has the exact solution y(t) = cost + et sint. We solve the equation by the
method with w = 1 and obtain the global errors at t = 20 (see Table 1). We can easily
see from Table 1 that the order of accuracy of the method is being 4 for ¢ = 0.05, and
that for € = 0.0 the method is exact; the values in the column headed with € = 0.0 must
be the accumulations of the round-off errors, since the rounding unit of our computer is
2752 ~ 2.22 x 10716,

Next we consider the well-known two-body problem [2]:

yil = —yl/r3a ’yg = _y2/'r3a r= \/ y% + y%

) l1+e (39)
n0)=1-e 10)=0, y0)=0, v,(0)=4/7—,
where e (0 < e < 1) is an eccentricity. The exact solution of this system is given by
y(t) =cosu—e, yo(t) =+v1—e€?siny, (40)

where u is the solution of Kepler’s equation u = t + esinu. Here we calculate the global
errors at t = 20 of the two methods, 3-stage FRKN method with w = 1 and 2-stage
Gauss Runge-Kutta method, for various h (see Table 2). From the table we can see that
the FRKN method is accurate compared with the 2-stage Gauss Runge-Kutta method.
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Table 1. Global errors at ¢ = 20 of problem (38).

e = 0.05 e=0.0

i | logy Ry logy(Ri/Ri-y) | log, R;
T -15.1 -50.4
2| -19.0 -3.99 | -49.5
3| -23.0 -4.00 | -50.1
4| -27.0 -4.00 | -514
5| -31.0 -4.00 | -48.5
6| -35.0 -4.00 | -494
7| -39.0 -4.00 | -51.2
8| -43.0 -3.99 | -48.8
9| -46.6 362 | -48.5
10| -46.1 500 | -47.2

h =27%, R; = |y, — y(nh)|, where nh = 20.

Table 2. Global errors at ¢ = 20 of the two-body problem.

FRKN method Gauss RK method
h=0.200 h=0.100 h =0.050 [ A =0.200 A =0.100 h =0.050
e =0.00 | 1.119e-13 4.186e-14 2.242e-13 | 5.839e-04 3.658¢-05 2.290e-06
e =0.01 | 1.886e-05 1.182e-06 7.402e-08 | 5.93%9¢-04 3.623e-05 2.266e-06
e =0.10 | 2.280e-04 1.429e-05 8.938e-07 | 8.345e-04 5.238¢-05 3.278e-06
e =0.50 | 5.665e-03 7.101e-04 4.897e-05 | 2.121e-02 1.493e-03 - 9.551e-05
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