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1. INTRODUCTION. One of the most important problems in applied mathe-

madtics 1s

understanding relationships between the models
(I) on the microscopic level (dynamics of the particles),
(IT) on the statistical level (dynamics of one or more test—particles, in the framework of
kinetic theory),

(III) on the macroscopic level (dynamics of the continuum).

A huge number of papers on this topic exists (see [CIP], [La2]), but the relationships

between the different models are still not fully understood.

The aim of this paper is to discuss the relationships between (1I) and (III).

In kinetic theory (II) a statistical description is used for systems composed of a
large number of particles. The evolution of such a system is described by the proba-
bility density function of one particle (one-particle distribution function) f = f(¢,x,v)
satisfying a kinetic equation; t > 0, x = (z1,22,23) € Q C R® and v = (v1,v2,v3) € R®
are time, space and velocity variables, respectively. Throughout this paper 2 is either
R?® or the three~dimensional torus T°.

The following moments of function f correspond with fluid dynamics (IIT):

oft, x) = /f(t,x,v) dv, (1.1a)
]R3
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1

u(t,x) = o)

/vf(t,x,v) dv, (1.1b)
]Ra

(%) = 5o ( [ v Ay av - g<t,x)|u(t,x>|2> (110
]R3

and represent the (dimensionless) mass density, macroscopic velocity vector and internal

energy, respectively; The (dimensionless) temperature is

T(t,x>=3g(i7x) / VR xv)dv — ot 0l | (11d)

}R3
The most widely known and used is the Boltzmann kinetic equation ([CC], [FK],
[CIP], [La2], [Uk])
of of 1
= L=z 1.2
1] (12)

where
15y = [ [ (#0500 v') = £, w)06,9)) B, w =) dmdw,
IRS S2
Szz{n€R3 : |n|=1},

v! and w' are the velocities of a pair of particles after a collision, which are related to

the velocities v and w, before the collision, by
vi=v+((w-v)-n)n, w =w—((w-=v) -n)n;

¢ and 9 are the Knudsen and Mach numbers, respectively; and B is the collision
kernel. Throughout the paper, the collision kernels corresponding to Grad’s cutt-off
hard potentials ([Gr]) are considered. The important example of a such collision kernel

is the one corresponding to the hard sphere potential
B(n,w—v)=n-(w-v)VO0, (1.3)
where a1 V a; = max{a;,az2} (and a3 A ag = min{ay,az}).

It is well known that the concept of continuum theory is valid only in the so-called

hydrodynamic limit
el0. (1.4)

This limit (for bounded 90) formally leads to the equation

J(f)=0, (1.5)
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which is the degenerate equation corresponding to the singularly perturbed equation
(1.2). The unique class of positive solutions of Eq. (1.5) is that of Maxwellians

Mo, u,T)(t,x,v) = o(t, %) (2xT(t, %)) "*/% exp (_%) ’

where o (local density), u (macroscopic velocity vector), and T' (macroscopic tempera-
ture) are the fluid-dynamic parameters of the Maxwellian M = M|p, u, T).

One can expect that in the limit (1.4) the solutions of Eq. (1.2) approach the Max-
wellian M{p, u,T], whose fluid-dynamic parameters solve a system of equations of con-
tinuum theory.

There are two classical and natural cases (cf. [La2] and references therein) for

studying the hydrodynamic limit (1.4). The first one is for 9t — fixed, e.g.
€l0 and M=1, (1.6)

which leads to the systems of equations of continuum for compressible fluids; In this

case the Reynolds number R is O (—i-) The second one — for ¢ ~ 901, e.g.
e=M|0, (1.7) -

which corresponds to incompressible fluids; In this case 2 is O(1).

By the Hilbert or modified Hilbert expansion procedures ([Ca2], [La2]), one con-
cludes that, in Limit (1.6), the Boltzmann equation (1.2) results in the Euler system
and then in the Navier-Stokes system for which the viscosity and heat conduction terms
are O(e). ‘

For the Hilbert expansion the existence of smooth solutions to the resulting contin-
uum system is essential. It is well known that one cannot expect the global existence
of smooth solutions to the Euler system due to the fact ([Si]) that singularities can
appear in a finite time. On the other hand, as far as the Navier-Stokes approximation is
concerned, the elliptic properties of the resulting Navier-Stokes operator, in Limit (1.6)
cannot be preserved (R = O (1)).

In Limit (1.7), Eq. (1.2) results in the Navier-Stokes equation for incompressible flu-
ids (see [BGL1-3], [DEL], [BUJ, [Go]). In this case one has to assume (see [BGL2], [Go]
and [La2]) that the initial data (and then the solutions) to Eq. (1.2) are O(e)—close to a
global Maxwellian (i.e. the Maxwellian constant in the time and space variables). The
ambitious program of finding the relationships between the global weak solutions of the
Navier-Stokes equation (due to Leray [Le]) and the renormalized solutions of the Boltz-
mann equation (due to DiPerna and Lions [DL]) has been started by Bardos, Golse and
Levermore in a series of papers [BGL1-3], [Go]. The main difficulty in completing this
program comes from the fact that it is strictly related to the local conservation laws (of

mass, of momentum, and of energy) properties. The question whether the renormalized
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DiPerna-Lions solution satisfies the local momentum and energy conservation laws still
remains open (cf. discussion in [BGL3] and [Go]). Bardos, Golse and Levermore [BGL3]
proved that if the DiPerna — Lions renormalized solutions satisfy the local momentum
conservation and if some additional properties are fulfilled, then the weak convergence
of the renormalized solutions to the Leray solutions holds.

Summarizing: the Boltzmann equation (1.2) is consistent with the compressible
Navier-Stokes system, with the viscosity and heat conduction terms of the order of ¢
(R = O (1)) in Limit (1.6), and with the incompressible Navier-Stokes equation (with
R = O(1)) for O(e)-perturbation of a global equilibrium in Limit (1.7).

Contrarily, an asymptotic relationship between the Boltzmann equation and the
compressible Navier-Stokes system with viscosity and heat conduction terms which are
O(1) in the hydrodynamic limit (1.6) cannot hold true.

On the other hand, in Limit (1.6) some kinetic equations ([La3,4]) result in a com-
pressible Navier-Stokes-type system, with viscosity and heat conduction terms indepen-
dent of all small parameters of the kinetic models — under a particular assumption
about the relation between the small parameters (cf. (4.2)).

In this paper we consider only Limit (1.6) (Limit (1.7), for other kinetic equations
than the Boltzmann one, has been launched in the paper [JL]).

As far as the smooth solutions are concerned, in the mathematical literature, the
two following approaches can be distinguished:

AT ) MACRO (IIT) = MICRO (II) ([Cal,2], [La2]);
Al ) MICRO (II) = MACRO (III) ([Ni], [UA], [AU], [Uk]).

In Approach AT one shows that the existence of smooth solution to the system
describing dynamics of continuum implies both the existence of a smooth solution to
the kinetic equation and the validity of the Hilbert procedure.
~ In Approach A | first the existence of an analytic solution to the kinetic equation and
then its convergence to the local Maxwellian (whose fluid-dynamic parameters solve the
macroscopic system) are proved. Both approaches have a local (in time) nature, but

the time interval does not depend on the small parameter(s) (is “macroscopic”).

2. ENSKOG EQUATION. In the case of the Boltzmann equation, the overall
dimensions of the particles are neglected (the collision operator J has a local nature with
respect to the space variable x). This physical idealization leads to serious mathematical
difficulties: the operator J does not act in the space L1( x R®), in which natural a
priori bounds hold.

However, in the case of dense gases, one should replace the mass—point Boltzmann
model by a model which can take into account the overall dimensions of particles.

One such attempt leads to the Enskog equation — a quite successful model of the

kinetic theory of moderately dense gases (cf. [CC], [FK], [BLPT] and [Ar2], [AC], [EsP]),
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in which each particle is assumed to be a hard sphere with nonzero diameter. Such an
assumption leads to nonlocal (with respect to x) nature of the equation.

In the present paper only the simplified case of the Enskog equation (referred to
as the Boltzmann-Enskog equation), for which the pair correlation function is equal
to 1, is considered. Further, the analysis is valid for a general case, under a suitable
assumption about the behaviour of the pair correlation function (cf. [La2]).

The Boltzmann-Enskog is
0 0 1
(é;'i"v' ;)f*— gEa(f)a (2'1)

Ef)x,v) =
//(f(x+an,w')f(x,v’)-—f(x—an,w)f(x,v)> (n-(w—v)V0)dndw,

RS §2 ,

where a is the (dimensionless) diameter of the (hard sphere) particles. The standard
notation is used -— a particle with the center at x and the velocity v collides with a
particle with the center at x — an and the velocity w. The collision kernel corresponds
to the hard sphere potential (1.3). |

The mathematical theory for the Enskog equation can be found in [Ar1,2], [AC1,2],
[BLPT], [EsP] (see also references therein). Note that in the x—one-dimensional case
the operator E,, for a > 0, acts in the L;(Q)-space setting ([Ce2]).

A degenerate equation corresponding to the Boltzmann—Enskog equation (for fixed

a>0)is
E.(f)=0. (2.2)

The class of solutions of Eq. (2.2), for fixed a > 0, is too small to describe a reasonable

hydrodynamic (cf. [At]). Therefore the following hydrodynamic limit
elo0, al0 (2.3)
should be considered.

One can distinguish the following important cases:
(i) e < ¢, (e.g. a = beP for p > 1);
(i1) a > ¢, (e.g. a =be? for 0 < p < 1);

(i) a = be, for b = const.

Case (i) leads to the hydrodynamic limits which are exactly the same as those
resulting from the Boltzmann equation (cf. [La2]).

In Case (ii) one should expect similar difficulties as for the case when a > 0 is fixed
in the limit (1.4).
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In Case (iii), the Boltzmann-Enskog equation (formally) results in the following

Enskog—Euler system

a—g-—i-i—a—( )=0 (2.4a)
ot Pt Oz; ehi) =5 )
8u] 3 Ouj 27 )
— | oT = =1.2.:¢ 2.4b
Credugi g (T eg) =0, =123 ea
T <~ 0T 2 Au;
ST tig Y 3T< ——bg) Z o, = 0 (2.4¢)

i=1
The mathematical theory on the relationships between the Boltzmann—-Enskog equa-
tion (2.1) and the Enskog-Euler system (2.4) was developed in the paper [La5] by
applying the idea of Ukai and Asano [UA] (Approach A}).
Let a = be, b = const, and w be a global Maxwellian, i.e. w(v) = M|, us, T(V),
where o, > 0, u, € R® T, > 0 are given constants.

The initial datum F' is assumed in the form
F=w+wi@, (2.5)
where (G is independent of ¢, and the solution is looked for in the form
f=w+twig. (2.5b)

In terms of ¢ the Cauchy problem for the Boltzmann-Enskog equation reads

g Og

1 1 1

t=0

where L is the Boltzmann linearized collision operator Lg = w5 J (w,w%g), and

=1 1 —1 1 1
Q-9 = 20”7 Ey, (w,wig)—Lg, Te(g1,92) = w7 By, <w391,w2gz>-

Consider the following integral version of Problem (2.6)
1 [t
g(t) = "PG + g/ 7B (Qeg(t1) + Telg, 9)(t1)) di (2.7)
0

(t,%,v) €]0,0[xR* x R®

(the proofs are, however, also applicable to the case of x € T°). Here ¢*Bs denotes the

semigroup generated by the linear operator

B, =-v- 2-{— L
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Let B® denote the space equipped with the norm

1) = sup |(v)*g(v)], aeR',

vER3

llg]

where (v)® = (1 + |v])* and o € R'. Let § = Fg denote the Fourier transform of a
function g € S'(R® x R*) with respect to the position variable x,

1

—ik-x 3
(—2—;—)3—/2/6 g(X,V)dX, keR.

]Rs

g(k,v) = Fglk,v) =

Let XE;% be the space equipped with the norm
loll§?) = sup [0 (09 explaDaiew)] 7 €RY,
lve

«, B, v are positive constants.

The space X;o;v is a closed subspace of XE;?‘.)Y, such that

geXS) o g eX & |[F T (ukl + vl > ik, v)[§) —0, as € oo,

where y(truth) =1 and y(false) = 0.
For n > 0 and an interval I C R, let

o ~ () ~ _ —_ ~
Yai(I) = {9 =g(t) : Gy € Cp(L;X5.); Gut,x, V)= F 1eXp(—nilkl)Q(t,k,V)}

be the space equipped with the norm

o, (@)
g = sup ||g(t g
” ”ﬂ,'y,[ el ” ( )”,8,7 7t

Let
Za;'ﬂal — C% (]O’ 1], Y;:Z([Oa to]))

ﬂ:’YytO

be the Banach space of e-dependent functions, equipped with the norm
a,n,1 ()
g = sup |g(t g
Iol53% = sup NS
OSiSto
Let

. 1
B.(k)j(k,v) = FB.g(k,v) = (—z'k v+ EL) g(k,v).
The semigroup %etée(k) is such that ([ELP], [Uk], [An1,3])
) 4
P09 = x(elk| < r) )y P (K) + Vet k),

§=0

where & is a positive constant; A$ € C°([~&, &]) (for j =0, ...,4) are such that
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RA%(k) < 0 and have the asymptotic expansion
Ai(k) = APk - APk + O (2[k]*) , k|- 0,

with coefficients )\5-1) € R! and /\5-2) > 0;

J

k k
P(k) = P (|k|) + elk|P{V (Ikl> + 2k[PPP (k) , [k| =0, k#0.

For each fixed k, the operators P( )(k) are orthogonal projections on Ly(R%); PO =
Z PJ(O)(Ik|) is the orthogonal prOJectlon onto N(® = hn{wubZ : i=0,.,4} in
LQ(RB), where g, ..., %4 are the collision invariants

vo=1, Yi(v)=v; (1=1,2,3), u(v)=|v|*; (2.8)

P is independent of ﬁ;
For each fixed a, the operator P;l) satisfies (for [ =0,1,2 and j =0, ...,4)

o 3
1291 < ellgll ™), Vo > 5

The operator U, can be decomposed
Ue(t, k) = €400 £ U,(8,k),

where A, (k) = — (ik - v + 1y(v)), and for each fixed @ > 5 the operator U, satisfies

8 ¢
1U.(t, k) g||'®) < ¢ eXp(—ffg)Ilgll(""l), o>0.

Therefore

éetés(k) (_r__ po) = |k|U(k) + _i_e—aoi%(k),
where 2 and B are uniformly bounded (for € > 0) operators and oy = const > 0 and

the singular factor T “is replaced” ([Uk]) by a unbounded operator (a pseudodifferential

operator with the symbol k).
On the other hand, the operator %etBE(k)Qs, again can be treated as a pseudodif-
ferential operator with the symbol |k|, instead of being singular with respect to e.

In the proof the following elementary inequalities are needed

(i) For any f; > 3 and any 33 > 3

1 c
e m/ EH TP+ k=T = [ e

(ii) For &, v,n >0
t

(1IQ2) /eXP(—f(t—tl) — (y=—nt1) k) dt; < ﬁ%meXp(—(v—nt)lk!)-

0
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The main result of the paper [Lab] is

THEOREM 2.1. Let «, 8, v, b, n and ty be properly chosen (independent of €). If
the initial data

Gexy) (2.92)

satisfies the smallness condition
IGIS, < 9, (2.9b)

where Uy is a given constant.
Then
(i.) there exists a unique classical solution g of the Cauchy problem for the Boltzmann—

Enskog equation (2.1) on the time interval [0, %], such that

g€ Zg;z;}O, (2.10)
0 0 a—1,7
59 € C7(]0,1); Y52 ([0, 20])) - (2.11)

(i1) g(t) — go(t), ase | 0, strongly in Yg:z([é, to]), for any é €]0,to[; _
(iii) fo(t) = w + w%go(t) is the Maxwellian such that (p,u,T) is a classical solution of
the Cauchy problem for the Enskog-Euler system (2.4) with the initial data

Ql = (¢07F)L2(R3)7 T =0 = (/‘/)47F)L2(]R3) 3 (2.12&)

uj

o W5 Fr,mey,  7=1,2,3. _ (2.12b)

As a by-product, Theorem 2.1 delivers an existence result for the Enskog-Euler
system (2.4). For the Euler system (i.e. for b = 0), which is a symmetric hyperbolic
system provided that p > 0, the (local) existence and uniqueness theorem is available

for the Cauchy problem with analytical initial data (g, u,T) such that
=0

> 0. (2.13)

=0

This assumption was essential in the proof by Nishida [Ni] of the convergence of solution
of the Boltzmann equation to the Maxwellian, which fluid-dynamic parameters solve
the Euler system. This type of assumption was also essential in the methods reviewed
in the lecture [La2]. On the other hand, Assumption (2.13) was removed in methods
by Ukai and Asano [UA]. It is not necessary either in the paper [La5]. To author’s
knowledge, the existence result, which follows from Theorem 2.1, is the first for the

Enskog-Euler system.

Like for the Boltzmann equation ([UA]), when the initial layer vanishes, i.e. for

go = P©gq, (2.14)
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Theorem 2.1 (ii) holds with § = 0.

3. STOCHASTIC KINETIC EQUATION. A large number of particle limit
for a system of stochastic particles ([LP], [Lal], and [Cel], [Sk], [An2,3], [Vo]) leads to

the stochastic kinetic equation

(2ov Zyr=1sip), (5.1

where

S V) =
[ [ (560905603 )Bly = x5 = %) = £y, w)F 5, )Bx = 3, = v))dydw,

R3 Q
the velocities v* and w* are functions of v and w as well as of the distance between

the two particles y — x, according to
vi=v+4+((w=-v) nn, w'=w—((w—v)-n)n, (3.2)
where now
y—X
ly — x|’
B is such that (cf. [Cel], [LP], [Lal])

fOI‘ Y#xa y,XEQ,

n=—

B(x,v)=0 for x-v<0, VxeQ, veR?. (3.3)
In this Section it is assumed that (cf. [Lad])
3
B(x,v) = 3x(r<|x|<R) x(x - V>O)B(| K v), (3.4)

where 0 < 7 < R < oo and B is the collision kernel corresponding to Grad’s cut—off

hard potentials.
Equation (3.1) can also be considered in the symmetrized form ([Mo], [Po], [BP]),
i.e. when Assumption (3.3) is replaced by

B(—x,v) = B(x,v), Vxe VveR:. (3.5)

The two assumptions (3.3) and (3.5) lead to different hydrodynamic limits ([La3,4]).
Case (3.5) is discussed in Section 4.
Note that Eq. (3.1) formally leads to the Boltzmann equation for

B(x,v) =6(x)x(x-v>0) B(Tz—l,v). (3.6)

and therefore Eq. (3.1) can be regarded as a modification (mollification) of the Boltz-

mann equation (1.2). A mollified kinetic equation was first proposed by Morgenstern

[Mo] and, more generally, by Povzner [Po].
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Equation (3.1) is referred to as the stochastic kinetic equation (or Povzner equation).
Actually, Povzner considered Eq. (3.1) assuming (3.5). Under the same assumption a
class of more general equations was investigated by Bellomo and Polewczak [BP].

One can expect that the solutions of Eq. (3.1) with (3.4), in the limit r < R | 0
(and for fixed ¢ > 0), approach the corresponding solution to the Boltzmann equa-
tion (1.2). In fact ([AC2]), in the limit a | 0, the solutions of the Boltzmann-Enskog
equation (2.1) converge to the (DiPerna-Lions — [DL]) renormalized solutions of the
Boltzmann equation. The same certainly should be true for the convergence of the
solutions of Eq. (3.1).

On the other hand, in the limit » T R (where both R = a > 0 and ¢ > 0 remain
fixed) the solution of Eq. (3.1) with (3.4) should approach the corresponding solution
of the Boltzmann-Enskog equation (2.1).

Equation (3.1) has nice mathematical properties, which are lacking for the Boltz-
mann equation (1.2): the collision operator S acts in the space Li(Q). Therefore
Eq. (3.1) preserves some mathematical properties of the space homogeneous Boltzmann

equation. In particular, the existence of unique smooth global solutions is known ([Mo],
(Po], [An3], [La1], [BP]).

The theory of hydrodynamic limits for Eq. (3.1) was proposed in [La3,4].

Different relations between the small parameters ¢ and R can lead to different hy-
drodynamic equations analogously with the Boltzmann-Enskog case.

If

R=b¢, b = const, (3.7)

then Eq. (3.1) results in the following Euler-type system

0o .0

=0, (3.82)

Ou; o~ Ou; | 0 .8, B o
0—F; at + Q;Uza—xi + %;(@T) + b; 9z (9 pz’j(T)) =0, 7=1,2,3, (3-8b)
T <~ OT L2y 2 au,
-+ ;Uia 3 z:: ;lp” T)5t = (3.8¢)
where
Pij(T) =

///”"W‘ (w —v) V 0)B(n, V2T(w — v))exp(~|v|* — |w|?) dndw dv .

R3 R §2

23
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In the case of B corresponding to the hard sphere potential (1.3),
2
pi;(T) = §7rT6ij ; (3.9)

where §;; = 1, for i = 1,2,3, and §;; = 0, for i # j, and System (3.8) with (3.9) becomes
the Enskog—Euler system (2.4).

Note that setting b = 0 one recovers from System (3.8) — the classical system of
the Euler equations for compressible fluids.

In much the same way as for the Boltzmann-Enskog equation (2.1), the existence
and convergence results — analogous to those of Theorem (2.1) — may be proved for
Eq. (3.1) and System (3.8). As a by product of this theory, the existence theorem for
System (3.8) may be obtained.

The convergence rate, which could be found by the methods of [Lab], was not suf-
ficiently strong for a justification of the Hilbert procedure in Case (3.7). The situation

is better for
R = be? | b = const, p>6. (3.10)

In this case, however, Eq. (3.1) results in the classical Euler system (“b = 0”) rather

than in System (3.8) with b > 0 — see [Lad].

4. SYMMETRIZED ENSKOG AND STOCHASTIC KI-
NETIC EQUATIONS. The symmetrized Boltzmann—Enskog equation is defined

as follows

0 0 1~
(‘8—t+V b;)f— gEa(f)v (4'1)
Ea(f)(x7 V) = // (f(x + anawl)f<xavl) - f(x - an,w)f(x,v)> 111 ' (W - v)]dndw .
R® §?
The symmetrization of the kernel in the Boltzmann-Enskog equation was introduced
by Arkeryd [Arl]. In the physical case there are collisions only if n-(w—-v) >0,

while, for mathematical purposes, Arkeryd used the whole S? as a range of integration,
with the same velocities v/, w', for both n and —n.

Under the assumption
a=bye, b = const, (4.2)

Equation (4.1) results ([La3,4]) in the following system (a Navier-Stokes—type system)

@-I-zs: 6(‘c_m-)z() (4.3a)
ot P Oz; ' ’ )
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3

Q—BT = " oz; Oz 15 = Oz; 6:1:1 8:]0]

= , = (4.3b)
8’\/; 8 2 auk .
5 %]"(Q \/T;b—:ﬂ—)’ 7=123,

3
or 2 au, _ 16\/_ 5 Ou;j Ouj
Q@t +Qzuz -I— 3¢ Z = \/_Z (8% ) 63:1-+

07, sz(;izzz)z ”bza( ).

The viscosity and heat conduction terms of System (4.3) are independent of the small

(4.3¢)

parameters.
The symmetrized stochastic kinetic equation (the Povzner equation) is defined by
(3.1) with (3.5). Here it is assumed that

B(x,v)=R33 3><(7«<|x]<1::)B(—1 v), for x-v30, (4.42)

B(x,v) = B(-x,Vv), (4.4b)

where 0 < 7 < R < +0c0 and B corresponds to Grad’s cut—off hard potentials.
Under Assumptions (4.4), (4.2), and for

R =be, b = const, (4.5)

Equation (3.1) results ([La3,4]) in the foHoWig system

=0, (4.6a)

ou; °. Ou; 0 o [ 4 Ouy
J ' ——— = e 2 s _— | =
07, +Qi§=1Ula$i + 6)xj(@T) b' > Be <9 uzgkz(T)amJ , 7 =123, ‘(4-613)

L5, 0T L2 >\ Qui
bt 92 oz; | 3° “— Oz;
3_ B 5 (4.6¢)
2 h? (2 O T
3b9 ij;ZI ﬂz]kl(T 831'1‘ 833](: b Z Q /’LzJ )ax] )
where
pijri(T) = ///n n]nk -(W—-V)\/O)X

R3 R® §2

B(n, V2T (w — v))(wi = v)exp ( — |w|* = |[v]?) dndw dv
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and

pH(T) = Tr3///nn] (W= V)V 0)x

R3 RS §2
n-(w+v)B(n, V2T (w — v))(w]? = [v[*)exp (= [w|* = |v]?) dndwdv.

System (4.6) is a Navier-Stokes-type system of equations of compressible fluids ([VZ],
[Li2]). Its viscosity and heat conduction terms are independent of the small parameters
g, r, R of Eq. (3.1). In the case of B corresponding to the hard sphere potential (1.3),

System (4.6) becomes (4.3).

In papers [La3,4] it was proved that the existence of smooth solutions of System (4.3)
(or System (4.6)) implies both existence of solution to Eq. (4.1) (or Eq. (3.1) with (4.4))
and the corresponding asymptotic relationship (Approach AT).

In order to state these theorems — some preliminaries are needed.

Let Boo(Wpgs) be the space of continuous, real-valued functions on R* with the norm

15 Boo(Was )| = sup [Was 1

for a strictly positive, smooth function Wgs on R®.

Let BS, = Boo((.)*) and B, (Wgs) = Boo((.)*Wgs).

C*(T*, Wys) is the space of the functions which are continuous, together with all
their derivatives of orders |y| < k, and equipped with the norm

1£; C*(T%; Wrs)|| = sup
0<ivigk
xe'ﬂ‘3

WTS

oxY

for a strictly positive, smooth function Wys on T%; Let C*(T®) = C*(T?;1).

7 The basic assumption is the following
Assumption 4.1. Let g, u, T be smooth functions
o,ui, T : [0,t] xT> = R, ¢=1,2,3,
for some ty €]0,+00][, such that
o(t,x) >c1 >0, T(¢t,x)>c2 >0, Vte[0,t], VxeT?,
where ¢y and ¢y are constants (independent of the small parameters).
Now let M = M[p,u,T], where g, u, T are as in Assumption 4.1. Let

Mo =M|_o =M [e| T ool -

=07 u|t=0’

A simple consequence of Assumption 4.1 is the existence, for each a € R?, of positive
constants ¢~, ¢t, T~ and Tt — independent of ¢ — and such that

cTwT(v) S (VEM(t,x,v) < ctwt(v), Vte[0,t], Vxe T, VveR?, (4.7)
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where w™ and w? are the global Maxwellians w™ = M[1,0,77], wt = M[1,0,T7].
Let Yy * and Y*F be the spaces equipped with the norms:
- 157 = 15 CF(T%5 My )] B
- l=F = 1105 CH TN B (@) 7o),

respectively.

Theorem 4.1. ([La3,4]) Let (4.2) (or (4.5)) hold, and let ty €]0,+o0[ be such that on
the time interval [0, o] there exists a solution (g, u,T) of System (4.3) (or System (4.6))
satistying Assumption 4.1; Let the initial data be such that

Flio=Mo+ G, (4.8)
where My = M[g|t=0, u|t=0, Tlt=0] and G satisfies the smallness condition
IG* < «, (4.9a)

and

/de = /v,-de = / |v|2de =0, 1=1,2,3, (4.9b)

G e Y&F, (4.9¢)

with o and k large enough and where « is a given positive constant (independent of ¢).
If0 < ¢ < ey, where ¢ is a given positive constant (depending on ty ), then a solution
f of the Cauchy problem for Eq. (4.1) (or for Eq. (3.1), (4.4)) exists in Lo (0, 0; Y**'%),
for some ag > 0, kg > 0, and
t
sup 1)~ Mlou, 7l £ (£ ) oo < e, (4.10)

0<t<Ltp
where c is a constant (depending on ty) and L € C° ([0, oo; \Ygl’k‘) is such that

L™ < coe, (4.11)

for some § > 0, oy > ag and k; > ko; cg is a constant depending on G and such that

c¢q = 0 for G = 0. Moreover,
fec® ([O,to];Y“°’k°_1) n et (]O,to[;Y"°’k°'2) (4.12)
(provided that kg > 2).

5. BOLTZMANN EQUATION WITH DISSIPATIVE COLLISIONS. The

Boltzmann equation with dissipative collisions ([EIP]) is defined as follows

(58; +v- %)f = %Jﬂ(f), | (5.1)
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where

Ta(f)(x,v) =
1 A ~
IR[S[ (@B—_T)Ef(x,w)f(x,v) — f(X,V)f(t,x,w)) (n-(w —v)V0)dndw,

1- 8 o 1-p
1_zﬂn-(w—v), W—W_I—Qﬂ

are the velocities before a collision which produce the velocities v, w, respectively, after

n-(w-—v), (5.2)

v=v-+

the collision, 8 €]0, 3| is a dimensionless parameter characterizing energy dissipation.

The unique solution to the degenerate equation (for § > 0 — fixed) -

Ja(f) =0 (5.3)
is the trivial one f = 0 — see [BEL].
~ Under the assumption ‘
B =be, b = const, (5.4)
Equation (5.1) formally results (cf. [BEL]) in the following Euler system
9o <~ 0
£ + ;%‘;(Quz) =0, (5.52)
Ou;j 2 Ou; 0 .
Y i+ +—(T)=0, =123, 5.5b
98t+Q;u3$i+8$j(g) 0, J (5.5D)
S OT | 2.5~ ui s ‘
Zu, —|— = 8 = —co bpT?/?, (5.5¢)

where cq is a given positive constant.

6. UEHLING-UHLENBECK QUANTUM EQUATION. The Uehling-Uh-
lenbeck equation ([UU], [CC], [KB] and [Su], [Do], [Lil]), describing the evolution ofa

gas of quantum particles, is defined as follows

(2 4ve5o)f = 20:(6), (6:)
2, (Ax,v) = // (f(x,v')f(x,w’)(l =2 w) (1= 200 w) -

RS §2
f(x,'v)f(x,w)(l — é\-f(x,v')) (1 — —6/\—‘f(x,w')>>B(W —v,n)dndw;

A is a parameter (proportional to ), that is

(+) positive for fermions and
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(—) negative for bosons.
One can expect that the class of solutions of the degenerate equation corresponding
to the singularly perturbed equation (6.1), for ¢ — 0 and fixed A > 0, is too small to

describe a reasonable hydrodynamic. Therefore the following limit
elo0, Al0, (6.2)

should be considered.
One can distinguish the following important cases
(i) A € ¢, (e.g. |\ = €P for p > 1) — it can be treated in the same way as the
corresponding problem for the classical Boltzmann equation;
(ii.) |A| > ¢, (e.g. |A| = e for p < 1) — it is not physically consistent;
(iii.) |A] ~ ¢, (e.g. |A] = ¢).
Consider the two cases
A=¢ | © (6.3a)
— fermions — the subscript + is used, e.g. Q4 = N4, and

A=~ (6.3b)

- —— bosons — the subscript — is used, e.g. Q_ =Q_;.

Solutions to the degenerate equations

Q+(f) =0 | (6.4)

are given by
M(t,z,v)
¢ = (6.

§x(t2,v) 14+ M(t,z,v)’ _ (6.5)

where M = M4[y,u, 7] are Maxwellians with fluid~dynamic parameters v = v+, u =

Uy, 7 = 74; §4 is called the Fermi-Dirac distribution, whereas §_ — the Bose-Einstein
distribution.

The fluid dynamic parameters g+, ui, ¢+ of §4 are related to the fluid-dynamic
parameters y4, u4+ and 7+ of the corresponding Maxwellians by some given functions
(see (2.10) in [AL2)}). |

Formally, in Cases (6.3), Egs. (5.1) results in the classical Euler system at the 0-th
order of approximation ([AL1]) and in the following Navier—Stokes system at the 1-st

order of approximation ([La2])

0o .9 ‘
N - ; o, (ou;) =0, (6.6a)
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Ju; & Ou; 20 _ ;) <8u]~ aui))
QW”Z“zaxﬁgaTj(@e)—e(Za— welata))
=1 6.6b

2 9 2. Bu; .
55:50&(9&)283:,'))’ .7_1u2737

Oe L O 2 < Ou; € .0 1) (2) 0o
AP ILErRS DI e gi@,e)(Za—m( (0.0 50 + e je>a?)+

=1 ¢

5 8 6u2- 2 3 8151' 2 .
:u:t(g»e) Z 81;]; < “k 8$k) - g“ﬂ:(ga 8)(2 8517,) ) 3 (66(:)
i=1 :

1,k=1

where p4(0,¢), G+(p,¢), u (Q,e) ui)(g, ¢) are given functions (cf. [AL2]) depending
on B.

In papers [AL1,2] it was proved that the existence of smooth solutions of the Euler
system or of System (6.6) implies both existence of solution to the kinetic equations (6.1)
and the corresponding asymptotic relationships (Approach AT).

The results were obtained under the assumption that the solution (p,u,¢) to the

hydrodynamic system satisfies the following inequality
e > lig% (6.7)

for every (t,x) € [0,%o] x T®, where I, and I_ are given positive constants, respectively,
for fermions (4) and for bosons (—). Inequalities (6.7) are essential for the asymptotic
relationships (see [AL2]). In fact, under Conditions (6.7) the correspondence between
(y+,ux,7+) and the fluid~dynamic parameters (o4, us,es) of F+ is one—to—one, re-
spectively for 4+ and —.

In order to state the theorems from [AL2] — some preliminaries are needed.

Assumption 6.1. Let v4, ut and 74+ be smooth functions
i, Uik, T+ ¢ [0,t] x TP - R,  i=1,2,3,
for some ty €]0, +oo[, such that
7+(t,x) > ¢1 >0, 7+(t,x) > ¢ >0, Vte0,t], VxeT®, (6.8)
where ¢; and ¢y are constants. Moreover let

y_(t,x) <6< 1, Vte[0,t], VxeT®. (6.9)

Consider Maxwellians with parameters v4, ut, 74 satisfying Assumption 6.1 and

let F4 be defined by Egs. (6.5).



139

A simple consequence of Assumption 6.1 is the existence, for each o € R?, of positive

constants cJ, ci, Ti, TI — independent of ¢ — and such that
czwi(v) < (W)Lt x,v) < clwl(v) Vte[0,t], Vxe T, YveR?, (6.10)

where w} and w] are the global Maxwellians wy = M[1,0,71], wf = M[1,0,75].

Let Y¢* and || - |[i’k be defined as Y** and || - Ha’k in Section 4, but with w] instead
of wT. _

The results of [AL2] both for the classical Euler system and for the Navier-Stokes

system (6.6) as well as both for fermions and for bosons can be summarized as follows

Theorem 6.1. Let either of Conditions (6.3) hold and let ty €]0, o[ be independent
of € such that on the time interval [0,to] there exists a smooth solution (9+,u+,es) of
the Navier-Stokes system (6.6) (or the classical Euler system) that satisfies (6.7) and
corresponds to parameters (v4,U4,T+) satisfying Assumption 6.1 together with the
conditions of uniformly boundedness with respect to € of the quantities

sup Y4+, sup |ux], Sup T4
[0,t0] xT® [0,20) xT3 [0,80] x T3

Let the initial data be either of the functions (6.5) with parameters Vilt;w ui|t=0,
Ti‘tzo corresponding to gi!t=0, ui|t=0, ei|t=0.

If 0 < e < e, where gy is a given positive constant (depending on t), then a
solution f of the Cauchy problem for Eq. (6.1) exists in Loo(0, o; Yi’k), for some a > 0,
k >0, and ' .

fect (0,4} Y34 ) net (10,66 YE ) Gf k>2), (6.10)
» | |
sup ||f — F+ <ce, (6.11)

[0$t0] *

where F. is defined by parameters (’yi; uy, 7+ ) corresponding to (g4, Ux, e4) and ¢

is a positive constant (depending on tg).

An analogous theorem can be obtained for more general data if one includes initial

layer as in Theorem (4.1).
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