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A NATURAL EXISTENCE PROOF FOR.
JANKO’S SPORADIC GROUP J;
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ABSTRACT. Using the second author’s deterministic algorithm [8], which
constructs all the finitely many simple groups G having a 2-central invo-
lution, say ¢, such that Cg(t) is isomorphic to a given group H satisfying
certain natural conditions, in this article we give a new and in some sense
natural existence proof for Janko’s first sporadic simple group J; [6).

1. INTRODUCTION
In [6] Z. Janko has proved the very remarkable

Theorem 1.1. Let G be a finite group with following properties:

(J1) G contains a 2-central involution t with centralizer Ca(t) = (t) x As,
where As denotes the alternating group of order 60.

(J2) G does not have a subgroup of indez 2.
Then G is isomorphic to t{ze subgroup J of GL7(11) generated by the two

matrices
0100000 -3 2-1-1-3 -1 -3
0010000 -2 1 1 3 1 3 3
0001000 -1 -1-3 -1 -3 -3 2
0000100 and -1 -3 -1-3 -3 2 -1 ]
0000010 -3 -1-3-3 2-1-1.
0000001 1 3 3-2 1 1 3|
1000000 3 3-2 1 1 3 1

Moreover, G' has order |G| = 175560, and up to isomorphism G has o_hly
one 7-dimensional irreducible representation over the prime field GF(11)..

In [6] Z. Janko has also computed a character table of G, and he deter-
mined all the maximal subgroups of G.

It is the purpose of this article to give a new proof for the existence part of
Janko’s Theorem 1.1, based on the second author’s deterministic algorithm
of [8]. Starting from a given finite group H this algorithm constructs all
the finite simple groups G having a 2-central involution ¢ and the following
properties: '
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(1) There exists an isomorphism 7 : Cg(t) — H.

(2) There exists an elementary abelian normal subgroup A of a fixed
Sylow 2-subgroup S of H of maximal order |A| > 4 such that

G = (Ca(t), N = Ng(r71(A))).

(3) For some prime p > 0 not dividing |H||N| the group G has an irre-
ducible p-modular representation M with multiplicity-free restriction M,g.

In section 2 we apply this algorithm to a permutation group H = 2 x As
to obtain an existence proof for Janko’s group J;. Here the first author’s
algorithms and programs [7] for computing concrete character tables with
matrix representatives of the conjugacy classes of a finite group have also
been used, see Theorem 2.9.

Concerning notation and terminology we refer to the books by G. But-
ler [2], W. Feit [4] and B. Huppert [5]. All computations described in this
article can easily be verified by means of MAGMA [1].

2. EXISTENCE PROOF

In order to eonstruct a finite simple group G which contains a 2-central
involution ¢ having centralizer C(t) & 2 x As we employ the construction
method 4.6 of [8].

The two permutations (1,2,3,4,5) and (1,3,5) generate a finite group
which is isomorphic to the alternating group As of order 60. They both
commute with the transposition (6,7). Hence we know:

2 x A5 22 ((1,2,3,4,5),(1,3,5),(6,7)) =: H < Sy,

where S7 denotes the symmetric group of degree 7. Just for the sake of
convenience let us reduce the number of generators we have to work with.
Obviously, we can achieve H = (z,y) by setting

z:=(1,2,3,4,5) and y:=(1,3,5)(6,7).

Notation 2.1. Within the group H we distinguish the following elements:
z:=y3 = (6,7), a1 == zy° = (1,2)(3,4), a3 := (z%y)%z = (1,3)(2,4), and
d:=y?z? = (1,2,4).
Lemma 2.2. Let A := (2,a;1,a2), and let D := (z,a;1,a2,d). Then:

(a) A is elementary abelian of order §;

(b) A is a Sylow 2-subgroup of H;

(c) 2% = z, a? = ag, and a§ = ajay;

(d) Ng(A) = D =2 (2) X (a1,0a2,d) =2 x Ay.

Proof. Since ajaz = aga; = (1,4)(2,3) assertion (a) holds, and (b) follows
immediately. The equations in (c) can be checked by hand; they show that
A is normal in D = (2) x (a1, ag,d) & 2 x Ay. Thus, verifying Ny(A) < D
by means of MAGMA completes the proof. O
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According to step 2 of algorithm 4.6 of [8] we state

Proposition 2.3. Using the notation established so far the Jollowing asser-
tions hold:

(a) C:=Cq(A) = A.

(b) With respect to the basis {2,a1,az} of the vector space A over GF(2)
the conjugation action of D on A induces a group homomorphism
n:D = A:=n(D) = (n(d)) < GL3(2)

with kernel ker(n) = C.

(c) Up to conjugacy there is a uniquely determined subgroup ® of GL3(2)
which acts naturally on the GF(2)-vector space A and satisfies the following
conditions: :

(i) A = Stabg(z);

(ii) |® : A| is odd;
(iii) Up to conjugacy in Eg := A : ® there is a uniquely determined em-
bedding u of D = A : (d) into the semidirect product Eg such that.the

diagram
1 > A ” Eg d 1
lid ‘ Lu lid
1 A—>D—>A—>1
id
commutes.

This group ® is isomorphic to the Frobenius group Foy =7 : 3.

(d) Up to isomorphism the free product H xp FE¢ with amalgamated sub-
group D is uniquely determined by H and the identification of D with pu(D)
via the monomorphism p.

Proof. Assertion (a) holds by Lemma, 2.2.

Consider A as a 3-dimensional vector space over GF(2). With respect to
the fixed basis {z,a1,a2} of this vector space the conjugation action of D
on its subgroup A can be described by the following elements of GL3(2):

00
10 ],
01

Linear extension yields a homomorphism
n:D — A=(d) <GL3(2)
with kernel ker(n) = A = C.

OO

n(2) = n(a1) :=nag) := (

-

R 10
d:=n(d):={ 00
01

41



MATHIAS KRATZER AND GERHARD O. MICHLER

By Sylow’s theorem GL3(2) has — up to conjugacy — only one subgroup
which contains A with odd index, namely the Frobenius group Fp; = 7 : 3.
Computer search reveals twelve elements € € GL3(2) such that |[(€)] = 7
and (€) is normalized by d. We may choose

010 ‘
e={ 001 )eGLy2).
110 |

Then ® := (c/i\,’e\) < GL3(2) is isomorphic to Fy;. Let Eg = A : ® be
the semidirect product of A by ® with respect to the action of ® on A as
a GF(2)-vector space. Then the canonical embedding A — & induces an
embedding p of D = A : (d) into Fg such that the diagram

1 > A id Es —> & 1

R
. id n el
1 > A >D >A 1

commutes. Therefore, assertion (c) holds by the theorem of Schur and
Zassenhaus; (d) follows immediately. ‘ O

From the information given in Lemma 2.2(a),(c) and from the observation

that 9 = 82 it is now easy to deduce a finite presentation of the group Fg:
2=a%=a%:d3=e7=l,
[Z,Cl,l] = [a11a2] = [GZ’Z] = 1’

d . d _ d o i
2 =2, ay = a2, a9 = a10a2,

Eq):( z,al,ag,d,e | <

2° = a1, af = ay, a§ = zai,
el=¢ ); |
Using MAGMA we build a faithful permutation representation p of Eg by
computing its action on the (eight) right cosets of (d, e):
z = (1,2)(3,5)(4,6)(7,8),
ar = (1,3)(2,5)(4,7)(s,8),
az — (1,4)(2,6)(3,7)(5,8),
d — (3,4,7)(5,6,8),
~ (2,3,4,5,7,8,6).

Let us identify Eg and p(Fg) in the sequel.

In order to apply step 3 of algorithm 4.6 of [8] we need the character tables
of H, Eg and D. Realize that our concrete conjugacy class representatives
provide

1. the essential link from the irreducible characters of D as a subgroup of
H < Sy to the irreducible characters of D as a subgroup of E¢ < Sg;

2. the fusions of the conjugacy classes of D into H and of D into Fs,
respectively.
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Character table 2.4. of the group H = 2 X bA‘5

Class || 1] 21| 221 23| 3| 51| 52| 6| 101 10,
Length || 1| 1 15| 15| 20| 12| 12| 20 12 12
Repr. ||1| z| a1|za1| d| z|ax| 2d| 2zzx| 20z
xi N1l o] 1] of o] o] 2 1| 1| 1
X, |1}-1] 1{=1| 1{ 1| 1|-1| -1} -1
X3 31-3|-1 1 0| al *a| O - | —*o
X4 3-3]|-=1 1 0] *a al 0| —*«a -
X5 :3 3|-1| -1{ 0| a| *a| O o *Q
X6 3 3|-1] -1 01 *a al 0 30 o"
X7 4|1-4| 0] 0| 1|-1} -1]~-1 1 1
Xs 41 4| o] O} 1{-1| -1} 1| -1| -1
X9 5(-5| 1| -1{-1} O of 1] O 0
Xo |5 5| 1| 1|-1| o ofl-1| o o
~where a = -12-(1 +/5), and xa = 1(1 - V/5).
Character table 2.5. of the group Eg = 23 : Fyy

Class || 1 213132 611 62 71|72

Length || 1| 7|28|28| 28| 282424

Repr. 1| z| d|d®| 2d|2d?]| el e

9 1| 1] 11} 1| 1] 1)1

9 |1| 1| 8| B| 8| B| 1|1

V3 1| 1| 8| 8| B| B| 1|1

9, 3] 3/ olo]| ol ol~|%x

s 3| 3 0f 0| OF Oy 7| v

Jg 7{-1} 1} 1|-1}-1{0 0

9, ||7|-1| 8| B|-B|-B| 0} 0

9 |7|-1| B| B|-B|-B| 0| 0

where 3 = exp (%),

and v = (=1 +iV7).
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Character table 2.6. of the group D =2 x Ay

Class ||1]| 29| 22| 23(31|32] 61| 62
Length || 1 1{ 3 3| 4| 4| 4 4
Repr. {|1]| =2 | a1 | za1 d|d?| zd| zd?
01 1{ 1| 1 11 1] 1| 1
02 1]-1 1] -1 1} 1| -1} -1
83 1 1y 1} 1| B8{B| B| B
84 1|-1| 1| -1\ 8| B|-B|-B
65 ||1| 1| 1| 1| B| 8| B| B
Js 1|-1| 1| -1| 8| B|-B|-B
o7 31 3|-1(-1]1 0] O 0 0
Js 3|-3|-1| 1,00 O] O

where 3 = exp (2).

By means of Kratzer’s algorithm [7] we calculate the finite set
IT = {(X,9) € mfcharc(H) X fcharc(FEs) | X\p = "9|D}

of compatible pairs (X,d) where mfcharc(H) denotes the set of all multi-
plicity-free faithful characters of H, and fcharc(FEs) denotes the set of all
faithful characters of Fg. The set II is finite by Proposition 3.5 of [8].

For each (X,9) € II the positive integer X(1) = 9J(1) is called the degree
of the compatible pair (X, ).

Using the identifiers introduced within the character tables above and
printing faithful irreducible characters of any of the three groups H, D or
Eg in bold face we state the result as

Lemma 2.7. There are siz compatible pairs (X, 9) of multiplicity-free faith-
ful characters X of H and faithful characters 9 of Eg with minimal degree
X(1) =9Q1) =7, namely:

(a) (X7 + X5,76),
(6) (X1 + Xs,96),
(¢) (X2 + X3+ X5,98),
(d) (X2 + X3 + Xg,96)
(e) (Xa+Xa+Xs,96),
() (X + Xa + X, Dg).

In each case the common restriction to D is X|p=102+6g+d7 = J¢|p-

2
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Proof. Taking the three character tables 2.4, 2.5, 2.6 and the fusion patterns
of D into H and D into Eg as input Kratzer’s algorithm [7] yields that 7 is
the minimal degree of all the compatible pairs (X,?) € II, and that the six
faithful characters X € mfcharc(H) of degree 7 stated in the assertion are
compatible with the irreducible character J¢ of Eg. In fact, the algorithm
also proves that these are the only compatible pairs (X,9) of degree 7. O

The smallest prime p > 0 not dividing the product |H||Es| is p = 11. By
the character tables 2.4 and 2.5 the prime field F = GF(11) is a splitting
field for all the irreducible constituents occurring in the six compatible pairs
(X,J¢) listed in Lemma 2.7.

Lemma 2.8. For each compatible pair (X,39¢) given in Lemma 2.7 there
ezists a T-dimensional semisimple multiplicity-free representation V < X of
H and an irreducible representation W « ¢ of Eg over GF(11) such that

(1) H = (X,Y) < GL7(11),
(2) D= (ZvAla-A%D);
(3) E<I> = <ZaA1aA27D15>1

 where Z=Y3, A1 =XY?, Ay=(X%2Y)2X, and D=Y?X2. For each of the
cases (a)-(f) of Lemma 2.7 the generating matrices X,Y,€E € GL7(11) are
given in the appendiz.

Proof. (1)&(2) By Lemma 2.2 the group H = (z,y) < S7 has a faithful
permutation representation on Qg = {1,2,...,7}. Let F = GF(11), and
let P = FQy be the corresponding permutation module of H over F. Then
MAGMA gives us the direct decomposition P = ]1%1 @ My & Mg, where M
corresponds to the signum representation of H, and Mg is an irreducible
module of H affording Xg € charc(H). Hence M7 = My ® Mg is the irre-
ducible FH-module corresponding to X7 € charc(H). By constructing ten-
sor products like M7 ® M7 and splitting them into irreducible constituents
we get all the irreducible FH-modules M; corresponding to the irreducible
characters X; € charc(H) occurring in Lemma 2.7 (Note: Here we fix 4 as
a primitive 5-th root of unity in F — as MAGMA does!). Thus, for each in-
dividual case (a)-(f) we now know how to set up blocked diagonal matrices
Xo, Yo € GL7(11) corresponding to the permutations z,y € H.

Let V = Vi be the semisimple FH-module corresponding to the faithful
character X of H given in Lemma 2.7 (R), R € {a, b, c,d, e, f}. The restriction
V|p to the subgroup D of H can be computed easily, just confer Notation 2.1.

In particular, Lemma 2.7 says that V|p decomposes directly into the three
pairwise non-isomorphic FD-modules Vyo, Vg and V7 corresponding to the
irreducible characters d2, dg and d7 of charc(D), respectively. However,
bases of Vo, Vg, Viiz may be merged to a basis of V, and with respect to
this new basis we transform the two matrices Xém, éN) constructed above
into matrices X (N), y(N).

For a complete summary of our explicit results at this stage the reader
is referred to the first two columns of the table in the appendix. Since
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it becomes important later we just want to substantiate case (b) a little
bit: Emulating Notation 2.1 here yields that a group isomorphic to D is
generated by the following matrices:

10
10 0 0
010 0
zb) 0 010
100
010
001
1
10 10 10 )
0 0 1
AY 0 1 0
10 10 10
0 0 1
01 0/
1
00 1 )
10 10 10
AP = 100
00 1
10 10 10
10 0)
1
0 0 1
01 0
D) — 10 10 10
00 1
01 0
10 10 10

(3) It remains to construct the irreducible representation W of Eg corre-
sponding to ¥J¢ € charc(Eg). We remember that Eg = p(Fs) is a permu-
tation group acting on Qg, = {1,2,...,8} with stabilizer Stabg, (1) &~ &
and permutation character (lg)f® = BE<1> + 96 by the character table 2.5.
Let P = FQg, be the permutation module of Fg over F = GF(11). Decom-
position of P into irreducible FEg-modules by means of MAGMA confirms
P, ®W.

We now have to match the groups D < H and p(D) < Fg effectively for
each case of Lemma 2.7.

With respect to some fixed basis of W the five permutations p(2), p(a1),
p(az), p(d), p(e) € Sg can be represented by 7x 7-matrices Z, Al, Ay, D, €
over the field F, respectively. Therewith (D) = (Z, A, A3, D) < GLy(11),
and u(D) =2 D = (Z,A;,A2,D) < GL7(11). Hence there exists a group
isomorphism 1) between those two subgroups induced by the corresponding
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base change. Employing MAGMA again we obtain a transformation matrix
Ly € GL7(11) such that

Z = Ly 2Ly,
A= LN ALy,
Ay = Ll ALy,
D = L;'DLy.
(Note: The transformation L, is uniquely determined up to multiplication

with elements of CGL7(11)(M(D))!) Obviously, setting £ := L, £ Ly ensures
that we have Fg = (Z,A1,A2,D, &) in any of the cases (a)-(f). O

Finally, we are able to give an existence proof of Janko’s sporadic simple
group Jj described in Theorem 1.1. ‘

Theorem 2.9. Let H be some finite group with a central involution z # 1
such that H = (z) X As. Moreover, let A be a fized Sylow 2-subgroup of H,
D = Ny (A), and n: D — GL3(2) be the homomorphism determined by the
conjugation action of D on A. Then the following assertions hold:

(a) Up to conjugacy there exists a unique subgroup ® = Fy; of GL3(2)
containing A = n(D) = 3 with odd index and an embedding pn of D into the
semidirect product Eg = A : ® such that the diagram

1—-——->Ai>Eq>'\ﬁ<I>——>l

b

1 A D A >1

commutes.

(b) The free product H *p Eg of H and Eg with amalgamated subgroup
D is uniquely determined by H up to isomorphism, and there is a unique
7-dimensional irreducible representation k : H xp Eg — GL7(11) over the
field GF(11) such that the group

J = (s(H),x(Ee)) < GL7(11)
has an involution Z with C;(Z) = H.

(c) J is a simple group of order |J| = 175560 generated by the matrices
X,Y in line (b) of the table in the appendiz and the matriz

oo U Gr oo
WL D
O WWOD OO
COoO0CCOoND
-
TN = = O
ot
O NMNOO =D

(d) Matriz representatives W for the conjugacy classes (W)’ of J are
given in the following table: '
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Order 12% |J : Cy(W)| |Cy(W)|
1 1 1(22.3.5.7-11-19
2 xX)? 1463 23.3.5
3 »? 5852 2-3-5
51 X 5852 2-3.5
59 X? 5852 2-3-5
6 Yy 29260 2-3
7 S 25080 7
10, XYy 17556 2.5
10 XS 17556 2.5
11 X2ys 15960 11
15, XYS 11704 3-5
159 X4s 11704 3.5
19; | XYAxS 9240 19
19, | X28yS 9240 19
193 | SX2YS 9240 19

(e) J has the same character table as Janko’s sporadic simple group J,
given in the ATLAS[3].

Proof. (a) follows immediately from Proposition 2.3. Hence the amalga-
mated free product P = H xp E3 is uniquely determined by H up to iso-
morphism.

Let now (X, ) be any of the compatible pairs of faithful multiplicity-free
characters X of H and faithful irreducible character J¢ of Es determined in
Lemma 2.7 of minimal degree X(1) = 7 = ¥¢(1). According to step 4 of algo-
rithm 4.6 of [8] identify H and Fg with their isomorphic images in GL7(11)
afforded by the faithful modules V' and W over GF(11) corresponding to
the characters X and ¥g of H and Egs, respectively.

For each of the cases (a)-(f) the matrix generators of H and Eg are
given in Lemma 2.8. By Lemma 2.7 the compatible pairs (X,9J¢) of the
cases (c)—(f) have a faithful semi-simple multiplicity-free character X with
three irreducible constituents, and the common restriction X|p = Jgp to
D = H N Ep has three non-isomorphic irreducible constituents as well.
Therefore Thompson’s theorem [9] asserts that the free product P = H*pFEg
has only one irreducible 7-dimensional representation x : P — GL7(11) in
any of these four cases. Hence

k(P) = (X, ),€) < GLy(11),

where X, Y and £ are the matrices in GL7(11) of Lemma 2.8. The explicit
triple of generators for each particular case can be found in the corresponding
line of the table in the appendix.
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By step 4 c) of algorithm 4.6 of [8] we now have to check whether each

Sylow 2-subgroup S of these four groups x(P) has exponent 2. This is not

the case as we see from the following table of orders ord(M) of certain
elements M € k(P):

Case || ord(X¢&) | ord(XE3)
(c) 37 60
(d) 60 15
e || 366 60
@ || 133 132

In each of the cases (a) and (b) of Lemma 2.7 one has to examine
ten different irreducible 7-dimensional representations k;(P) — GL7(11),
parametrized by diagonal matrices C; := diag(i,1,1,1,1,1,1), s € GF(11)*,
by Thompson’s theorem [9].

Denote the three generating matrices of Lemma 2.8 by Xy, V., £ and Ay,
Vs, & in case (a) and (b), respectively. Then by step 4 c) of algorithm 4.6
of [8] we have to determine the exponent of a Sylow 2-subgroup of any of
the following groups:

Joi = (Xa,Va,CilE,Ci) < GLr(11),
Joi = (X, Vo, CT1ECH) < GL7(11) .

Therefore we compute the orders of the elements

Mai = XoCilEoCi, M = XCrEC,
Nai = XCTrEXC, Noi = XCIELC
for all i = 1,2,...10. The results are given in the following table:

i || ord(Mygy) | ord(Ng) || ord(Mp) | ord(Ne;)
1 354312 | 1771560 1320 | 1771550
2 111 8 60 133
3 7320 | 1948717 32210 | 486780
4 354312 | 1771560 - 1320 | 1771550
5 7320 | 1948717 32210 | 486780
6 32210 | 354312 1330 7320
7 7320 1330 1220 7320
8 32210 354312 1330 7320
9 333 132 6 5
10 7320 1330 1220 7320
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The table shows that only in case (b) the choice i = 9 leads to a group Jp g
with a possible Sylow 2-subgroup isomorphic to 23. In particular, assertion
(b) holds by Thompson’s theorem [9].

Let J = Jpo = (Xby Wb, S) < GL7(11), where S := Cg—lgaCQ is the
matrix stated in assertion (c). Employing MAGMA we can now construct
the permutation representation (1ig)’ of J. Indeed, (1g)7 is faithful, and
|J : H| = 1463. Thus we may conclude |J| = 175560.

By application of Kratzer’s algorithm [7] the conjugacy classes of J have
representatives as given in table (d).

Using MAGMA and (d) it follows that J has the same character table as
Janko’s group J; which is given in the ATLAS [3]. In particular, J is simple.
Certainly H = (X3,)5) < C;(Z) for the involution Z = Y} (= Z®) as

given in the proof of Lemma 2.8). Since |C;(Z)| = 120 by the character
table of J, we have C;(2) = H &2 x As. a
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3. APPENDIX: GENERATORS OF THE LOCAL SUBGROUPS H AND Eg OF

LEMMA 2.8
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