0oooo0O0oooo
1146 0 2000 0 100-120 100

On steady surface waves over a rough periodic

bottom — relations between the pattern of
imperfect bifurcation and the shape of the bottom

JUREH  H O 3#EME (Tatsuo IcucHI)

1 Introduction

In this communication we are concerned with a free boundary problem
for two-dimensional steady irrotational flow of incompressible ideal fluid
over a periodic bottom. We take the gravity into account as an external
force and neglect the effect of surface tension on the free surface. We
assume that the domain 2 occupied by the fluid, the free surface I" and
the bottom ¥ are of the following forms

Q= {z=(21,22) ; b(21) < 22 < (1), z1 € R},

I'={z=(21,22) ; 22 =n(21), z1 € R},

Y ={z=(21,22); 22 = b(21), 21 € R},
where b is a given function while 7 is the unknown. The motion of the

fluid is described by the velocity v = (v, v2) and the pressure p satisfying

the equations
(1) p(v-Vv+Vp=—p(0,g) in Q,

(2) Vev=0, Vt-v=0 in

where p is a constant density and g is the gravitational constant. The

boundary conditions on the free surface I" are given by

(3) - p=py, v-ng=0 on T,
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where py is an atmospheric pressure assumed to be constant and ny is
the unit normal vector to I'. The boundary condition on the bottom X
is given by 4 |

(4) v-ny=0 on X,

where n; is the unif normal vector to X. Moreover, we assume that the
motion of the fluid is symmetric with respect to z,-axis and [-periodic
with respect to z;. Then, we should impose compatibility conditions that
the function b is even and [-periodic.

In the case where the function b is identically zero, n(z1) = o, v(2) =
(V,0) and p(z) = po — pg(22 — nmo) satisfy the above system of equations
with positive constants 7y and V, that is to say, uniform flow with flat
surface becomes a solution of the system, if the bottom is flat. Even in
the case where b is not identically zero, it is natural to expect that there

exists a solution (77, v, p) of the system satisfying the condition
(5) | lv(z) = (V,0)] <1,

if the function b is small in a suitable sense. We will find such solutions.
In this problem, data are the bottom ¥ and suitable parameters, while
the unknowns are the velocity v, the pressure p and the free surface T
Therefore, this is a stationary free boundary problem.

There are many results concerning steady surface waves. For exam-
ple, the existence of two-dimensional periodic stationary surface waves in
water of infinite depth was first proved by A. I. Nekrasov [7], [8]. Later,
T. Levi-Civita [5] solved independently thé same problem by different
method. His formulation is very useful to analyze steady surface waves.
Then, D. J. Struik [9] extended Levi-Civita’s result to the case of p-
resence of a flat bottom. M. A. Lavrentiev [4] considered the problem
in the same situation as Struik’s and showed the existence of solution

by using a variational principle in the theory of conformal and quasi-
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conformal mapping. Moreover, he showed that as the period goes to
infinity the corresponding solution converges to a solitary wave. This is
the first existence theorem of solitary waves for full surface waves. Then,
K. O. Friedrichs & D. H. Hyers [1] gave more direct proof of existence
of solitary waves. They adopted Levi-Civita’s formulation and treated
the problem as a bifurcation problem. All the results mentioned above
can be regarded as bifurcation problems and they obtained the bifurcat-
ed solution from the trivial solution which is the uniform flow with flat
surface. R. Gerber [2] considered the surface waves over a periodically
variable bottom and showed the existence of solution by making use of
the principle of Leray-Schauder. V. I. Nalimov [6] considered the surface
waves over a compactly perturbed non-flat bottom and showed the ex-
istence of solution, which has different asymptotic behavior at infinity.
Gerber and Nalimov also used Levi-Civita’s formulation. However, they
did not consider the solutions near the bifurcation point.

Our aim is to analyze the set of all the solutions near the bifurcation
point, especially to classify patterns of bifurcation diagram according
to the shape of the bottom. Following Levi-Civita we first reformulate
the problem assuming (5). Then, introducing the other dependent vari-
ables we reformulate it again. Our formulation is slightly useful than
Levi-Civita’ one. The reduced problem includes three non-dimensional
parameters A the Froud number, 8 which represents shallowness of the
fluid and ¢ which represents amplitude of the bottom. We will regard A
as a bifurcation parameter. Put A\, = n/tanh(ng) forn =1,2,3,.... If
¢ = 0, that is, the bottom is flat, then we have the pitchfork bifurcation at
A=A\, forany n =1,2,3,... and all the bifurcations occur subcritically.
Roughly speaking, \ is proportional to V=2 so that we obtain many oscil-
lating solutions as the speed of the flow becomes slow. This fact may be

familiar. In the case 0 < € < 1, the corresponding bifurcation equation
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is subject to a small perturbation. By Golubitsky-Shaeffer’s theory[3] we
know a universal unfolding of the pitchfork, which has two unfolding pa-
rameters, and hence all possible patterns of the bifurcation diagram. Nine
is the number of the patterns including the pitchfork itself: four of them
are persistent and the others are nonpersistent diagrams. Therefore, the
bifurcation diagram must be equivalent to one of the nine patterns. We
want to know which pattern is realized. We will give sufficient condi-
tions in terms of the Fourier coefficients of b under which each persistent

bifurcation diagram is realized.

2 Formulation of the problem

Assume that (n,v,p) is a solution of problem (1)—(4), I-periodic with
respect to z; and satisfy condition (5) and that the motion of the fluid
is symmetric with respect to zp-axis. In terms of v, such a symmetrical

property can be written as

(6) vi(—21, 22) = vi1(21,22), va(—21,22) = —va(21, 22).

To begin with, we change independent variables. Since (2 is simply
connected, (2) implies that there exist single valued stream function v
and velocity potential ¢, which are uniquely determined up to additive
constants. Then, the complex velocity potential x = ¢+ is an analytic
function of z and it holds that

d
(7) —X=ﬁ=vl—iv2.

The kinematical boundary conditions (3); and (4) imply that ¢ is con-
stant on each boundary I' and ¥. Therefore, adding a suitable constant
to ¥ we obtain that ¥ = 0 on X and ¥ = ¢y on I' with a positive con-

stant 1)y, where we used (5). Moreover, (5) also implies that a mapping
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-~ ®:Q = R! x (0,v) of the form ®(2) = (p(2),%(z)) is bijective. There-
fore, we can regard z as a function of (¢,1). Hereafter, we take (p, )
as independent variables and z as dependent variable. Define a constant
wo by g = IZ)O*(”O) v1d21 + vadze, which is positive because of (5) and
independent of 2y € ). Then, it holds that

(8) 21(90 + ©0, ¢) - zl((Pa d}) + l: z2(90 + ©o, 1[1) = z2(907 "-/))

By (6), if we add a suitable constant to ¢, then we have

(9) zl(_(P’ ¢) = —Zl(CP, w)a 22(_50’ ¢)= Z2(‘Pa'¢))'

Next, we introduce new dependent variables 6§ and 7 by

%Q exp{—i(0 + i)},

more precisely, by 8 = arctan(vy/vy) and 7 = log(l|v|/po). Then, 6 + it

(10) )

is an analytic function of x and @g-periodic with respect to ¢ because of
(8). (9) implies that 6 and 7 are odd and even functions with respect to

@, respectively. From (7) and (10) we obtain

(1) 200 = 20+ (po/1)" || exp{i(6 + i7) }ax,

where 29 = (0,22(0)) € X. By (2)2, we can rewrite (1) as V(3lv]* +
%p + gz9) = 0 in Q. This and the dynamical boundary condition (3);
imply that 1|v|? + gz = const. on I'. This is known as Bernoulli’s law.
Putting (10) and (11) into this equation and differentiating it with re-
spect to the tangential direction ¢ yield that 7, + g(wo/l) 2™ sinf = 0
on 1 = 1pp. This is the boundary condition on the free surface. By
(4), (11) and the definition of 8, we see that 8 = arctan{d'(z1(p,0))} =
arctan{d’((po/l)™ J{ € " cos8dyp)} on 1 = 0. This is the boundary condi-
tion on the bottom. Putting (11) into (8) and using the fact that 6 and 7
is po-periodic with respect to ¢, we see that oy [° exp{i(6 +i7)}dp =1
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for any ¢ € [0,1]. This is the periodicity condition. Finally, we rewrite
the above conditions in the non-dimensional form. To this end, we rescale
variables by |
2 ~ 2w ~ ~ 2
x=5% 0(x)= H(SEX), T(x) = T((pox), b(21) = hb(—-21)

with a positive constant h and introduce non-dimensional parameters by
B gl _ 2mhy _ 27h

Tom(e/ 2 T g ST I

After that, we drop the ~sign in the notation. Then, the problem is

27

A

reformulated as follows.

Problem 0 Given A\,e € R}, 8 > 0 and 2r-periodic even function b, find
functions 0 +i7 which are analyticin {x = p+i; 0 < ¥ < 3, p € R'},

2m-periodic with respect to ¢ and satisfy the conditions

'89 —37 _: _ _
&Z—)\e sinf=0 on oY=z,

0 = arctan(z—:b'(/{f e " cos 9dcp)) on 1 =0,

1
2T

(=, ¥) = =0(p,¥), 7(=p,%) = 7(p,¥).

/027T e 7Y (cos B(p, ) + isinB(p,))dp =1 for 0< < B,

Although we can proceed the analysis adopting this formulation, it will
be slightly easier to handle the problem if we use another formulation.

We introduce another dependent variables u; and uy by
uy=¢e ' cosf—1, wus=-¢e " sinb.

In terms of u = u; + ius, the problem can be rewritten as follows.
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Problem 1 Given \,e € R!, 8 > 0 and 27-periodic even function b,
find functions u = uy + iuy which are analyticin {x = ¢+ ; 0 < ¥ <
B, p € Rl}, 27-periodic with respect to ¢ and satisfy the conditions

(12) %1—:5 —dug = F(u) on ¢ =0,
(13) us = eG(u;b) on Y =0,
(14) /027r ui(p, ¥)dp = /027r us(p,¥)dp =0 for 0< <P,
(15) ul(—cp,fgb) - Ul(%@/))a UZ(_SOa@b) = _u2(90a¢):
where
10 1
(16) F@©) = 35 (wmm s T medp ~ L+ 2ae9)
(17) Glust) (o) = 5oble + [ (e, 0)do).

In the case ¢ = 0, u = 0 is a solution of the above problem and
corresponds to uniform flow with flat surface. We will seek small solutions
of Problem 1.

3 Preliminaries

For a non-negative integer s, we denote by H® the usual Sobolev s-
pace of 2m-periodic functions on R' equipped with the norm |juf, =
(28 _o 7" [u™ () |?dgp)'/?, where ul™ is the n-th derivative of u. We de-
note by H*® the space of all functions which belong to H and have mean

value zero. We denote by H?, ., and H?,, the spaces of all even and odd

functions in H?, respectively. We define subspaces H?,., and Hs,, of H®
in a similar way. A pseudo-differential operator K(D;,\), which de-
pends on parameters (¢, A\) and acts on the space H?,,, with a symbol
K(n;1, )) is defined by (K(D; v, A)u)(p) = T2 K(n; ¥, A)u, sinnep for

u(p) = £, g sinng.
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We review a notion and several facts in the bifurcation theory. We
refer to [3] for further details.

Proposition 1 G(z,)\, a) = 2% + Az + a1 + apz? is a versal unfalding
(in fact, universal unfolding) of the pitchfork g(z,\) = z3 4+ Az, where
a = (o, o) are unfolding parameters, x is the state variable and A is the
bifurcation parameter. More precisely, it holds that for any H(z, A, ) €
C>(R! x R' x R") satisfying the condition H(x,\,0) = g(x, ) there
exist a neighbourhood U of 0 € R™*? and C*-mappings S, X, A and A
such that H(z, \, 8) = S(z, A, B)G(X (z, A, B), A\, B), A(B)) on U, where
S(z,A,0) =1, X(z,1,0) = 2, A(A,0) = X and A(0) =0.

The space R? of the unfolding parameters a = (ay, ap) is divided into
four regions by two curves a; = 0 and ay = a3/27. If a is a point on
the curves, the corresponding bifurcation diagram is nonpersistent. Oth-
erwise, we obtain a persistent diagram. Moreover, eqﬁivalent diagrams
are obtained for all o within a given region so that we have foﬁr different

persistent bifurcation diagrams, which are illustrated in Figure 1.
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Figure 1: Bifurcation diagrams of G(z, A, a) =0
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Here, we have to notice that Proposition 1 gives only a local prop-
erty. In fact, we do not know the size of the neighbourhood U. This
situation may cause a problem. For example, for a fixed a = (aq, ay)
satisfying a; # 0 the equation G(z, A, @) = 0 has no solution in a small
neighbourhood of (z,A) = 0. In such a case, we can get no information
from Proposition 1. This consideration leads us to introduce the following

definition.

Definition 1 Let f(z, A) and g(z, A) be C*®-functions on U X L, where
U and L are closed intervals. We say that f and g are globally equivalent
on U x L if there exit a diffeomorphism ®: U x L — U X L of the form
®(z,A) = (X(z,1),A(N)) and C®-function S(z,A) such that g(z, \) =
S(z, \)f(X(x,\),A(N) on U x L, where S(z, \), X,(z,\) and A’'()\) are
positive on U x L and ® maps each face of 9(U x L) onto itself.

Definition 2 Let R > 0 and G(z, A\, o) = 23 + Az + oy + apz?. For a
C*>-function f (x,)), we say that f is a bifurcation of Type I on [~ R, R]?
if there exits a = (a1, as) satisfying the conditions a; > 0 and a; > a3 /27
such that f and G(, -, a) are globally equivalent on [—R, R]?. In a similar
way, we define bifurcations of Type II, Type III and Type IV: see Figure
1.

In order to determine which type of bifurcation is realized, we will

make use of a scaling and the following proposition.

Proposition 2 Suppose that a = (aq, ag) satisfies the conditions oy # 0
and oy # o3/27. Then, the bifurcation diagram of G(z, )\, a) = =3 +
AT + oy + asx? = 0 is persistent in the following sense: there exist-
s a positive constant Ry = Ry(a) such that for any R > Ry and any
¢ € C®([—R, R]? x [-1,1]) there exists a small positive constant gy =
eo(R, @, a) such that G(z,\, o) + ep(z, A\, e) and G(z, \,a) are globally

equivalent on [—R, R]? for any € € [—&y, €0).



109

4 Linearized problem

If the function b is even and u = (uy,up) satisfies (15), then F(u) and
G (u;b) defined by (16)—(17) are both odd functions. In view of this, we

consider the following linearized problem.

Linearized Problem Given A € R}, 8 > 0, 2r-periodic even function b
and odd functions f and g, find functions u = w; +7us which are analytic
in{x=¢p+i; 0<<B, ¢ €R', 2r-periodic with respect to y and

satisfy the conditions

(18) %E—Auzzf on =4

(19) w=g on =0,

(20) /027r ui(p, P)dyp = /027r uz(p,P)dp =0 for 0<9p<p,

(21) ui(—p,¥) = ui(p,¥), u2(—p,¥) = —u2(p, V).
Define A, = A,(3) by

(22) An = ta.nz nB’

Then, it holds that 0 < A\; < Ay < A3 < -+ = o00. Introducing pseudo-
differential operators K;(D;v, A), j = 1,2, 3,4, depending on parameters
(¥, A) by

( _ nsinhn(8 — ) — Acoshn(B — 1)

Ki(ni9, ) = 7 coshnf — Asinhn !
(23) ) Ka(n;, A) : " ncosh ;;S}in):/;inhnﬁ’
W
{ K, A) = n cosh Tszi;}in;ﬁsinh nB3’

we have the following lemma.
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Lemma 1l Let 8> 0 and X € R!. Suppose that s > 1 is an integer,
f € Hg;dl and g € H(idd'
() IfA# M\, foralln=1,2,3,..., then the Linearized Problem has
a unique solution u € C([0,5]; H?) of the form
us(+, ) = K3(D;, M) g + Ka(D;9, M) f,

where T is a linear operator defined by

(24)

(25) (Tu)(p) = i uycosny  for u(p) = i Uy, SIN NP,

n=1 n=1
(i) If A = A\, for some m, then the Linearized Problem has a solution

if and only if the compatibility condition
(26) (msinhmf8 — Ay, coshmB)gm = fi

is satisfied, where fn and gm are the m-th Fourier coefficients of f and
g, respectively. In this case, the set of all the solutions forms a one-

dimensional affine space.

In the case A # A, for alln = 1,2,3,. .., by making use of this lemma

and standard iteration arguments we can show the following theorem.

Theorem 1 Suppose that e = 1, 3> 0 and inf,>1 |1 = A/As| > 6 > 0.
There exists a small positive constant €y depending only on 3 and 0 such

that if s and m are integers satisfying m > s > 1 and
(27) be Him [bllse1 <M, [bll2 < eo,
then the Problem 1 has a solution u € C([0, 8]; H®) satisfying

(28) Sup, lu(, 9)lls < Cillbllssr,  [[ul B)llm < Calblle;

0<y<

where C; = C1(B,98, 8, M) and Cy = C2(8,0,m) are positive constants.



111

Remarks (i) Uniqueness of solutions does not hold in general.

(i) Since m is arbitrary, we see that u(-,8) is a C*™-function. This
fact implies that the free surface I' is a C*°-curve even if the bottom ¥ is
not smooth.

(iii) We have the same result even if we do not assume the symmetry
of the motion of the fluid.

5 Bifurcation equation

In the following, we fix a positive integer m and consider the case where
A is in a neighbourhood of A,,. For simplicity, we also assume that the
function b is of C*®-class. Define mappings H(u, A, ¢) and E(u, A, €) by

( H(u, A e) = (Hi(u, A ), Hy(u, A, €)), |

Hl(u: /\78)(',1#)
(29) = T(eK1(D;,0)G(u; b) + Kao(D; 9, 0)(Aua(-, 8) + F(u))),

HQ(’U,, )\, €)(,’(,b) ;
= eK3(D;9,0)G(u; b) + K4(D; 1, 0) (Aua(+, B) + F(u)),

\

and
(30) E(u,\e) =u— H(u, A ),
respectively. Then, by Lemma 1 for A = 0 Problem 1 is reduced to finding
zero points of E(-, A, €).

Next, we reduce the problem to a finite-dimensional one by adopt-
ing the so-called Lyapunov-Schmidt reduction. To this end, we define a

fundamental function space X by

(31) X = {u=(u,u2) € C(10,5]; Hoyen X Houa) ;
Uy + iug is analyticin x =+, 0 <Y < B, p € Rl}.
Then, we see that

(32) Ker(E,(0,,0)) = {0}, Range(E,(0,A,0)) =X



112

if)\;é Ay for allm =1,2,3,... and that
Ker(E,(0, Ay, 0)) = {z&,, ; = € R'},

(33)
Range(E,(0, A\, 0)) ® Ker(E, (0, A, 0)) = X

form=1,2,3,..., where

(34) gm((rov %b) - (KQ(m; %0, 0) cosme, K4(m; iﬁ, 0) sin m%")

_ ( cosh my ' sinh my

COS M, sin mgo) .

" mcoshmf3 m coshmp

Using (33) and the Lyapunov-Schmidt reduction, we obtain a bifurca-
tion equation f(z,A,e) = 0, where f is a scalar function of C*-class
in a neighbourhood of (z, A,€) = (0, \;,0), = is a state variable, A is a

bifurcation parameter and ¢ is a small parameter.
We introduce symbols I?j(D;@b,)\), j=1,2,3,4, by

(35) R (nih. \) = Ki(n;y,A) if n>1, n#m,
e K;i(n;9,0) if n=m
for j = 1,3 and
_ Ki(n;¢,A) if n>1, n#m,
! 0 if n=m

for j = 2,4. For notational convenience, we extend K i(n; 1, A) for non-

positive n as
K;i(0;4,\) =0 for j=1,2,3,4,

(37) { K;(-n;¥,\) = —=K;j(n;¢,\) for n=1,23,..., j=1,2,
Ki(—n;v,\) = K;(n;9,)\)  for n=1,23,..., j=34.

Since we have been assuming that the function b is even and 2n-periodic,

it can be expanded as the cosine Fourier series

(38) b(p) = 'é) by, cos nep.
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Putting b, = —nb,, we have b'(p) = ¥, b, sin ng. Then, we can expand

the bifurcation equation as

(39) f(:l?, )\, 8) = ()\i- — 1).’17 + 030(/\):1:3 —+ 001()\)6 + 011()\)8213

+ Con(Nex? + Coa(N)e? + Cra( Nz + Cos(M)e + O(z? + %),

where
2

~=(3(Ka(m; 8,0))” + (Ka(m; 8,0))?)

(3K2(m:/870)K2(2ma/87/\) K4(m’ﬂ’ )K4(2ma/87)‘))
+ 5 Ka(m; B,0)(3(Ka(m; B,0)) — (Ka(ms 8,0))°),

(40)  Cx(A) =

Ab,,
coshmp’

(41) Co1(\) = AK3(m; 8,0)b,, =

(42) Cm(N) = %)\Kg(m; 8, 0){ (K»(m; 0,0))?(3b3yn — bin)
m(3(Ka(m 6,0))? + (Ka(m; 8, 0))%) Ka(2m; 0, 3) (B + br)
+ LK (m; 0,0)(38Ka(m3 B,0) K1 (2m: B, A)
— Ky(m; B,0)K3(2m; 8, A)) (b3 — bm)
(3K2(m B,0)Ks(2m; 8, A) — Ku(m; B,0)Ka(2m; 8, A))
{( Ko(m; 8,0)K1(3m; 8, ) — Ka(m; B, 0)K3(3m; 8, ))ba

+ (3Ks(m; B, 0) K1 (m; B, 0) + Ka(m; B,0)Ka(m; 8,0))bn |

+ - (3(Ka(m; 8,0)) + (Ku(m; 5,0))?)
x {(3K1(3m; 8, \) K (2m; 8, )) — K5 (3m; B, \) Ka(2m; B, A) )by
+ (3K1(m; B,0) Kp(2m; 8, A) — Ka(m; 8,0) Ky(2m; 8, A))bn |
— mKz(m; B,0)Kya(m; B, 0)(K3(3m; B, A)bsm + K3(m; 3,0)by)
+T§< (K2(m; 8,0))* = (Ku(m; 8,0))*) K1 (1m; 5, 0)bn
5 (3(Ka(m; 8,0))” + (Ka(m; 8,0))°) K1 (3m; 8, A)ba,
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(43) 002(A):T/\K3(m;5,0)( L - ¥ )=b.biKi(n; 0, )
n+l=m n—l=tm’ 1

(n; B, N K3(L; 8, A) + 3K (n; B, VK 1(I; 8, \))

bubi (K

B Bl(.[?g(n,ﬂ, /\)I?3(l,ﬂ7 /\) - 3-[?1(77') ﬂ: /\)I?I(L ﬁa /\))a

e
T

MS %IS

(44) Cos(A) = AKa(ms 8, 0) |
(¥ - % )bblbk{ Ki(n; 0, \) K (n + 10, \)

n+l+k=m n+l—-k=+m

— (3Ki(m: 8, VK (1 8,3) + Ks(n; B, \) Ka(l; 8, ) Ka(n + 1,0, 3)
+( Y -3 )b b,bk{ Ki(n; 0, ) Ei(n — 150, )

n—l—k=+tm n-l+k=tm

+ (3K (n; B8, VK1 (5 8, ) — Ba(n; 8, ) Ks(l; 8, 0) Ea(n — 0, ))
(= ) kl’z}nélz}kKl(n; 0, VK (1;0, )

_I..

n+l+k=m n+l k +m

ko oo _
) 2 bubibp K1 (n; 0, M) K1 (150, A)}
n—l+k= :i:m n—I— k +m !

(2
{ n+ 1

+ _727'_ bnblkal(n 0 )\)
4 n+l+k m N N
(3K1( ﬂ, )Kl(n + I; ﬂ, ) + K3(k; ﬂ, )\)Kg(n + l; ﬁ, /\))
oy M RR (n:0,0)
n+l—k=tm 7 B o
X (3K1(k ﬁ’ ) (n+l/8a )_K3(k)ﬂ7/\)K3(n+laﬁ7)‘))
+ oy Pl R (0,0
n—Il+k=xm . N
x 3Ky (k; B, N Ea(n — 1; B, \) + Es(k; 8, ) Ks(n — 1 8, 1))
+ Z ‘—lb blkal(n )
n—l—k=tm T
x (3Ka(k; 8, \) K (n — 1 5, ) = Ks(k: 8, ) Ks(n — 18, 1)) }
+ ?f‘_{ S m(n + 1)b,bibs
8 n+l+k=

x (3K1(n; 8, N K1(l; 8, \) + Ks(n; 8, \) K3(; 3, \))
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x (K1(k; B, N EKa(n + 15 8, \) + Ks(k; B, \) Ka(n + 1; 3, \))

+ Z (n + Z)Bni)li)k

n+l—k=+m
x (3Ki1(n; B, ) Ki1(L; 8, A) + Ks(n; 8, \) Ks(1; 8, \))
X (Kl(k;ﬁa )‘)EQ(TI’ + l; /67 )‘) - K3(ka /87 )\)E4(7’L + l; /67 )‘))

+ Z (’I’L - l)gnglgk

n—Il+k=+m
X (3K1(n1/37)‘)f?1(l7ﬁ7 /\> - I?g(ﬂ,ﬂ,)\)f?g(l,ﬂ, )‘))
x (Ki(k; B, N Ka(n = 1; 8, A) + Ks(k; 8, \) Ka(n — [; 8, )

+ S (n=Dbubibk

n—Il—k=+m

X (3f?1(n- B, NEK\(1;8,)\) — Ka(n; 8, ) K3(1; 8,\))
x (Ey(k; ) o(n =16, 3) = Ks(k; 8, ) Ka(n — 1; 5, 3)}
) bbiby | | -
ﬂ )+E3(n;ﬁa)‘)-l?3(l;/87 /\))I?l(kaﬂa)‘)
biby |

+3{(.2
.

n+l+k=m n+l k +m

(K1(n B, N Ki(l;
n—l+k= :i:m n—l—k= :l:m)b
(1

x (K1(ni 8, VE1(; 8, A) — Ks(n; 8, \) K (l; 8, 1) K (ks 8, 1) |

where ¥, 1—n means the summation of all positive integers n and [ sat-
isfying n + | = m, etc.
6 Classification of bifurcation diagrams

Now, we are ready to give our main results. First of all, we consider the

case ¢ = 0, that is, the case where the bottom is flat.

Proposition 3 Ife = 0, then we have pitchfork bifurcations at (z,\) =

(0, \) for allm =1,2,3,..., and all the bifurcations occur subcritically.
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Proof. It follows from (39) that

A
(45) £z, \,0) = (/\_ — 1)z + Cyp(N)a® + O(a?).
Therefore, it is sufficient to show that Cso(\,) is positive for all m =

1,2,3,.... By (40) and (23), we see that

1 tanh 2m(
(46) Cso(Am) = 4m(Aam — Am) sinh Qmﬁ{ ( tanh mg3
+ (5 tanh mgB + tanh® m3)(cosh 2m3 — sinh 2mg3)

+ (5(tanh ms — %)2 + 2 + tanh? m3(2 — tanh mﬁ)) cosh 2mﬂ}.

This shows the assertion. The proof is complete.

— 1) cosh 2mp3

Next, we fix a positive integer m and consider the bifurcation problem
near (z,A) = (0,\;) in the case 0 < ¢ < 1. Let us change the state
variable z and the bifurcation parameter A into y and p in the formula

r = ey and A = A\, (1 + €%/3p), respectively. Then, we have

A -
47 A e) = e(Cso(Am)y® —T by, + O(e?)).
(47)  flz,Ae) 8( 30(Am)y” + by + — b + (e ))

Therefore, noting that b,, = —mb,, we can apply Proposition 2 to obtain

the following theorem.

Theorem 2 There exists a positive constant €y depending on 3, m and
b such that for € satisfying 0 < € < €y,

(i) we have a bifurcation of Type I if b, < 0;

(ii) we have a bifurcation of Type II if by, > 0.

We proceed to consider the case where b,, = 0 and Cpz(\) = 0. Let us
change the variables z and A to y and p in the formula
r = 23y,
(48) A= /\m(l - Cll(/\m)5
+ (Ca0(Am )t = C12(Am) + AnCri (Am)Cl1 (Am))e?),
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respectively. Then, we have

Co1(Am) o+ Cos(Am)

C30(Am) Cs0(Am)

Therefore, by Proposition 2 we obtain the following theorem.

(49) f(z, €)= € Caoln) (4 + iy + +0(e)).

Theorem 3 Suppose that b, = 0 and Cy2(A) = 0. There ezists a positive
constant €y depending on 3, m and b such that for € satisfying 0 < € < g,
(i) we have a bifurcation of Type I if Ay > 0 and Ay > A3/2T;
(i) we have a bifurcation of Type II if Ay < 0 and A; < A3/2T;
(iii) we have a bifurcation of Type III if 0 < A; < A3/2T;
(iv) we have a bifurcation of Type IV if A3/27 < A; <0,
where

. 003 (/\m)

(50) A; = Ai(m,B,b) = CooCom)’

7 Particular cases

In this section, we apply Theorem 3 to particular cases where the function
b has the form

(51) b(¢) = bay, cos 3mp + by, cos S
or
(52) b(p) = by, cos 3mp + be,, cos Tmep.

In both cases, the assumptions of Theorem 3 are satisfied. Moreover, by
(42) we see that

(53) 021(/\771) = 6721(7n7ﬂ)b3m7

where 621(772, B) is a constant depending only on m and 3. Putting

(54 B3(m) = —log(,/371+ 1+ 374),
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we see that
<0 for 0< B <pB5(m),

(55) Ca(m,B){ =0 for B=p5(m),
>0 for B3(m) < B < oc.

Next, we restrict ourselves to the case (51). By (44) we see that

(56) Co3(Am) = Cos(m, B)(b3im) *bsm,
where 503(m, B) is a constant depending only on m and 8. Moreover,

there exist z; € (0,1/8) and z2 € (1/8,1/4) such that

<0 for 0<f<Bf(m) or 8> pB5(m),
(57)  Cos(m,B){ =0 for = pi(m) or f=G3(m)
>0 for Bi(m) <8 < B5(m),

where )

(58) B (m) = —log(\/z; + 1+ y/33), =12

Using these facts and Theorem 3 and introducing a constant C by
C.

(59) C=C(m,p)= 21(1m, f)

27(030(’\m))2§03(m7 B)

we obtain the following tables.

b5m b5m
T bsm = Cbzm bsm = Cb3m ?
| |
| |
| |
Type H,' Type IV Type III } Typel

| |
| b3m | bSm
| !
i Type I Type IIE Type IV
| |
| r

Figure 2: 0 < 8 < ff(m) or Figure 3: 8j(m) < 8 < B5(m)

B5(m) < B < B5(m)
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b5m b5m
? bsm = Cb3m T
| !
| |
i Type II Type IV i Type IT
| |
i b3m | b3m
| |
Type I i Type I E Type 11

| |
| |

Figure 4: 8 = f5(m) Figure 5: 8 > B5(m)

Namely, when 0 < 3 < fj(m) we have a bifurcation of Type III if
C(m, B)bsm < bsm < 0, etc.

Next, we consider the case (52). In this case, we obtain in place of
(56) that
(60) , Co3(Am) = Coz(m, B) (b3m)*b7m,
where 503(77%, B) is a constant depending only on m and 3. Moreover,
there exist z; € (0,1/5) and z2 € (1/5,2/5) such that (57) holds. Hence,
in this case we have almost the same result as the previous one.

The details will be published elsewhere.
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