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Introduction.

In this paper we prove that the BMO norm of the velocity and the vorticity controls
the blow-up phenomena of smooth solutions to the Navier-Stokes and the Euler equations.
Our result is applied to the criterion on regularity of weak solutions to the Navier-Stokes
equations.

We consider the Navier-Stokes and the Euler equations in R, n > 3:

(N-S) { %—Au—%u-Vu—l—Vp:O, divu =20 in:cER",t>0,
u |t=0 = a,
—Q—?{+u Vu+Vp=0, divu=0 inze€ R*,t>0
(E) { 8t p_ ? - ? ?
Ul=0 = @
where u = (u!(z,t),u*(z,t), - -,u"(z,t)) and p = p(z,t) denote the unknown velocity vector

and the unknown pressure of the fluid at the point (z,t) € R™ x (0, 00), respectively, while
a = (a(z),a?(z), - -,a™(z)) is the given initial velocity vector.

It is proved by Fujita-Kato [10] that for every a € H} = {v € H*;divv = 0} with
s > n/2 — 1, there exist ' > 0 and a unique solution u(t) of (N-S) on [0,7T) in the class

(CN), w € C([0,T); Hy) N CH((0,T); H*) N C((0,T); H*+?).

Concerning the Euler equations, Kato-Lai [15] and Kato-Ponce [16] proved that for every
a € WSP for s >n/p+1,1 < p < oo, there are T > 0 and a unique solution u of (E) on the
interval [0,7’) in the class

(CE).p w € C(0,T);WeP) N CH([0,T); W ~27),
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where subindex o means the divergence free. It is an interesting question whether the solution
u(t) really blows up as t 1 T'. Giga [11] showed that if the strong solution u in (CN), satisfies

T
(Se) f [w(®)|[frdt < o for 2/k +n/r = 1 with n < r < oo,
0

then u can be continued to the solution in the class (CN), beyond ¢t = T. Concerning the
Euler equations, Beale-Kato-Majda [1] dealt with the vorticity w = rot u and proved that
under the condition

T
| le®llomdt < oo

u(t) can never break down its regularity at t = T". To prove this assertion, in [1] they made

use of the logarithmic inequality such as
(0.1) IVl e < C (1 + ||rot ul|peo (1 +log™ |[ullystie) + |lrot ul|z2), sp >n

for all vector functions u with div v = 0, where logT a =logaifa>1,=0if0 < a < 1.
The purpose of this paper is to extend these results to the marginal space BM O which

is larger than L®°.

1 Results.

Before stating our results, we introduce some function spaces. Let (g7, denote the set
of all C*® vector functions ¢ = (¢!, 4?,---,¢") with compact support in R", such that
div ¢ = 0. L7 is the closure of Cg%, with respect to the L"-norm | - ||,; (,-) denotes the
duality pairing between L” and L™, where 1/r + 1/’ = 1. L" stands for the usual (vector-
valued) L"-space over R™, 1 < r < co. H; denotes the closure of C§%, with respect to the
H*-norm ||¢llm+ = ||(1 = A)i¢ll2, s20.

Our result on continuation of strong solutions of (N-S) now reads:

Theorem 1 Let s >n/2 —1 and let a € HS. Suppose that u s the strong solution of (N-S)
in the class (CN), on (0,T). If

T
(1.1) / lu()|%0dt < co  for some 0 < eo < T,

0

then u can be continued to the strong solution in the class (CN), on (0,T") for some T" > T.

Corollary 1 Letu be the strong solution of (N-S) in the class (CN), on (0,T) fors > n/2—1.
Suppose that T is mazimal, i.e., u cannot be continued in the class (CN), on (0,T") for any
T' >T. Then

T
(1.2) / u(@®)Zodt = 00 for all0 <& < T.



For the space BMO, we refer to Stein [24]. Since s > n/2 — 1, there holds H**2 ¢ BMO,
and hence for every u in the class (CN), on (0,T), we have u € C((0,T); BMO).

We next consider a criterion on uniqueness and regularity of weak solutions to (N-S). Our

definition of a weak solution is as follows.

Definition 1. Let a € L2. A measureble function u on R™ x (0,T) is called a weak
solution of (N-S) on (0,T) if

(i) u € L®(0,T; L2) N L*(0, T; Hy);
(ii) u(t) is continuous on [0,7] in the weak topology of L2;
(iif) t
(1.3) /s{—(u,afq’)-l‘ (Vu, V®) + (u- Vu, ®)}dr = —(u(t), (2)) + (u(s), B(s))

for every 0 < s <t < T and every & € H'((s,t); HL N L™).

Our result on weak solutions of (N-S) now reads:

Theorem 2 (1) (uniqueness) Let a € L% and let u,v be two weak solutions of (N-S) on
(0,7). Suppose that
(1.4) - u € L?(0,T; BMO)

and that v satisfies the energy inequality
¢

(15) lo@I3+2 [ I1voli3dr < flal, 0<t<T.
0

Then we have u = v on [O,T]..

(2) (regularity) Let a € L2 and let u be a weak solution with the additional property (1.4).
Then for every 0 < ¢ < T, u is actually a strong solution of (N-S) on (¢,T) in the class
(CN), fors>nf2—1.

Remark. Theorem 2 may be regarded as an extension of Serrin’s criterion [22], [23] on
uniqueness and regularity of weak solutions u in the class

(1.6) u€ L*(0,T;L") for2/k+n/r=1withn<r <.

Our class (1.4) is larger than the marginal case L?(0,T; L*) in (1.6). Moreover, by virtue
of the estimate ||u||ppo < C||Vu||mn of John-Nirenberg [13], we see that the weak solution
u with Vu € L?(0,T; M™) becomes regular, where M™ denotes the Morrey space which is
larger than L™. See Beirdo da Veiga [2].

We shall next investigate continuation of the strong solution in terms of the vorticity
w = rot u = (9;uf — yu?)1<jk<n and the deformation tensor Def u = (B;u* + u? ) 1< k<n-

41
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Theorem 3 Let s > n/2 — 1. Suppose that u is the strong solution of (N-S) in the class
(CN), on (0,T). If either

T
(1.7) / Il (@)l rodt < 0o
or

T
(1.8) / Def w(t)|| srrodt < oo

holds for some 0 < g9 < T, then u can be continued to the strong solution in the class (CN),
on (0,T") for some T’ > T.

Corollary 2 Suppose that u is the strong solution of (N-S) in the class (CN), on (0,T) for
s >n/2—1. Assume that T is mazimal in the same sense as in Corollary 1. Then both

T T
(1.9) | 1w®llauodt = 0o and [ [IDef u() lmodt = o0
hold for all0 < e < T.

Theorem 3 yields the following regularity criterion on weak solutions of (N-S) by mean of

rot u and Def .
Theorem 4 Let a € L2. Suppose that u is a weak solution of (N-S) on (0,T). If either
(1.10) w € LY0,T; BMO) or Defue€ L*(0,T; BMO)

holds, then for every 0 < e < T, u is actually a strong solution of (N-S) in the class (CN),
on (€, T) fors >n/2—1.

Remark. Beirao da Veiga [2] proved the regularity criterion in the class Vu € L*(0,T; L")
for 2/k + n/r = 2 with 1 < kK < 00, n/2 < 7 < co. Theorem 4 covers the borderline case

k=1 and r = oo.

Our result on (E) reads as follows.

Theorem 5 Let 1 < p < oo, s > n/p+ 1. Suppose that u is the solution of (E) in the class
(CE),,, on (0,T). If either

T
(111) | lo@lsuode(= o) < o0
or T
(1.12) /0 Def u(t)||Brodt(= My) < oo

holds, then u can be continued to the solution in the class (C’E)s,p on (0,T") for someT' > T.

Corollary 3 Let u be the solution of (E) in the class (CE),, on (0,T) for 1 < p < oo,
s > n/p+1. Assume that T is mazimal, i.e., u cannot be continued to the solution in the
class (CE), ,, on (0,T) for any T' > T. Then both

T T
/ lirot u(t)||BModt =00  and / || Def u(t)|| Barodt = oo
0 0

hold.
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2 Bilinear estimates and critical Sobolev inequality in BMO.

In this section we shall prepare some lemmas. In what follows we shall denote by C
various constants. In particular, C = C(x,---,*) denotes constants depending only on the
quantities appearing in the parenthesis.

We first prove the following key estimate.

Lemma 2.1 (Bilinear estimates) Let 1 < r < co. Then we have
(0 1 o
(2.1) If - Vgll- < CUIFNI(=2)29gllBao + [(=2)2 Fl smoligll+)
for all f,g € WY with Vf,Vg € BMO with C = C(n,r).
(i) Let @ = (a1, -+ 0m), B = (01, -+, 0n) be multi-indices with |a| = a1+ -+ ap > 1
and |B| = P1+ -+ Pn > 1. Then v

2.2)  118°F - %glla < C( fllsmoll (—A) 52 gllz + (=) 5 £llsllgll 5aro)

lal
for all f,g € BMO N HI®HBl with C = C(n, o, B), where 8% = a—la———a—.
83:1 v 8wnn

The proof of this lemma is based on the following proposition due to Coifman-Meyer [6,
Chapter V. Proposition 2].

Proposition 2.1 (Coifman-Meyer) Let o0 = o({,n) € C®°(R™ x R™\ {(0,0)}) satisfy
0¢85 (¢,m) < C(EI+ D™=, (£,m) € R* x R"\ {(0,0)}
for all mluti-indices o, 3 with C = C(a, ). Suppose that
o(&€,0) =0.

Then the bilinear operator o(D)(-,-) defined by

@3 DN = [fp g TR ED, 2 € Y
satisfies
(2.4) le(D)(£,Dllp < ClfllpllgllBro (1 <p<oo)

with C = C(n,p).

Proof of Lemma 2.1. Here we prove only (2.2). The proof of (2.1) is similar to that of
(2.2). Let ®; be a C-function on [0, c0) such that supp ®; C [0,1),0< ®; <1, &;(t) =1
for 0 <t <1/2, and let & =1 — &;. Then we have

8°f(2)0°g(2)
e / /R”xR“ e &t e F(6)g(n)dedn
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e
R"xR"

a, B R a, -~
(———Inialnﬂm<I>1(I£|/|nl)f(£)Inl'“'*'ﬁ'ﬁ(n) + E%{iw@zuﬂ/|n|)1§|’“'+'ﬁ'f(£>§(n>> dgdr

|| +18] Jee]+18]

= 0 (aD)(f (-8)* (@) +oaD)(-1) 1, 9)@) )

where

apB

apB
ou61) = e (€D, oa(Evm) = e ®a (el
Since |a| > 1 ans |B] > 1, we see that
01(0777) = 07 0-2(570) =0

and that o; and o9 satisfy the hypotheses of Proposition 2.1. Hence there holds

le|+181 al+18
lou(D)(f,(-8) "7 gl < Clflsmoll(=8)"= gll2,
|al-+16] laL+181

lo2(D)(=A) "z f,9)lz < Cl(=A)"=" flllgllzmo,
which yields (2.2). This proves Lemma 2.1.

The next lemma plays an important role to show the energy identity of weak solutions in
the class (1.4) and (1.10).

Lemma 2.2 (i) Let w € L*(0,T; L2) N L?(0,T; H}) and w € L?(0,T; H: N BMO). Then
we have
T
(2.5) / (w - Vu,u)dr = 0.
0
(ii) Let w,u € L°°(0,T; L2) N L?(0,T; HL). Suppose that either
rot w,rot u € L'(0,T; BMO)
or
Def w, Def u € L*(0,T; BMO)
holds. Then we have r
(2.6) / (w - Vu,u)dr = 0.
0
To prove (2.5), we use the estimate of Coifman-Lions-Meyer-Semmes [5]:

(2.7) w-Vu€H with |lw - Vaulys < Cllwllal|Vals,

where H*® denotes the Hardy space on R™. For detail, see [5].
To prove (2.6), we use (2.1) and the Biot-Savart law. Indeed, by the Biot-Savart law, we

have the representation

(2.8) G = Rj(Rxw), j=1,---,n, wherew = roty;

(9:1:]'

ou! - . ouk  oul
(2.9) 5@ = Rj(kilekDef ug), j,l=1,---,n, where Def up = oo B2y



Here R = (Ry,--+,R,), and R; = %(_A)—% denote the Riesz transforms. Since R is a
j

bounded operator in BMO, we have by (2.8), (2.9) and assumption that
(2.10) Vu,Vw € L(0,T; BMO).

It follows from Lemma 2.1 (2.1) and (2.10) that fép (w - Vu,u)dr is well-defined. For details
of the proof of Lemma 2.2 we refer to [17].

Using the usual mollifier argument, by Lemma 2.2, we have the following energy identity
for weak solutions with (1.4) or (1.10).

Lemma 2.3 Letn >3 and let a € L2. Suppose that u is a weak solution of (N-S) on (0,T)
satisfying one of the additional conditions (1.4) and (1.10). Then u fulfills the energy identity

. .
(2.11) lu(®)3 + 2/ IVull3dr = llu(s)ll3 for all0 < s <t <T.
3
Now we prove the following lemma which is an extension of (0.1).

Lemma 2.4 (Critical Sobolev Inequality) Let 1 < p < co and let s > n/p. There is a
constant C = C(n,p,s) such that the estimate :

(2.12) I1flleo < C (L +|IfllBro(L +1og™ || fllwesr))
holds for all f € WP,

Remark. Compared with (0.1), we do not need to add ||f||z2 to the right hand side of
(2.12). This makes it easier to derive an apriori estimate of solutions to the Euler equations
than Beale-Kato-Majda [1].

Proof of Lemma 2.4.

We shall make use of the Littlewood-Paley decomposition; there exists a non-negative
function ¢ € S (S; the Schwartz class) such that suppy C {27! < |¢| < 2} and such that

o0

Z ©(27%€) =1 for £ # 0. See Bergh-Léfstrém [3, Lemma 6.1.7]. Let us define ¢o and ¢

k=—c0
as

o] -1
$o() = D 0(2%) and  ¢i(6) = > ¢(2%),
k=1

k=—o00

respectively. Then we have that ¢o(£) = 1 for |£] < 1/2, ¢o(€) = 0 for || > 1 and that
$1(€) =0 for |¢] <1, ¢$1(£) =1 for [£] > 2. It is easy to see that for every positive integer N
there holds the identity

N
(2.13) o2¥O)+ D e7F)+p1 27V =1, £#£0.

k=—N

Since C§° is dense in W*P and since W*P is continuously embedded in BMO, implied by
s > n/p, it suffices to prove (2.12) for f € C§°. For such f we have the representation

f(z) = /yeRnK(m—y)-Vf(y)dy with K(y) = —— Y

NWy W’
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for all z € R™, where w, denotes the volume of the unit ball in R™. By (2.13) we decompose
f into three parts:

fl@) = Lean%y)x

N
x (aso(z”(z )+ Y. e e —y)+ 127V (= - y))) -V f(y)dy
k=—N

(2.14) = fo(z) + g(z) + fi(z)
for all z € R™.
We can show that
(2.15) |fo(@)] < C27PY | fllwes

for all z € R"™, where 3 = 3(n, p, ) is a positive constant. For detail, see [18].
By integration by parts we have

N .
g(z) = Z (div &), * f(z), =z € R",
k=—N
where ¥(z) = K(z)p(z) and ¢ (z) = t™™¢(z/t) for t > 0. Since ¥ € S with the property
that
f div ¥(z)dz =0,
Rn

it follows from Stein [24, Chap. IV, 4.3.3] that

N
lgllo < Y {(div @)y * flloo
k=—N
N

< Y sup(div @)+ flleo

Wy 50
(2.16) < CN|fllsmo,

where C = C(n) is independent of N.
Integrating by parts, we have by a direct calculation

@ = [[_pedivy (Kle=0arz " =) e

(2.17) < o2V F| 5,

for all z € R™, where C = C(n,p) is independent of N.
Now it follows from (2.14) and (2.15)-(2.17) that

(2.18) 1 flloo < CE™M|| fllwar + N\ fllBro)

with v = Min.{8,n/p}, where C = C(n,s,p) is independent of N and f. If || f|lw-» < 1,
then we may take N = 1; otherwise, we take N so large that the first term of the right hand
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1 .
side of (2.18) is dominated by 1, ie., N = [—og Hlf”V;’ p] + 1 ([-]; Gauss symbol) and (2.18)
yiog
becomes og 1
o .
Ifllo £C {1 + |1 fllBro (——g————u + 1)} :
~vlog2

In both cases, (2.12) holds. This proves Lemma 2.4.

3 Proof of Theorems 1-4

3.1 Proof of Theorem 1.

It is proved by Kato [14] and Giga [11] that, for the initial data a € H*® with s > n/2 —1,
the local existence time interval T of the strong solution u of (N-S) in the class (CN), can

be estimated from below as
(3.1) T>—,
lall "
where C' = C(n, s). Actually, for a € L” with r > n, Giga [11, Theorem 1 (ii)] gave T in such
a way that

(3.2) ¢

g
so from the continuous embedding H* C L" for 1/r = 1/2 — s/n, we obtain (3.1). Hence

by the standard argument of continuation of local solutions, it suffices to prove the following
apriori estimate

T
(3.3) sup [[u()|| gra+r < lluleo)ll grai+r exp (Cf HUHZBMOdt) ,
go<t<T €0

where C = C(n, s) is independent of T'.
Let @ = (a1, -+,a,) be a multi-index with |a| = ag + -+ + an < [s] + 1, and let

lex| :
v=20% = %— Applying 0 to (N-S), we have for v the equation
Ozt -+ - Oza™
Ov
(3.4) E?*AU+U'VU+VQ=F, g0 <t<T,
where ¢ = 8% and
(3.5) F=— Y 4C0%Pu-v(8%u).

1BI<|al-1

Taking the inner product in L2 between (3.4) and v, and then integrating the result identity
on the time interval (gg,t), we obtain

(3:5) @)1 +2 [ I190lfdr < lo(ea)l§ +2 [ 1P lalvlladr

On the other hand, by (2.2), we have

lo|+1

1P|l < Cllull paroll(—A) “F a2,
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from which and (3.6) it follows that

t
lo2u@I +2 [ 1V(@e=w)l3dr

|| +1

t t
< fovueo)lE+ [ I-8)*Fudr +C [ Julbuollomulfdr
€0 €0

with C independent of t. Summing over o with 0 < |o| < [s] 4+ 1, we have

1
a1 < leeo) e +Cf lullBaollull Fras dr
€0

for all eg <t < T. Now the Gronwall inequality yields (3.3). This proves Theorem 1.

3.2 Proof of Theorem 2.

(1) Let us first prove uniqueness. We follow the argument of Masuda [20, Theorems 2,
3]. We can show that

t
3.7) / {2V, Vo) + (v - Vo,u) — (u - Vo,u)}dr = —(u(t), v(t)) + [lall2.
0
See Masuda [20, p.640 (4.4)]. By Lemma 2.3, u satisfies the energy identity
t
(38) lu@ +2 [ Ivuldr = lal}.
Addition of (3.7) (multiplied by —2), (3.8) and (1.5) yields
t ¢ ¢
(3.9) lw(@®)|2 + 2/ IVwl|i2dr < 2/ (w - Vo, u)dr = 2/ (w - Vu, w)dr,
0 0 0
where w = v — u. In the last identity, we have used (2.5). By (2.7) we have

t
RHES of (3.9) < C’/ lw - Vowllpe |[ull zacodr
0

IA

i
¢ [ Il Vwlalul ssodr

IN

t t
| ivelgar+c [ lulEiulbodr

Hence by (3.9)
t
lw@f < C [ lwlflulbuodr, 0<t<T

Since u € L?(0,T; BMO), the Gronwall inequality yields
lw()3=0, 0<t<T

from which we get the desired uniqueness.
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(2) We next prove regularity. Since u € L?(0,T; H: N BMO), for every 0 < & < T, there
is 0 < § < € such that u(8) € HXN BMO C L2 N L}, for n < r < co. Hence it follows from
the local existence theorem of Kato [14] and Giga [11] that there are T, > & and a unique
solution @ on {8, Ty) with @|;—5 = u(8), such that

(3.10) @€ C([6,Tu); HEN L) NCH(6,Tu); H**2) for s >n/2 — 1.

Since u satisfies the energy identity

311 [w@IE+2 [ IVuldar = @), s<i<T,

implied by Lemma 2.3, we have by the uniqueness criterion of Serrin-Masuda [23], [20]
(3.12) wu=d onl[6T.).

By (3.10) and (3.12), we may regard u as a strong solution in the class (CN), on (¢', T%) for
§< 8 <e. .

In fact, there holds 7, = T'. Suppose that T, < T. Then there exists Ty < T such that u
is a strong solution in the class (CN), on (§',Tp), but cannot be continued in the class (CN),
on (&§',T) for any T > Tp. By assumption, we have A '

To 9 T 9
(3.13) L Wlsaodr < [ lul3arodr < co.

This contradicts Corollary 1, so we get Ty, = T'. This proves Theorem 2.

3.3 Proof of Theorems 3-4.

Proof of Theorem 3:
On account of (3.2), it suffices to prove

T
(3.14) sup ||u(®)|l» < |lu(eo)l|- exp (Cf ||Vu||BMOd7') , T>n.
€0

e <t<T

In the same way as in (2.10), we see that the hypothesis (1.7) or (1.8) yields

T
(3.15) / IVl parodt < co.
€0

Since u € C([eo, T); H**?) C C([go, T); WL*), u is actually the solution in C([eo, T); W) N
C (g0, T); WY™) N C((g0,T); W3™) for all 2 < 7 < oo and has the integral representation:

¢
(3.16) u(t) = et~ 2y (gp) — / =2 Py . Vu)(s)ds, eo<t<T.

See Kato [14]. Here €2 is the well-known heat oparator and P = {Pri}r=1,.n is the
Helmholtz projection defined by Py = 61 + R Ry.
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Since ||etAHB(Lr’LT) <1 for all t > 0, it follows from Lemma 2.1(i) and (3.16) that

i
lu(eo)llr +C [ llu-Vul.dr

€9

t
luteo)ll- +C [ IVullsaoliulledr, e <t<T.
€0

AN

(@l

IN

From this and the Gronwall inequality, we obtain the desired apriori estimate (3.14), which

proves Theorem 3.
Proof of Theorem 4:
The proof of Theorem 4 is parallel to that of Theorem 2.

4 Proof of Theorem 5.

We follow the argument of Beale-Kato-Majda [1]. It is proved by Kato-Lai [15] and Kato-
Ponce [16] that for the given initial data a € W*P for s > 1 + n/p, the time interval T of
the existence of the solution u to (E) in the class (CE), , depends only on ||a||w». Hence
by the standard argument of continuation of local solutions, it suffices to establish an apriori
estimate for u in W*? in terms of a, T, Mo or a,T, M; according to (1.11) or (1.12). Indeed,
we shall show that the solution u(t) in the class (CE)s’p on (0,T) is subject to the following

estimate:

(4.17)  sup |lu(®)|lwsr < (lallwer + €)% exp(CTa;) with aj = e“Mi,  j=0,1,
0<t<T

where C = C(n,p, s) is a constant independent of a and 7. »
We shall first prove (4.17) under (1.11). It follows from the commutator estimate in LP
given by Kato-Ponce [16, Proposition 4.2] that

(4.18) lw(@®)lwee < |lallwes exp (c /0 t |[Vu(7')|[ood7') , 0<t<T,

where C = C(n,p, s).
By the Biot-Savard law (2.8), we have

(4.19) IVullsaro < Cllwllsmo

with C' = C(n). Hence it follows from (4.19) and Lemma 2.4 that

(4.20) [Vu®lleo < C (1 + llw®ll Baro(L +1og* [[u(t)llwer))
for all 0 < t < T with C = C(n,p, s). Substituting (4.20) to (4.18), we have

[u(®llwes +¢
< (lallwes +e)exp (C [ {1+ fo(Dllmaologllu(r)lwes +¢)}dr)



for all 0 < t < T. Defining 2(t) = log(||u(t)||ws» + €) , we obtain from the above estimate

2(t) < z(0) + CT +0At lw(t)Bpmoz(T)dr, 0<t<T.

Now (1.11) and the Gronwall inequality yield

) < (:(0)+CT)exp(C [ loizarodr)
< (2(0)+CT) g

for all 0 < t < T with C = C(n,p, s), which implies (4.17) for j = 0.
Similarly we prove (4.17) for 7 = 1 under (1.12). This proves Theorem 5.
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