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REMARKS ON SPLENDID TILTING COMPLEXES

TeTsURO OKkUYAMA (BB 44 %7 8P )

Hokkaido University of Education,Asahikawa Campus
IHHokumoncho 9,Asahikawa 070-8621,Japan

0. INTRODUCTION

In [1,Question 6.2] Broué proposed a question concerning derived equivalences
between blocks of finite groups. Then the question has been much interested and
studied by many people (see,also [2]and [3]). ‘

The question has been answered in the case that groups are p-solvable in [5] and
that blocks have cyclic defect groups in [9] (see also [13]). Recently it was answered
for defect two blocks of Symmetric groups in [4]. And in [7] we checked the question
for the principal 3-blocks of the groups, Ag, A7, As, S, PSL(3,4), M11, Mag, M33
and HS. ‘

Our aim in this talk is to show that the examples in [7] we checked are all splendid
equivalent. In section 1 in this note we shall explain our method in [7]. And then
we discuss how to construct twosided tilting complexes in section 2 to use to show
that our above examples are splendid equivalent in section 3 .-

We only give outlines of proofs of our results and the detailed and final version
of this note will be submitted for publication elsewhere.

1. PRELIMINARIES

In this section we summarize some results from theory of derived equivalences
of algebras which will be needed in our discussion.

Throughout this section let A be a finite dimensional symmetric algebra over an
algebraically closed field k of characteristic p > 0. By modules over an algebra we
mean right modules of finite dimension.

Let Py be a projective A-module and set P = add(FPy). A right P-approximation

of an A-module X is a sequence ; P I x satisfying

1) PeP
(2) Homa(P', P) Homa(F9) Homy(P',X) — 0 (exact), for any P’ € P

Every A-module X has a unique minimal right P-approximation and any right
‘P-approximation has minimal one as direct summand.

Let S;,7 € I be the set of all simple A-modules and P; be a projective cover of
S;,i € I. Take a subset I of I (and fix it). And set P(lo) = add(® ) ;¢ Pi)-
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For each i € I we shall construct a compjex P* € K% P,) , the homotopy
category of bounded complexes of projective A-modules.

For i ¢ Iy let P be---——>0——>R,-——‘i"—>]5’,~—+O—>... , where 6; : R; — B
is a minimal right P(lp)-approximation of P; (F; is in degree 0 and R; is in degee
_1)

For i € Iy let P*be -+ —0— P, — 0 — ... (P isin degree —1).

Now set P*{Io} @Y ;er P Let PO (resp. P! ) be the Oth (resp. —1st) term

Theorem 1(Rickard [10],see also [14]).
P*{Iy} is a tilting complezx for A.

Put C = Endgep,)(P*{lo}). Let P; be an indecomposable projective C—
module corresponding to an inecomposable direct summand P} of P*{Iy} and
S be a simple C-module corresponding to P,, 1€ 1.

For i ¢ Iy set p, Homy(80,S;) : Homa(P%,S;) — Homa (P, S;) (pi =0 ,in
fact).

For i € Iy, let U; /S C P/S be the largest submodule of P;/S; each of whose
comp051t10n factors is isomorphic to Sy for some &k ¢ Iy. Set p; = Homa (6o, U;) :
Hom(P°,U;) — Hom4 (P, U;).

Proposition 1(see [7]). The followings hold.

(1) Fori ¢ Iy, S, = Kerp;
(2) Fori € Iy, S; = Cokp;

Using the result due to Rickard in [11] we can costruct an (A4, C)-bimodule 4 L¢
which and ¢ Hom(L, k)4 give a stable equivalence of Morita type between A and
C with the following property; for i ¢ Iy, S;®4 L & §,~ and fori € Iy, W; @4 L & §,~,
where W; = Q~1(U;).

Now let B be a symmetric algebra which is stabley equivalent of Morita type to
A and let bimodules p N4y and sMp = Homy(pNa, k) give a stably equivalence
of Morita type between B and A. We assume that the set of simple B-modules
{T;;i € I} is also indexed by I (We also assume that A and B are connected and
nonsimple).
Set A-modules X; =7T; ®g N,i € I.
If X;,1 € I are all simple in the stable module category of A, then the result of
Linckelmann in [6] says that B and A are Morita equivalent.
Otherwise, we do the following procedure.
(*) Take a “nice” subset Iy of I and construct P*{Iy} and calculate
(*-1) C = End(P*{Ip}) and
(*-2) C-modules X; = X; ®4 L,i € I.



55

Then g N ®4 L¢ gives a stably equivalence of Morita type between B and C and
X =T ®p (N ®4 L).

If we have here that X,-,z' € I are all simple , thén use the result of Linckelmann
to conclude that B and C are Morita equivalent and therefore B and A are derived
equivalent.

So assume that we could find a sequece of “nice” subsets Iy for A and then I
for C and ... of I such that the followings occur; we do the procedure (*) for A
with respect to Iy , then for C' with respect to I;, ... and the resulting module
corresponding to X; , ¢ € I over the final algebra are all simple.

Then the final algebra is Morita equivalent to B by Linckelmann’s result and we
can conclude that B and A are derived equivalent (although our assumption is too
strong !).

2. TwosIDED TiLTING COMPLEXES

We shall use the notations in section 1. So A and B are symmetric algebras
over k which are stably equivalent of Morita type. Let S;,i € I be the set of all
simple A-modules and P; be a projective cover of 5;,: € I as before. Let pN4 be a
(B, A)-bimodule which gives a stable equivalence between A and B such that gV
and N4 are projective. We assume that g N4 has no projective (B A)-summand.
Take a subset Io of I (and fix it). And set P(lo) = add(® )¢, i) Ui and W,
i € Iy, are A-modules defined in section 1.

Set P(B, Io) = add(B ®x @ )¢y, Pi) (this is a subcategory of the category of
(B, A)-modules). And let P*(N,Iy) be a complex of (B, A) -bimodules ;

P*(N,I): -+ — 0 —> pPy 5 gNg — 0 —> ... |
where 6 : g P4 — N4 is a minimal right P(B, Ip)-approximation of gNy4 .

Theorem 2. As a complex of A-modules
P*(N,Ig)a s a tilling complex for A.

Proof. As a map of A-modules, § : P4 — Ny4 is a right P(Ip)- approximation (not
necessarily minimal) of N4. So as a complex of A-modules, P*(N,I) is a direct
sum of complexes isomorphic to P;*,i € I (P is the complex defined in section 1).
We shall show that for each ¢ € I , the multiplicity of P* in P*(N, Ip)4 is nonzero.

For i ¢ Iy , the multiplicity of P} in P*(N,Io)a is dimKerd! by Proposi-
tion 1, where 67 = Homx(6,S;) : Homa(N4,S;) — Homa(Pa,S;). Kers! =
Homa(Na,Si) # 0 as 6F is actually a zero map.

For i € Iy , the multiplicity of P in P*(N,Ip)4 is dimCoké! by Proposition
1, where 6 = Homx(6,U;) : Homa(Na,U;) — Homa(Pa,U;). We shall show
that C'olc&f= & Homu(pNa,W;)° , a (unique) non projective indecomposable B-

summand of Homa(gNa, W;) , in the following steps.

Step 1. The map Homs(Na,U;) — Homu(Imé,U;) induced by the inclusion
Imé — N is an tsomorphism. In particular, 67 is injective.
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Proof. Apply Homa(—,U;) for 0 — Imé — N — Coké — 0 to obtain the exact
sequence;

0 — Homa(Cokd,U;) = Homy(N,U;) —
Hom 4 (Imé,U;) — Hom ,(Coké, W;) — 0

(W; = Q~YU;)). As SocU; = S; and SocW; is a direct sum of simple modules
isomorphic to Sy ,k € Iy, it holds that Homa(Coké,U;) = 0 = Hom s(Coké, W;).

Step 2. For any simple B-module T , the map Homp(pPa, Homy(Tp, k) S
Ui)a— Homp(pKerds, Homy(Tp, k)®rU;) a induced by the inclusion g Kerbs —
BP4 is a zero map.

Proof. P4 1s a direct sum of modules isomorphic to Py, k € Iy and S; = SocU; C U;
is a unique composition factor of U; which is in {Sk; k € Iy}. So for any (B, A)-map
f:BPs — Homg(Tg, k) ®, U; , Imf is contained in Homy(1p, k) ®; S;. If the
map in the statement of Step 2 was nonzero, then there exists a projective map
from pKerds to a simple (B, A)- mdule Hom(Tpg, k) ® S;. This is not the case
because pKerd, has no projective summand (6 is minimal).

Step 3. 6 : Homa(pNa,U;) = Homa(Pa,U;) is a minimal injective hull of
a B-module Homs(pNa,U;). In particular, Coks! = Q" (Homa(gNa,U;)) as
B-modules.

Proof. From the exact sequence 0 — Kerdé — gP4 — Imé — 0 we have the
following exact sequences of B-modules ;

0 — Hom4(Imé, U;) < Hom4(pPa,Us;) =, Hom 4(Kers, U;)

We claim that Socg(Hom (s Pa,U;)) C Kery. For a simple B-module 7', apply
Homp(T,—) for the above sequence to obtain Homp (T, Homa(pPa,Ui)) —
Hompg(Tg, Hom (g Kerba,U;)). By Step 2 and the isomorphism ;

HomB(TB,HomA(B?A,U;)) & HomB(B?A,Homk(TB, k) Rk U,‘)A

, we see that 7, is a zero map. So our claim follows. As Hom,(p Py, U;) is a
projective B-module , ¢ is a minimal injective hull of Hom 4(Imé,U;). Now the
result follows by Step 1.

Step 4. Q ' (Homa(sNa,U;)) 2 Homa(gNa, W;)° as B-modules.

Proof. Apply Hom4(pNa,—) for the exact sequence : 0 — U; — P, —» W; — 0.
Then we obtain the exact sequence of B-modules ;

0— Homy(gNa,U;) » Homa(gNa, P,) = Homa(gNa, W;) — 0

As Hom (g N4, P;) is an injective (projective) B-module, the result follows.
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Set AV = Endpsp,)(P*(N, Io)).

A1) is Morita equivalent to C' = Endgsp,)(P*{Io}) ,the algebra discussed in
section 1. Let'Si(l) be a simple AV-module corresponding to an indecomposable
direct summand P* of P*(N,Iy) ,i € 1.

)

As each term in P*(N,Io) is a (B, A)-bimodule, there exists an algebra map
B — A induced by left multiplication by elements in B. And AWM _modules are
considered as B-modules via this map.

A proof of the above theorem shows the following.

Corollary 1. The followings hold.
(1) Fori ¢ Iy, S'i(}la) > Homa(Na,Si) as B-modules
(2) Fori €Iy, S5 = Homs(gNa, W;)® as B- modules

The above fact says that A(I)Ag) is indecomposable as an (A1), B)-bimodule.

Proposition 2. The followings hold.

1 BA(l) ~ B® projective (B, B)-module
B
(2) AW @5 Homy (AW, k) = AM@ projective (AN, AM))-module modules

Proof. A is connected and symmetric as so is A. And B is also connected and
symmetric by our assumption. So the asertion (2) follows from (1).

From the complex P*(N,Iy) : pPa %, pN4 we obtain the following sequences
of (B, B)-bimodules;

Homu (N, P) — Homa(N, N) & Homa(P, P) = Homa(P, N)

where 7 is defined by f — (6o f,f 0 8) for f € Homa(N, P) and ¢ is defined by
(h,g) = hoé—80g. As P*(N,Io) is a tilting complex for A4, 7 is injective , o is
surjective and Kera/Imr & A,

Homa(BNa,BPa), Homa(BPa,BNa), Homa(pPa, pPa) are all projective as
(B, B)-modules and Homa(pNa, N4) & BO® projective (B, B)-module. Now the
assertion (1) follows a standard argument.

The following corollary shall be shown by the above discussion and the result of
Linckelmann.

Corollary 2. Suppose that Hom(gNa, Si),i ¢ Io and Homu(sNa, W;)°,i € Io
are all simple B-modules. Then B = A1) and P*(N,Io) is a split-endmorphism
twosided tilting complex for (B, A).

For the definition of split-endmorphism twosided tilting complexes, see [12]

3. SpLENDID TILTING COMPLEXES

We shall use the same notaions as for sections 1 and 2.
Let A(l)LfAl) be a non projective (A1), A)-summand of A ®p N.
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Set P(AM) Iy) = add(A™") @ ® Y ;¢ , Pi) (this is a subcategory of the category

of (A®), A)-modules). And let P*(L(1), I;) be a complex of (A1), A) -bimodules ;
PHIW,Ig) ¢ = 0 — 4 PO S I 00—

where §(1) : A(l)PE) — A(1)L£11) is a minimal right P(A(1), I)-approximation of

A(l)LE:) }

Theorem 3. ,
P*(LM  Ip) is a split-endmorphism twosided tilting complez for (AW A). And
as complexes of (B, A)-modules gP*(LM), )4 & P*(N, Ip).

Proof. For any A-module X , Hom4(A) ® g N4, X) is isomorphic to a direct sum
of Hom4(L™, X) and a projective AW _module as AV-modules. And we have the
following isomorphisms ; Homa (A" ®p N4, X) & Homp (Ag), Homs(gNa, X))
>~ Homa(pNa,X) ®p AW, Thus for i ¢ Iy, Homa (A ®p Na, Si) =
Homu(pNy,Si)@pA) = S,-(1)®BA(1) = S,-(I)EB projective A(V-module (the second
isomorphism follows from Corollary 1 and the third follows from Proposition 2).

Fori € Ip, Homa (AW @p Na, Wi) & Homp(sNa, W;)®p AD = 5M @5 A0 =
.5'1-(1) @ projective A(V)-module by the same reason as above.

Now applying Corollary 2 for A®) and A , we can conclude that P*(NM), Iy) is
a split-endmorphism twosided tilting complex for (A1), A).

BLS) &~ N& projective (B, A)-module by Proposition 2. As a complex of
(B, A)-modules , g P*(L(}) I5)4 is a right P(B, Ip)-approximation of BLE,I). So
gP*(LM), Io) 4 is a direct sum of P*(N,Ip) and some complex Q* of projective
(B, A)-bimodules. Because endmorphism algebras over K°(P,) are AM) both for
gP*(N®), I5) 4 and P*(N, I) , we have that Homgu(p,)(P*(N,Io), @) = 0. Thus
Q* is 0.

Let L, be an (A, C)-bimodule corresponding to an (A, A®))-module
Homg( 40 Nfll), k) under the Morita equivalence between C' and A(!) described in
the above. Then by a proof of Theorem 3 , we may choose L; as an (A4, C)-bimodule
L discussed in the end of Section 1 (See the properties of L).

Now we shall summarize our discussions in the above.

We are given

(0-1) two symmetric algebras B and A which are stably equivalent of Morita
type and the sets of their simple modules are indexed by the same set I.

(0-2) a (B, A)-bimodule g N4 which gives a stable equivalence of Morita type
between B and A.

Then we took a subset Iy C [

(0-3) construct a complex P*(N, Ip) of (B, A)-bimodules and

set A = Endpev(p,y(P*(N, Io)).

Then BAE:()I) gives a stable equivalence of Morita type between B and A1),
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(0-4) costruct a complex P*(L(), In) of (A, A)-bimodules where A(I)L(l) is a
non projective (A1), A)-summand of A0AY) ®p Ny and BL(l) N projective
(B, A)-module.

P*(L(l) Ip) is a split-endmorphism twosided tilting complex for (A, A). 1t has
LM in degree 0 term and a projective (A(1); A)-module in degree (-1).

Set BN( ()1) = BAE:()U' Then B , A and BN( ()1) satisfy the situations (0-1) and
(0-2).

Suppose that repeating the above procedures we could find a sequece of “nice”
subsets Ig, I, ..., I,y of I for A®) = 4, AW AG-D respectively,where A®) =
Endgo(p, (- 1))( *(N®),I,_1)) , t = 1,...,s such that in the final stage, the as-

sumptions in Corollay 2 are satisfied (Thls is the situation discussed in [7]).
Then A(®) & B and we can conclude that B and A are derived equivalent.

Actually the tensor product P*(N;Io,...,I;—1) == -
P*(LG) I, _1)® -1y P*(LE~V I, 5)®- - ®A(1)P (L(l) Ip) is a split-endmorphism
twosided tilting complex for (A(®)] A). We can easily see that the module in degree
0 of P*(N;Io,...,I,—1) is isomorphic to a direct sum of N and a projctive (B, A)-
module and the modules in other degree are projective (B, A)- modules.

In the all examples we discussed in [7], we could choose the first (B, A)-module
N from a bimodule direct summand of group algebras. Therefore the resulting
complex P*(N; Iy, ...,I,—1) will be a splendid tilting complex.
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