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1 Introduction
Recently the image-based approach was developed by Holister and $\mathrm{K}\mathrm{i}\mathrm{k}\mathrm{u}\mathrm{c}\mathrm{h}\mathrm{i}[1]$ to analyze
structures with complex geometry. The basic idea of this approach is to convert the
bit-map information of the digital image of structures into geometrical model for the
finite element analysis. Then the finite element analysis is performed by recognizing each
volume element (voxel) in an image as a finite element in the uniform rectangular grid.

Our target problem is a mesoscopic simulation of concrete materials, which have the
complex structure constituted by different materials such as coarse aggregate with com-
plicated shapes and mortar. It is difficult to generate a finite element model representing
the complex structure of the material precisely by conventional mesh generation tech-
niques. Therefore the image-based approach is applied to our $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m}[2][3]$ .

In the image-based approach, the complex geometry of the structure can be captured
by using very fine grids, and then very large linear systems need to be solved. On the other
hand, the image-based approach offers the feature of uniform rectangular grid. Using
this property, sophisticated iterative solvers that are difficult to apply to the conventional
finite element method using unstructured meshes can be applied to solve the linear system
arising in the image-based approach.

One of them is a conjugate gradient $(\mathrm{C}\mathrm{G})$ method with an efficient preconditioner
utilizing the feature of uniform rectangular grid. Such a preconditioner can be developed
by using signal processing techniques such as fast Fourier transform (FFT) or wavelet
transform to precondition the matrix.

Another approach is the multigrid technique. For the uniform rectangular grid, a
sequence of nested finite element spaces for the multigrid method can be constructed
easily.

In this work, these types of fast iterative solvers for image-based FEM are consid-
ered, and their efficiency is discussed by numerical experiments. The performance in the
parallel processing is also evaluated.
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2Iterative solvers for image-based FEM

2.1 Image-based Finite Element Method
In the image-based $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{a}\mathrm{c}\mathrm{h}[1]$ , the bit-map information of the digital image of structures
is used as a geometrical model, and each volume element (voxel) in the image is recognized
as a finite element in the uniform rectangular grid (see fig. 1).

Image 1 pixel (voxel)
processing $=1$ element

Geometrical model Binary image for Variable coefficient
or fine image for geometrical model on uniform grid
the problem

Fig. 1 Image-based Finite Element method

In the image-based approach, very fine grid is required to represent complex geometry.
In our target problem of concrete materials, the number of degrees of freedom becomes
$10^{6}$ to $10^{8}$ . In the nonlinear simulation based on the image-based approach, such a huge
linear system need to be solved many times. Therefore development of the fast solver for
such a huge linear system is the key to apply the image-based finite element method to
the nonlinear simulation.

However, the image-based approach offers the feature of uniform rectangular grid.
Owing to this property, sophisticated but restrictive procedures that are difficult to apply
to the conventional finite element method using unstructured meshes can be applied to
solve the linear system arising in the image-based approach.

In this work, two types of iterative solvers led by the feature of uniform rectangular
grid are considered as follows:

1. Conjugate gradient method with effective preconditioner using signal processing
technique

2. Multigrid method

The rest of this section, actual procedures based on these approach will be discussed.
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2.2 Preconditioned Conjugate Gradient Method

The best iterative solver for the elasticity should be the conjugate gradient $(\mathrm{C}\mathrm{G})$ method.
As is widely known, an effective preconditioner can be designed by using the good ap-
proximation of the inverse matrix. Our problem is basically elasticity, which is of second
order elliptic problem. The mathematical property of the problem is similar to the Pois-
son equation. Thus the Poisson solver is a candidate of the effective preconditioner.

Well-known fast Poisson solvers are based on the spectral method. In the image-based
finite element method, all the unknown variable is on the uniform grid, and it can be
recognized as the variable on the uniform sampling points. In such a situation, the fast
Poisson solver using signal processing techniques such as fast Fourier transform (FFT)
or wavelet transform to precondition the matrix can be employed. Signal processing
techniques are widely used and various efficient algorithms have been developed in the
field of the computer science. Therefore a fast iterative solver for the image-based FEM
can be constructed by using such techniques.

In this work, the FFT is employed to construct the fast Poisson solver and its is
applied to the components of the residual vector corresponding to each physical direction.
In other words, the fast Poisson solver, which consists of one Fourier transform, scaling

in the frequency domain and an inverse transform, are performed three times to obtain
an improved direction vector from a residual vector in the three dimensional problem. In
this paper, this procedure is called FFT preconditioned CG (FFT-PCG) method.

2.3 Cascadic Conjugate Gradient Method

For the uniform rectangular grid used in the image-based approach, a sequence of nested
finite element spaces for the multigrid method can be constructed easily as shown in Fig.

2. Thus the multigrid method is worth considering to develop a fast iterative solver.
There are different types of iterative procedures based on the multigrid method, which

are categorized by their iterative process between fine grid and coarse grid. Typical
ones are known as $\mathrm{V}$-cycle or $\mathrm{W}$-cycle. Recently the cascadic multigrid method was
developed by $\mathrm{D}\mathrm{e}\mathrm{u}\mathrm{f}\mathrm{l}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{d}[4]$ . The iterative process in the cascadic multigrid method are
performed from coarse grid to fine one in one way. Thus it is sometimes called one-
way multigrid method. In this work, the cascadic conjugate gradient (CCG) $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{d}[4]$ ,

Level $0$ Level 1 Level 2
Fig. 2 Multigrid for image-based finite element method
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in which the conjugate gradient method is used as the basic iteration, is applied to
the image-based finite element method. This method is based on the fact that both
the iteration of multigrid sequence for the Galerkin finite element approximation and
that of the conjugate gradient method are known to minimize the energy norm arising
iteration errors. Actually the CCG method consists of the two nested iterations. The
outer iteration is for the multigrid, while the inner is for the conjugate gradient method.
The iteration control mechanism is based on the approximated energy error norm and it
makes the CCG efficient. Although this procedure is very simple, it has been shown to
be efficient owing to such mathematical background.

3 Numerical experiments
In order to evaluate numerical properties of the present methods, the problem derived
from the homogenization method for composite materials is solved. A simple composite
material with a spherical inclusion in the representative volume element (RVE) as shown
in Fig. 2 is considered and the characteristic function corresponding to the uniform axial
strain is calculated. In this problem, the periodic boundary condition is subjected to each
surface on the RVE and a body force is imposed. In this work, three cases with different
meshes $(32^{3},64^{3},963)$ are calculated. The termination criteria for the FFT-PCG method
is specified by the $L^{2}$ norms of residual $\mathrm{r}$ and external force vector $\mathrm{f}$ as

$||\mathrm{r}||_{L^{2}}\leq 10^{-5}||\mathrm{f}||_{L^{2}}$ .

In the CCG method, 4 level multigrid is used for each calculation.

Inclusion $(r=0.3725)$

Young’s modulus 5400
Poisson’s ratio $0.15$

Matrix
Young’s modulus 2500
Poisson’s ratio 0.19

Fig. 2 Problem definition

3.1 Convergence Property

Table 1 shows the numbers of iterations needed for the convergence in the FFT-PCG
method. These numbers indicate that the number of iterations is independent to the
problem size in the FFT-PCG method.

Table 2 shows the numbers of iterations for each grid level in the CCG method. Every
inner CG process requires small number of iterations which are almost independent to
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Ta $\mathrm{h}1‘ 1\rceil$ $\mathrm{N}1\rceil \mathrm{m}\mathrm{h}\rho r$ nf $\mathrm{i}\mathrm{f}.\rho\gamma \mathrm{a}\dotplus \mathrm{i}\cap \mathfrak{n}.\mathrm{Q}$ in Pa $\Gamma_{\mathrm{v}}\mathfrak{m}\rho+.\mathrm{h}\mathrm{o}\mathrm{d}$

Table 2 Number of iterations in CCG method (4 level)

the problem size. The numbers of iterations corresponding to the final level are smaller
than those indicated in FFT-PCG method.

Overall computational costs are evaluated for the FFT-PCG and CCG methods. From
Fig. 3 that shows the elapsed time, the CCG method is 50% faster that FFT-PCG
method. This is due to the fact that 3 dimensional fast Fourier transform is performed in
the preconditioning process of the FFT-PCG method and its computational cost is not
small.

Number of degrees ot $\iota \mathrm{r}\mathrm{e}\mathrm{e}\mathrm{d}\mathrm{o}\mathrm{m}$

Fig. 3 Performance on Single Processor
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3.2 Parallel Performance on PC Cluster
In this work, parallel performance of the present procedures is also compared by using
Beowulf type PC $\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{r}[5]$, which is a parallel computer consisting of personal computers
connected by Ethernet. The specification of our PC cluster is shown in Table 3. To carry
out parallel processing, the problem domain is divided into slabs of which number is equal
to that of processors.

Table 3 $\mathrm{s}\mathrm{D}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{C}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ of PC cluster

Figure 4 and 5 show the scalability of the present procedure on the parallel processing.
The CCG method exhibits good scalability, since most of the communications between
processors in the CCG method is neighboring. On the other hand, the scalability of
FFT-PCG method is worth than that of the CCG method especially in the small case.
In the FFT-PCG method, FFT stage requires all to all communication in which every
node needs to communicate to all the rest of it. Thus the narrow band width of the
network in the PC cluster decrease the scalability of FFT-PCG method.

$3\approx$
$3^{4}\mathfrak{Q}$

$\mathrm{r}^{1}$

$\mathrm{q})0$

$\approx\Phi \mathrm{d}\mathrm{J}$

$\infty\alpha$
$\infty\approx$

Numoer or $\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{C}\mathrm{e}\mathrm{s}\mathrm{S}\mathrm{o}\mathrm{r}\mathrm{s}$ Numoer ot Processors
Fig. 4 Parallel performance Fig. 5 Parallel performance

of FFT PCG method of CCG method
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4 Concluding Remarks
In this work, two different types of iterative solvers for the image-based finite element
method are evaluated. Both the FFT-PCG and CCG methods exhibit almost optimal
complexity in the numerical experiment. In the view of both the serial and parallel
processing, the CCG method is superior to the FFT-PCG method.
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