
An Attribute Precedence Graph Grammar
and Tabular Forms

日本大学 有田 友和 (Tomokazu Arlta)
日本大学 冨山 聖宣 (Kiyonobu Tomiyama)

Abstract This paper characterizes graph
grammars which provide formal definition
of program documentation tabular forms
with respect to syntactic manipulation and
mechanical drawing. We propose an at‐
tribute context‐free graph grammar with
280 rewriting rules and 1248 attribute rules
for ISO 6592 based nested program forms
with 137 items. The grammar is shown to
have precedence property [1] by 5376 rela‐
tions over the marks. Furthermore, we con‐
sider context‐sensitive graph grammars for
tessellation tabular forms.

Keywords graph grammars, program doc‐
uments, form layout.

1 Introduction

Graph grammars have been studied and uti‐
lized, by several authors, for their possible
association with program diagrams, gen‐
eration of general diagrams and computer
aided design for the industrial objects. (see
e.g. [1],[2])

This paper deals with tabular forms for pro‐
 graIn specification and its syntactic defini‐
tion with respect to the mechanical draw‐
ing. Items in prograrn specification doc‐
uments were generally listed in [3]. The
program specification documents are usu‐
ally represented by tabular forms [5].

We came to notice that tabular forms can

generally be represented by graphs. Thus,
in this paper we regard the tabular forms as
nested diagrams and represent nested dia‐
grams by marked graphs.

In [1], Franck employed marked graphs for
nested diagrams, introduced a precedence
graph grammar for the marked graphs
and formalized parsing of nested diagrams.
Nishino [4] introduced an attribute graph
grammar with respect to a drawing problem
of tree‐like diagrams and formalized trans‐
formation of tree‐like diagrams. In [4], the
drawing problems were specified by seman‐
tic rules of attributes. We have also studied

syntactic and algorithmic manipulation of
diagrams [6], [7] [8]. The purpose of this
paper is to characterize graph grammars
which provide formal definition of program
specification forms with respect to syntactic
manipulation and mechanical drawing.

2 Preliminaries

2.1 Program Documentation Lan‐
guage Hiform96

We introduce here a program documenta‐
tion system called Hiform96 [6] based on
ISO6592 [3].

The International Organization for Stan‐
dardization issued a guideline in ISO6592

数理解析研究所講究録
第1148巻 2000年 23-28

23

and described all items in program docu‐
mentation in Annex A, B and C. Hiform96
includes all items defined in these Annexes.

Hiform96 is defined by 17 types of forms.
The Fig. 2.1 shows a Hiform96 program
documentation form.

 \rho iUU^{I}d1|1lldl\dagger le .

subtitle:

library code: version:
author: original release :
aoorover: current release:

 \downarrow

The order among tabular forms is defined
by a context‐free string grammar [5].

2.2 Nested Diagrams for Tabular
Forms

We use a nested diagram as a formalization
of a tabular form document. The following
Fig. 2.2 illustrates the nested diagram that
represents a tabular form.

Fig. \angle.\angle A IiauuId\Gamma IUrrIIdIIUlL5L\cup rre5\rho uI|dI^{\cdot}ng
nested dIag\gamma am .

2.3 Marked Graphs for Nested Dia‐
grams

We introduce a marked graph for a nested
diagram as an example. An edge label
shows relations between items. ’ 1f ’ is the

meaning of ’left of’. ’ ov ’ is the meaning of
’over’. ’in’ is the meaning of ’within’.

 \dagger

 F_{I}g . \angle.S A nestea tIlagram snown In t\iota g2.2
and its correSpondlng marked graph.

Definition 2.3.1 [1]. A marked graph is a

24

system (K, R, k, r) where K is a finite set
of nodes, K\neq\emptyset, R\subseteq K\cross K, k:Karrow V a
mapping for marking the nodes, r:Rarrow M\square a mapping for labeling the edges.

 arrow_{m} &f= \{(B, A)|_{the}^{A}an' dBisthe1a)aru1B\in nep=(odeVp^{s}(mandA,Hb' e1_{0}there_
{f},i\sin p^{e}Hp^{S})\}
2.4 Context‐Fkee Graph Grammar

We survey here context‐free graph gram‐
mars [1] and precedence grammars [1]

Definition 2.4.1 [1]. A (context‐free) pro‐
duction is a 4‐tuple p=(A, H,p^{e},p^{s}) , where
 A is a single node graph (the left‐hand side
of p), H=(li^{r_{h}}, R_{h}, k_{h}, r_{h}) is a nonempty
graph (the right‐hand side of p), and p^{e},p^{s} :
 Marrow K_{h} are partial functions where Mis\square the set of all labels for edges.

 \square

Notation 2.4.4 [1]. For m\in M let
 <_{m}def==_{m}. . arrow_{m}+
 .>_{m}def=.

 arrow_{m}\cdot=_{m}+
.

 <\cdot>_{m}d,ef=arrow . =. . arrow++mmm
 where+denoteS transitive closure.

 \square

Precedence relations are conflictless if and
only if for every m\in M the relations
 <_{m}, =_{m}, >_{m} and <\cdot>_{m} are pairwise disjoint
[1].

Definition 2.4.2 [1]. A context‐free graph
 g\gamma ammar is a system GG=(V_{\backslash }T, M, P, sI ,
where V is a finite set of adphabet, i.e. a set
of symbols for labeling the nodes, T\subset V is
a set of the terminal symbols, M is a finite
set of labels for the edges, P is a finite set
of productions of the form p=(A, H,p^{e},p^{s})
explained above, S\in V-T is the sta_{\square }rtsymbol, i.e. the start graph for GG .

Notation 2.4.3 [1]. For m\in M let

 =_{m}=def\{(A, B)yis1aandxi_{S}right- ha' x_{1d}1^{\prime,a_{O}}
dedge(_{\mathcal{J}i}eXi_{S}A,B\in 1rn_{ir}t_{Sa}ru1ewi1(_{ix}\cdot,yabeb_{G}1y)
h\Re\epsilon e_{1d})nthe1as_{by}bddew,hytthanBAherebe1mee . |
 arrow_{m}=def\{(A, B)|_{t}^{A}and' 1a_{hnod()H}ruep,=BeB\in Va(A,H,p,p^{s}')
isep^{e}th_{G}1ndmhter\mathfrak{c}^{1}ノi_{S}abC1oinef\}

Definition 2.4.5 [1]. A context‐free graph
grammar is called a precedence grammar if
and only if (i) the precedence relations are
 co\iota ffiiCtlesS . (ii) all rules are uniquely in‐
vertible. (iii) there is no reflexive nontermi-\square nal symbol irl the grammar.

3 Attribute Precedence

Graph Grammars for Hi‐
form

3.1 Definitions for Attribute Graph
Grammar

We introduce an another type of graph
granunars for formalization of tabular forms
based on [1] and [4].

Definition 3.1.1 (cf. [1], [4]) An at‐
tribute graph grammar is a 3‐tuple AGG=

 \langle GG, Att, F\rangle , where

25

1. GG=(V, T, M, P, S) is called an under‐

lying conteXt_{ノ}‐free graph grammar of AGG .
Each prodllction p in P is denoted by p=

 (A, H,p^{e},p^{s}) . Lab (H) denotes the set of

all occurrences of the node symbols label‐
ing the nodes in tlle graph H .
2. Each node symbol X\in V of GG has two
disjoint finite sets Inh(X) and Syn(x) of
inherited and synthesized attributes, respec‐
tively. We denote the set of all attributes of
nonterminal node symbols X by Att(X)=
 Inh(X)\cup Syn(x) . Att= \bigcup_{X\in V}Att(x) is

called the set of attribut,es of AGG . We as‐
sume that Inh(S)=\emptyset . An attribute a of

 X is denoted by a(X) , and set of possible
values of a is denoted by V(a) .
3. Associated with each production p=

 (X_{0}, H,p,p^{S})e\in P is a set F_{p} of seman‐

tic rules which define all tlte attributes in

 Syn(X_{0}) \cup\bigcup_{X\in Lab(}H)Inh(x) . A semantic

rule defining an attribute a_{0}(X_{i})0 has the
form a_{0}(x_{i_{0}}) := f(a_{1}(X_{i_{1}}), \ldots, a_{m}(xi_{m})) ,

 0\leq\dot{i}_{j}\leq|Lab(H)|.1X_{i_{j}}\in Lab(H), 0\leq j\leq
 m . Here |Lab(H)| denotes the cardinality
of the set Lab (H) , and f is a mapping from
 V(a_{1}(x_{i_{1}})\cross\ldots\cross a_{m}(X_{\dot{i}_{m}})) into V(a_{0}(X_{i_{0}})) .

In this situation, we say that a_{0}(X_{i})0 de‐
pends on a_{j}(X_{i_{j}}) for j, 1\leq j\leq m in p . The
set F= \bigcup_{p\in P}F_{p} is called the set of seman‐
tic rules of AGG .

 \square

Definition 3.1.2 An attribute graph
grammar AGG=\langle GG, Att, \Gamma^{t}\rangle is an at‐
tribute precedence graph grammar (APGG
) iff GG is a precedence graph grammar\square .

3.2 An Attribute Precedence Graph
Grammar for Hiform

We propose an attribute graph grammar
which characterize the Hiform documents.

The characterized forms are called Hi‐

form2000.

The gralnnlar which formalizes Hiform2000
is called Hiform Attribute Graph Gram‐
mar(HFAGG). We show productions of
HFAGG in Table 3.1. HFAGG consists of

280 productions. The mark of the start
graph is ” [struct]”

We also construct 1248 senlantic rules of

HFAGG as shown in Table 3.1.

Proposition 1 The grammar HFAGG
above is an attribute precedence graph
gramrnar.

Proof. We can construct 5376 relations

over the rnarks in HFAGG as shown in Ta‐

ble 3.2. The relation are shown to be pair-\square wise disjoint.

Remark. We can implement a linear time
 parser[1] for the underlying graph gramma_{\square }rof HFAGG.

3.3 The Layout Problem of Hiform

Layout problems of nested diagrams are
solved by attribute evaluation [4]. We use
attributes which are x_{1}.y , width and height.
Symbols x and y are used to calculate x

coordinate and y coordinate, respectively.
And width and height are also used to cal‐
culate width and height, respectively.

Proposition 2. Attributes in HFAGG\square are evalllated in linear time.

4 Tessellation Forms

We consider here tessellation forms that

represent tables such as symbol tables. We

26

note that ISO6592 does not issue about any
symbol tables. We introduce an attribute
NCE context‐sensitive graph grammar that
generates tessellation forms.

 \mapsto R r m
.

 \overline{hf-|\prime}
. \overline{hf- If}.\overline{ht\sim If} .

 h\prime_{- w\downarrow_{\infty^{h}}1}t-\circ V\infty^{h1w}|m^{hf-}m- oV|
.

 \overline{hf- It}
.

 \overline{hf-||}
.

 \overline{hf-|f}
.

 hf-WI_{\mapsto}ht-W\downarrow Rohf- V|\mapsto h|_{-}ov\downarrow R
.

 \overline{hf- 1|}
.

 \overline{hf-|\uparrow}
.

 \overline{hf-|f}
.

 h\uparrow_{-\circ V}\mathfrak{l}R^{hfw}I-\infty|h\prime- wm- h|oV|_{m}
.

 \overline{ht- r}.\overline{h|\chi}.\overline{h|-|f}
.

Fig. 4.1 A tessellation form and its
corresponding marked graph.

4.1 NCE Graph Grammars

 \Sigma is the alphabet of rlode labels. \Gamma is the
alphabet of edge labels. The set of all
(concrete) graphs over \Sigma and \Gamma is denoted
 GR_{\Sigma,\Gamma}

I O\cup IC J. l \ulcorner . UU UL LIUOb Ul \Pi I \Gamma\cup l II1 flLU 1VU LU

Graph Grammar (HFAGG).

A graph with (neighborhood controlled) em‐
bedding over \Sigma and \Gamma is a pair (H, C) with
 H\in GR_{\Sigma,\Gamma} and C\subseteq\Sigma\cross\Gamma\cross\Gamma\cross V_{H}\cross
{in, out}. C is the connection relation of
 (H, C) , and each element (\sigma, \beta, \gamma, X, d) of
 C (with \sigma\in\Sigma, \beta, \gamma\in\Gamma, x\in V_{H} , and
 d\in { in, out} is a connection instruction of
 (H, C)

The set of all graphs with embedding over
 \Sigma and \Gamma is denoted GRE_{\Sigma,\Gamma} . .

I dlJIG J. \angle \ulcorner .GLCUGI 1LG\cdot Gid LIUI lb 11I \Pi\Gamma f\backslash \iota*l1 .

Definition 4.1.1 [9]. An edNCE grammar
is a tuple G=(\Sigma, \triangle, \Gamma, \Omega, P, S) , where \Sigma

is the alphabet of node labels, \triangle\subseteq\Sigma is
the alphabet of terminal node labels, \Gamma is
the alphabet of edge labels, \Omega\subseteq\Gamma is the
alphabet of final edge labels, P is the finite
set of productions, and S\in\Sigma-\triangle is the
initial nonterminal. A production is of the
form Xarrow(D, C) with

 X\in\Sigma-\triangle and\square (D, C)\in GRE\Sigma,\Gamma .

27

4.2 A Context‐sensitive Attribute

Graph Grammar for Tessellation
Forms

We consider here an edNCE context‐

sensitive graph grammar for tessellation
forms. We extend edNCE graph grammars
and introduce a context‐sensitive attribute

graph grammar called an attribute NCE
graph grammar. We show productions of
an attribute NCE graph grammar TFAGG
in Fig. 4.2 for tessellation forms.

5 Conclusion

We suggested a graph granmlar that char‐
acterizes ISO6592 based program documen‐
tation forms with respect to both the logical
and visual structures. We are now develop‐
ing a software documentation system utiliz‐
ing our suggested approaC_{y}h in this paper.

Acknowledgment We thank Professor K.

Sugita of Tokai University, Professor K.
Tsuchida of Toyo University, and Profes‐
sor T. Yaku of Nihon University for valu‐
able suggestions. We also thank Mr. S.
Kanai’s advice in the course of preparing
the manuscript.

References

[1] Reinhold Franck, A Class of Linearly Parsable
Graph Grammars, Acta Infomatica 10, 175‐201
(1978)

[2] G. Engels, R. Call, M. Nagl, et al., Software spec‐
ification using graph gramnlars, Computing 31,
317‐346 (1983)

[3] ISO6592‐1985, Guidelines for the documentation
of computer‐based application systems, (1985)

[4] T. Nishino, Attribute Graph Grammars with Ap’
plications to Hichart Program Chart Editors., Ad‐
vances in Software Science and Technology 1, 426‐
433 (1989)

[5] K. Sugita, Y. Adachi, Y. Miyadera, K. Tsuchida
and T. Yaku,
Proc. of Advanced Software Mechanisms for

Computer‐Aided Instruction information Literacy
APEC‐CIL’97, (1997)

[6] K. Sugita, A. Adachi, Y. Miyadera, K. Tsuchida
and T. Yaku, A visual programming environment
based on graph grammars and tidy graptl drawing,
Proc. Internat. Conf. Software Engin. (ICSE ’98)
 20- II , 74‐79 (1998)

[7] A. Adachi, T. Tsuchida and T. Yaku, Program
visualization using attribute graph grammars, CD‐
ROM Book, IFIP World Computer Congress 98,
(1998)

[8] Y. Adachi, K. Anzai, K. Tsuchida and T. Yaku,
Hierarchical program diagram editor based on at‐
tribute graph grammar, Proc. IEEE COMPSAC
21, 205‐213 (1996)

[9] Grsegorz Rozenberg (Ed.), Handbook of Graph
Grammar and Computing by Graph Transforma‐
tion,World Scientific Publishing(1997).

28

