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1. INTRODUCTION

Let p be a prime greater than three. In this paper we consider cohomology algebras of »
finite groups with extraspecial Sylow p-subgroup

P=(a,b|a’=b"=I[a,b]" = 1,{[a,b],a] = [[a,8],8] = 1)

of order p3 and exponent p with coefficients in fields of characteristic p.

Integral cohomology rings of these finite groups have been investigated by some people.
Among them we should mention D. J. Green [6] and Tezuka-Yagita [14]. Green’s work would
be the first one dealing with such finite groups and contains a useful proposition that can
be applied to modular case. Tezuka and Yagita’s work is a comprehensive one considering
finite simple groups with P as Sylow p-subgroups and gave universally stable classes. Some
of these results and methods are valid for modular cases. The present work is partly inspired
by their works.

We should also mention Milgram-Tezuka [9]. There they calculated the mod 3 cohomology
algebra of the Mathiew group Mj,, whose Sylow 3-subgroup is extraspecial of order 27 and
exponent 3; and they showed that the cohomology algebra is isomorphic with that of the
general linear group GL(3,F3). They used the theory of geometry of subgroups, as the title
suggests. ‘

However, our purpose is to understand mod p cohomology- algebras from a view point of
modular representation theory of finite groups. Our main tools include the theory of relative
projectivity of modules and theory of cohomology varieties of modules.

In Okuyama-Sasaki [11] we studied some applications of theory of relative projectivity of
modules to the cohomology theory of finite groups; and we calculated the mod 2 cohomology
algebras of finite groups with wreathed Sylow 2-subgroups. The crucial was to analyze a
Carlson module. To do that we used Green correspondence and the theory of projectivity
of modules relative to modules. In this report we apply our theory to finite groups with
extraspecial Sylow p-subgroups for a prime p > 3; as an example we shall calculate the mod
p cohomology algebra of the general linear group GL(3, F,). At that time of the symposium,
the auther had not completed the calculation. Now, he believes that it is completed. The
details is in Sasaki [12].
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Mod p cohomology algebras of other finite groups in question will be investigated in another
paper.

Here we fix some notation. Let k be a field. Let G be a finite group. All kG-modules are
finitely generated. Let H be a subgroup of G. For a class ¢ in H*(G, k) we shall sometimes
write (g or (| for the restriction resy ¢. For a class  in H*(H, k) we shall write tr€ 7 for the
corestriction cor® 7. For a homogeneous element 7 in H™(H, k), where the degree n is even, we
shall denote by norm® 5 the image of Evens’ norm map norm : H*(H, k) — H G:H In(G, k).
For g an element in G we denote by 19 the conjugate con? n in H*(HY,k). For kG-modules
U and V we shall write (U, V)g for the space of the kG-homomorphisms Homyg(U, V).

2. RELATIVE PROJECTIVITY

In this section we state some results concerning with relative projectivity of modules and
“cohomology theory. Let p be an arbitrary prime and let k be a field of characteristic p. Let
G be a finite group of order divisible by the prime p.

2.1. Relative projectivity. The followmg theorem deals with Green correspondence of
~ indecomposable direct summands of Carlson modules .

Theorem 2.1. Let p in H"(G, k) be a homogeneous element. Let U be an indecomposable
direct summand of the Carlson module L, of p with vertex D. Let H be a subgroup of G
containing the normalizer Ng(D) and let V' be a Green correspondent of U with respect to
(G, D, H). Then the Green correspondent V is a direct summand of the Carlson module L,
of the restriction py = resy p of the element p to the subgroup H; moreover the multiplicity
of the direct summand V' in L, is the same as the multiplicity of U in L.

Next let us state briefly the theory of projectivity of modules relative to modules. Refer
Okuyama-Sasaki [11] or Carlson [3] in detail.

Definition 2.1. For V a kG-module let
PV)={X|X|V®AIA}

A kG-module belonging to P(V) above is said to be projective relative to P(V) or P(V)-
projective.
Definition 2.2. Let M be a kG-module. A short exact sequence £ : 0 — X — R —
M — 0 is called a P(V)-projective cover of M if

(1) R is P(V)-projective;

(2) the tensor product

0 —X®V —RQV —MQV —0
splits;

(3) the kernel X has no P(V)-projective direct summand.
A P(V)-projective cover of any kG-module exists and is uniquely determined up to isomor-
phism of sequences. Dually we can define P(V')-injective hulls of modules.

A connection between the notion of relative projectivity above and cohomology theory is
given by the following fact, which is originally due to Carlson. This will be used in Section
5. Note, however, that this is not true for p = 2.
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Lemma 2.2. Let p be an odd prime. Let ¢ in H**(G,k) be an arbitrary class. Then the
extension v '
Ec:0—k— QYLe) — 0 k) —0

associated with ( is a P(L¢)-projective cover of the syzygy Q?"~1(k) or equivalently a P(L¢)-
injective hull of the trivial module k.
2.2. System of parameters. Let G have p-rank r. Fori=1,...,r let

Hi(G) = {Ce(E) | E is elementary abelian p-subgroup of rank i }.
Our starting point of this work is the following facts.

Theorem 2.3 (Carlson [2] Proposition 2.4). The cohomology algebra H*(G,k) has a
homogeneous system { (1, ...,¢, } of parameters with the property that for everyi=1,...,r

Ge Y tr§H*(H,k).
Het;(G)

Corollary 2.4 (Okuyama). If a homogeneous system {(1,...,(, } of parameters is taken
as in the theorem above, then the tensor product L¢, ® -+ ® L¢,_, is Hy(G)-projective.

In particular, if r = 2, then L¢, is-H2(G)-projective and the element ¢y is regular in
H*(G, k).

The following will be used to decompose a Carlson module.

Lemma 2.5. Let G be a finite group of p-rank two. Suppose that a set { p,o } is a homoge-
neous system of parameters of H*(G, k). Then it holds that

Ly =L, ® L.

3. COHOMOLOGY ALGEBRA OF EXTRASPECIAL p-GROUP
Let :
P = (a,b|a? =W =[a,b]" =1,][a,b],a] =[[a,b],b] =1)

be an extraspecial p-group of order p? and exponent p. In this section, following Leary [8], we
state the cohomology algebra H*(P, k). Moreover we state our key fact on which our study
depends.

Definition 3.1. Let
¢ = [a, b].

Then Z(P) = (c). For j=0,...,p—1, let

Ejz(abj,c); ajzabj, bj=b.
Let

Eow = (b,c); Geo =b, beo =a™L.
We put

Q={0,1,...,p—1,00}; E={E;|jeQ}.

The set £ is the collection of all elementary abelian subgroups of rank two. We note that
Cp(E)=Efor Ein €.



Definition 3.2. For j in Q, regarding H'(E;, ;) as Hom(E;, ), let
)\gj) — a;, ’ugj) =c*
and let ) )
M = a0, 1) = Awt?),
where A : HY(E;,F,) — H?(E;,F,) is the Bockstein homomorphism. Then the element b;
acts on these elements as follows:

P =P, (W§ = -2 + ).
Remark 3.1. In his report Sasaki [13] the author discussed the mod p cohomology algebra
 H*(P, k). There he made a stupid error, namely in Definition 4.2 in [13] he defined
' Hi = b* 1eq.
This should be of course
pwi=c e
Definition 3.3. Let us fix some classes in the cohomology algebra H*(P, F,), following Leary
[8]. Regarding H(P,E,) as Hom(P, ), let
- a=at,  f=bY
az = A(a1), B2 = A(B1),

where A : H(P,F,) — H*(P,E,) is the Bockstein homomorphism. Let us, as in Leary [8],
denote by (, , ) the Massey product. Let

n2 = (a1, 01,01), 02 = (b1, P, 01 );
3 = A(n2), b3 = A(62),
where A : H2(P,E,) — H3(P,F,) is the Bockstein homomorphism. We let
X2i-1 = tTh_ (“goo) (Mgoo))i—l)a i1=2,...,p—2,
xai = b5, (W5)), i=2,...,p—2,
Xap-3 = trh,, (1™ (5P ?) — o P,
Xep—2 = trf (5™ — o7,
Xep-1 = trg (™ ()P ) + of s,

Finally, we let
v =z € H¥(P,F,) in Leary [8)].

Theorem 3.1 (Leary [8] Theorem 6). Let p be greater than 3. Then the cohomology al-
gebra H*(P, F,) is generated by the classes s, B;, @ = 1,2, 1;,0;, i = 2,3, xi,1 = 7,8,...,2p—
1, and v subject to the following relations:
181 =0, azf = a1, cune = P12 =0, 102 = Bine, .
n5 =03 =120 =0, cumz = can, P16z = Babs,
M361 = 20203 + Bame, G301 = 202mz + 2y,
nan3 = 0203 = 0, Oamg = —1203, c2bl3 = —Lans,
az(a202 + Bang) = Ba(c2b2 + Bomz) = 0,
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by

— oy

=0, 0§ — Bz = 0,

abs + Bime = 0, b5 + Fhns =0,

o 0 By = 0 fori<p-—1
X2i01 = —a’z’_lal X2iP1 =9 g_llﬁ forz':p—l’
o = 0 By = 0 fori<p-—1
L 0, — 0 fori<p-—1
X2iT2 = __ag—an X2iV2 = _ﬂg_192 fOI"i=p—1’
)0 0. — 0 fori<p-—1
X2i73 = —0112)_17}3 X2iV3 = 5_103 fori=p—1’

0
X2iX2j = 4 2p-
g’

fori+j<2p¥—2

?

+,32p =2 ag—lﬂg_l fori=j=p-1
0 0 fori<p
X2i-101 = { —el X2i-181 = {ﬂg_102 fori=p’
0 -~ 0 fori<p-1
x2i-102 ={ —ab lay  Xai-1fe =< — P1g fori=p-—1,
o —pE70;  fori=p
x2i-1M2 = 0, Xx2i-102 =0,
0 0 fori#p—1
X2i—173 = {__Aag—lnz X2i-103 = {—ﬂg_l% fori=p—1’

2’02+ b 8570,

0
X2i-1X2j-1 = 2p—3
1 ] {aQP N9 —

0 .
X2i-1X2j = ooy + 38, — g6,
—ay? %3 +ﬂ§”‘393—a” G20,

The following is the key fact for our investigation.

Lemma 3.2. One has

fori<p—lorj<p-1

fori=pandj=p-—1

fori<p—lorj<p-1
-1
fori=pandj=p

fori=j=p
-1

Xop-2 = Z trg, (s

JjeN

Though the following will not be used later, it would be worthy to be noticed.

Lemma 3.3. One has

V= normgm (,ugw)) € H?(P,F,).
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4. FINITE GROUPS WITH EXTRASPECIAL SYLOW p-SUBGROUPS

Henceforth we let k be a field of characteristic p containing F,2. We let G' denote a finite

group with P as a Sylow p-subgroup, unless otherwise stated. We shall often represent by E
a subgroup E; in £. In this case we shall write Ag and ps for Ag’ ) and ugj ), respectively.

Definition 4.1. We let
p=1""1 = xgp_s? € HPP"V(P,k), 0 = 1P xgp_5 € HXP*~D(P,F).
Note that '

ce Y th BV (E, k).
Ee€&

As in Tezuka-Yagita [14], we have, using Lemma 4.2, which we also need to investigate
direct sum decomposition of the Carlson module L,, the following.

Theorem 4.1. The cohomologies p and o are universally stable.

Lemma 4.2. For F in £ one has
(1)
resgp = H (p2 — EXa);

3 Esz \Ep

(2) ‘
p—1
reSp o = — (}\2 H (uz —j)q)) .

Jj€R

For E; in £ the factor group P/E; = (b;), where b; = E;b;, acts by conjugation on the
set
{Luz‘EAz I £ € sz \FP }
Since
b.
Lyp-22" = Lyp—(g41)00

this action induces the action of P/E; = (b;) on the set F,2 \ F, such that ¢ =1+ ¢ for
¢ in Ep2 \ E,. Thus, if we write (E,2 \ Fp)/P for a quotient set of Fy2 \ F, under this action,
then the set

{Lyp—ex, | € € (B2 \E)/P}

is a complete set of representatives of the conjugation on {Ly,_¢x, | € € F2 \ Fp }.
Using Lemma, 4.2, Corollary 2.4, and Lemma 2.5, we can show the following.

Theorem 4.3. (1) The set {p,0} is a system of parameters of the cohomology algebra
H*(P,k).
(2) The element p is regular in H*(P, k).
(3) The Carlson module L, is E-projective. In fact,

Li=@ @D Lo

EEE £€(F,2\Fy)/P
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Definition 4.2. By Theorem 4.1 we can take a class p in H??(P=1(G, k) such that
resp(p) = p;
and a class & in H2P*~1(G, k) such that
resp(0) = o.
Note that
(1) the set {p, o} is a system of parameters of the cohomology algebra H*(G, k);
~ 2
(2) G € X pee trs H2P*-1(E, k);
(3) the class p is regular in H*(G, k).

Since the class p is regular in H*(G, k), we obtain from the long cohomology exact sequence
that

dim H"*2(P—1(G, k) /H™(G, k)p = dim Ext}s (L, k);
dim HPP-V-Y(G k) = dim(Q " (Lp), k)ic-
Therefore it would be useful to examine the Carlson module L.

Definition 4.3. The Carlson module Lj is projective relative to the family H2(G) = { Cg(E) |
E € £} because of Corollary 2.4. Since the subgroup FE is a Sylow p-subgroup of the central-
izer Cg(F), the module Ly is £-projective. Theorem 4.3 implies that every indecomposable
direct summand has vertex some F in £ and a source some Ly, _¢x,, £ € Ep2 \ Fp,. For E in
£ /G we denote by

{(xPier®)y
the set of indecomposable direct summands of the Carlson module L; with vertices £. We
denote by X(B) the direct sum of Xi(E)S: XE) = Dicre Xi(E).
Thus we have by Theorem 4.3 the following
Theorem 4.4. The Carlson module L decomposes as follows:
E
L= @ @ x",
E€E/G icI(®)

where Xi(E) is an indecomposable kG-module with vertex E and a source Ly, ¢, and if
i # 7, then XZ-(E) and X J(-E) have different sources.

‘Definition 4.4. Let Y;.(E) be a Green correspondent of Xi(E) with respect to (G, E, Ng(E)).
The module Yi(E) is a direct summand of the Carlson module Ly of the restriction p’ = PNG(E)
by Theorem 2.1. Let us denote by Y(¥) the direct sum of Y;(E) s: Y& =P, m Y;(E).

We can show
Proposition 4.5. It holds that
| (YENG = X(B) g (projective) .
Corollary 4.6. One has

EXtI’:G'(Lﬁ’ k) = @ EXtZNG(E) (Y(E)7 k)
Eeg/G
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In particular
dim H?C-D-1@ k) = Y dim(@ (Y F)), k) wgm)
E€E/G
and
dim H**2(¢-1)(G,k) = dim H*(G, k) + Y dimExtly (V) k).
EeE/G

Thus if we could know a direct summand Y(E) of the Carlson module L, -of the restriction
p =resngy(g) P, then we would know X (E),

Lemma 4.7. Under the notation above, for each i in I'®) if we take L, _¢,», as a source of

the indecomposable kNg(E)-module Y;(E), then the set { Ly,—¢x, |1 €1 (E)} is a complete
set of representatives of the action of the factor group Ng(E)/Cg(E) on the set { Ly,—¢», |

fEsz\Fp}.

For each i in IE)| the module Yi(E) would be investigated in the following way. In what

follows we omit the super script (B) and the subscript i; namely, we denote by Y an inde-
composable direct summand of Ly with vertex E and by Ly, ¢, a source of Y.

(1) First we investigate the inertia group

={g€NG(E) | Lyy—ex," = Ly, }-

In general the factor group He/Cg(E) is cyclic of order I dividing p* — 1 (see Lemma
5.1). :

(2) Let us denote by L the extension of Ly,_¢x, to Cg(E). The induced module Lot
has | indecomposable direct summands:

-1

Lce = P M;.
§=0

The module Y is the induced module M; Na(E) of some M;.
(3) Let p" = resp, p'. The Carlson module L » has M; above as a direct summand.
(4) The module M; would be determined by mvestlgatlon of H*(Hg, k).

5. GREEN CORRESPONDENTS
Let the general linear group GL(2,E,) act on a group E = (c,a | ¢? = a? = 1,ac = ca) by
a? =a’ct, ¢ =a¥c for g = [Z f}] € GL(2,F,);

and let
N = E x GL(2,E,).
Remark 5.1. The group N is called a “Pal group” in Tezuka-Yagita [14]:
A Sylow p-subgroup of N is generated by a and a matrix

b )



68

which we denote by b; we identify this p-group with our extraspecial p-group P; hence the
group F is identified with Ep in Section 3. Since the class p in H*(P, k) is universally stable,
we can take homogeneous class p in H%®P~1)(N, k) such that

resp p' = p.

Our aim is to examine the indecomposable direct summands of the Carlson module Ly with
vertex E.

Definition 5.1. Regarding H(E, k) as Hom(E, k), we let
At =a* p=c%
and let

A2 = A(N), p2 = A(w),
A: HY(E,k) — H?(E, k) is the Bockstein map.

Definition 5.2. For an arbitrary element ¢ in F,2 \ F, we denote by I(¢) the inertia group
in GL(2, F;) of the Carlson module Ly, ),: ‘

I(€) = {g € GL(2, ) | Lyy—¢£x,® = Ly, —¢a, as kE-modules }.
Lemma 5.1. Let X2 — eX + f be the minimal polynomial of € in B2 \ E,. Then we have

I(g);{s[(l) (1)]+u[(1) _ef]l(s,u)erx.vaf.(0,0)};

the group I(&) is cyclic of order p? — 1.

Corollary 5.2. The general linear group GL(2,F,) acts transitively on the set { L, ¢», |
Ep \E}

Corollary 5.2 together with Lemma 4.7 implies that there exits a unique indecomposable
direct summand of the Carlson module L, with vertex E, which we denote by Y. We take
Ly,—¢2, s a source of Y, where &g in Fj2 is a primitive (p2 — 1)st root of unity. If we denote
by X2 — egX + fo the minimal polynomlal of &, then we have by Lemma 5.1 that

([ )

10 —fo
ro=[0 .
Since F is normal in N, the module Y is the induced module of an extension M (&) of

L, o2, to the inertia group Ho: Y = M(&)". We have to spec1fy the extension M(&y). The
induced module Luz—fo 2z ° decomposes as a direct sum of p? — 1 extensions My, .. S Mp2_o

Let Hfo = Hy and let

thz—{oz\z C=My®---& Mp2—2

The extension M(p) is one of these extensions.
Let us investigate the p? — 1 extensions My, ..., My2_,.
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Definition 5.3. We let

p2_2 . i p2_2 . :
ur=1+ Y & —1), up =1+ &P(M-1).
=0 =0

The elements u; and u, are units in kE; and kE = k(ui,up ). Moreover it holds that
(ug — 1) = &o(uy — 1), (up — 1)™ = €2(u, — 1).
The Carlson module Ly, _¢;», is described as follows by using these units.
Lemma 5.3. It holds that |
Lyp—gore = { ((wr = 1)P71,0), (up — Liug = 1)).
Definition 5.4. We define primitive idempotents in Hy by

. 2_2
1 T .
ej=—s > &Thh, i=0,....0°-2

ol

It holds that .
ejho = 5663-. 4
We also define one-dimensional kHo-module k; on which the group E acts trivially and the
matrix hg acts as multiplication by &].
Definition 5.5. Let us define a kHy-module My by
Mo = ((e1(u1 — 1)P71,0), (ex(up — 1), ep(u1 — 1)) ),

which is an extension of the module L, ¢, to the inertia group Hy. For j =1,..., p? —2
we let , ‘

Mj =My ® kj.
These are the direct summands of Ly, g, 0.

By direct calculation we obtain the following.

Lemma 5.4. One has

hd Q*(M;) = kint1)p+j D Kint1)p+145
s0¢ Q7 (M;) = knpt14j @ Kint1)p+s

hd Q2" (M;) = kiniiypries o E(nt2)p+55

soc D" (M;) = kins1)p+i D Knt1)p+144-

In particular, each extension M; is periodic of period 2(p® — 1).

The extension M (&) we need is one of the Mjs above; and at the same time it is a direct
summand of the Carlson module Ly of p” = resg, p’. Using Lemma 2.2 and anlyzing the
cohomology algebra H*(Hy, k), we can show the following

Lemma 5.5. One has
M(£o) = Mya_s.

Consequently, we have
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Proposition 5.6. It holds that
Y - Mp2___2
and that

Extpn(Y, k)

_Jk whenn=2(p-2)+1,2(p—1),20°> - 2),2(p> —2)+1 (mod 2(p? — 1))
" 10 otherwise '

6. THE COHOMOLOGY ALGEBRA OF THE GENERAL LINEAR GROUP GL(3,E,)

In this section, applying the facts we have established in the preceeding sections, we cal-
culate the mod p cohomology algebra of the general linear group GL(3, ).

Let G = GL(3,F;). Let
110 100
=lo 1 0], b=1|0 1 1.
0 01 0 01

Then the subgroup P = ({a,b) is a Sylow p-subgroup of G, which is extraspecial of order p?
and exponent p. Let us take

{E07 E17 Eoo }

as a complete set £/G of representatives of conjugacy classes of elementary abelian p- -
subgroups of G' of rank two. Then the Carlson module L; decomposes as follows:

@ xB),

E€€/G

where X(E) is the sum of the indecomposable direct summands of L; with vertex E (see

Definition 4.3). To investigate each X(F) we have to know the normalizers Ng(E). The
following three lemmas follow from Corollary 5.2.

Lemma 6.1. The factor group Ng(Ey)/Cg(Eo) is isomorphic to Aut Ey (~ GL(2, F,)); this
factor group acts transitively on the set {L“(O) NG | £ € e \F, }
2 T SN2

Lemma 6.2. The factor group Ng(FE;)/Cg(E,) is isomorphic to the subgroup

{[0 t2] ltueF,,,t;éO}

of the automorphism group Aut Ey. For an element ¢ in F,2 \ F, the inertia group H; of the
module L OJNCY is the centra,hzer Cc(E1); and hence the factor group Ng(E1)/Ca(Er)

acts tranmtwe]y on the set {L W_g\® | €Ee \F,}

Lemma 6.3. The factor group Ng(Ew)/Ca(Eoo) is isomorphic to Aut Eo (~ GL(2,F, ))
this factor group acts transitively on the set {L (=) _gr (o) £ € Fp \E, }

For each E; in £/G the factor group Ng( E;)/Cg(E;) acts, by Lemmas 6.1, 6.2, 6.3, transi-
tively on the set {Lu(j)_ N2 | € € E2 \ F, }. Therefore, there exists only one indecomposable
2 2



direct summand of L; with vertex E; by Lemma 4.7. Thus by Theorem 4.4 the Carlson
module L decomposes as
L= Xo® X1 ® Xoo,

where X; is an indecomposable module with vertex E;. Let Y; be a Green correspondent of
X; with respect to (G, E;, Ng(E;)). The modules ¥y and Y, are the ones obtained in the
previous section. Let us examine the module Y;. Let C; = Cg(E;). The inertia group He in
N; = Ng(E1) for an element £ in E, D2 \ F, is the centralizer C;. Hence, if we denote by L¢,

an extension of Lﬂ(x) e to the centralizer C1, then we see that Y7 = L¢, Ni | Therefore we
2 T SN2 co

have
diIIlEthN1 (Y1,k) = dim EXtZEl (Lo .\, k)=2, n>0.
by —EXy )

This together with Proposition 5.6 leads us to the following.
Theorem 6.4. One has

dim Ext}g(Lz k)
_J4 whenn=2(p—-2)+1,2(p—1),2(p* - 2),2(p> —2) +1 (mod 2(p? — 1))
" 12 otherwise '

Theorem 6.5. (1) One has

dimH™?(*=1)(G, k) = dim H"(G, k)

4 whenn=2(p—2)+1,2(p—1),2(p% - 2),2(p* - 2) +1 (mod 2(p - 1))
2 otherwise
(2) One has : '
dim H#®-D-1(G k) = 4.
Let
r=2p(p—1), s =2(p? - 1).

Corollary 6.6. Let h; = dim H*(G,k). Then the Poincare series of the cohomology algebra
H*(G,k) is '

- s—1
(Z hiXi) (1- Xs) +2X" ZXz + 2()(5—1 + X3+ XTt+s—2 + Xr+s—-1)
=0 =0

1= X"){1-X°)

We have to determine the dimensions of the cohomology groups of degree up to r — 1. To
do that we use Proposition 18 in D. J. Green [6] as in Tezuka-Yagita [14] and Milgram-Tezuka
[9]. We can also find generators by the same method. Since the classes p in H"(G,k) and &
in H*(G, k) form a system of parameters, the cohomology algebra H*(G, k) is generated by
finitely many homogeneous classes of degree up to r + s — 2 over the polynomial subalgebra
k[p,o]. First we find the classes that are stable under the Sylow normalizer Ng(P). Then
among the classes obtained above we find the classes which restrict to Ng(E)-invariant classes
in the subgroups F in £/G.

Definition 6.1. Let us define some cohomology classes of H*(G, k) as follows:
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class definition degree

X A+ B+ xop-1) 2(p—1)

Xj, Xa(p—i)V’ ! 2(p—1)j
ji=2,...,p—2

v 1057 + BiBY 7 F Xop-2)1 | 20— 2) +1

@, Xo(p—j—2)+1% 2(p—2)+1+2(p—1)j
j = 17 Y it 3

2 Xa(p—1)+1V7 2 2(p—2) +1+2(p—1)?
X AN 2(p? — 1)

T BN 2(p? — 1)

I;, o}~ gyt 2(p — §) +2(p — 1);

j = 27 P 1

4;, arab I gryi1 2(0—1-4)+1+2(p—1)j
j = 2’ D 1 » v

E;, b2 B it 2(p — 2 — 5) + 2(p — 1)j
j = ]-: . 1p - 2

Z;, b2 gy Ipgudt 20—2-4)+1+2(p—1)j -
ji=1...,p—2

H, o 2nouP—2 2(p —2) +2(p — 1)2

O, — L 20uP2 2(p —2) + 2(p — 1)?

H; ob a2 200 —2) +1+2(p—1)2
O — B2 2G5 2 2p—2)+1+2(p—1)2
) B 2naP2A — onoB 2Pl | 2(p—2)+14+2(p—1)p
I —B220;0P72B — 31882 | 2(p—2) + 14+ 2(p— 1)p

Note that the classes p, o, and the classes defined above are defined over the prime field

E,.

We have the following theorem.

Theorem 6.7. The cohomology algebra H*(GL(3,F,), ;) is generated by the classes p, &,
and the classes defined in Definition 6.1.

By the definitions of our generators and the relations in Theorem 3.1 we obtain



Theorem 6.8. The generators above satisfy the relations in the tables below, where
| p=p-XP
classes attached with dagger marks are of odd degrees; a blank entry in the upper right
triangle means that corresponding product of generators has no relations; and entries lower

than main diagonal are obtained from entries in the upper right triangle :
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¢ lex|exferlea|ce |z (e |en |ea B |z
X 0 0 |HsX |X2 | X%
X; 0o |0 |0 |0 0 0 0 0 0 0
ot 0 |0 |—-HyX|WXp |0XF | AX 0 0 EX
o,t 0 |0 0 0 0 0 0 0
ol 0 HyY | —0sT | Zi_1 X7 | B 1 X7 | 0 0
'z X7 | X7 | AXF | BXF | 2X7
T nxs |AXp |EXP|zX7
I3 See below
At 0 0 [E,
E; 0 0
z;t 0
H,
O,
Hjt
Al
=t
It
]
G

¢Ii (@AY CEy ¢Z

I {Fj+l—1§2 {Aj+z-1i(2 {Ej+l—1§2 {Zj+l—-1§27 J:+lSP
Li41-pP Ajti-pP Ejr1—pp \Zj+1—pP, JH+l>p
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¢ | CHy (O (Hs (O3 =) I ¢p|¢o
X HyX H3X H3X? H;3X? -X2y
~UXp | —UXp
X; |0 |0 0 0 0 0 0
wt |0 0 Hy X Hy X HyX? H,X? -UXp
ot |0 0 0 0 0 0 0
ot o 0 0 0 ~HyY | Ho X7 ~H3X — 6;T
+ H3Xp'
z Ho Xp H3Xp' H3X%p ~x?
—~TXp?
T | HXp H3Xp H3X?%p ~T?
vXp?
Ij | Bjo1XP | Ejo1XP | Zj1 XP | Zj-a XP | Zj1 X%F | Z;—1 X270 -I; X7
— A;XP | - A XP
At 1o 0 E; 1XP | Ej1XP' | Ej-1X?%p | Bjo1 X%0 —A;Xp
E; |0 0 0 0 0 0 ~E; Xp'
zit o 0 0 0 E;Xp | E;jXp ~Z;Xp
H, |0 0 0 0 0 0 ~H,X
Oy 0 0 0 0 0 02T
Hst 0 0 H X Ho X7 ~-H3%
o' 0 Hyp 6T 63T
=t 0 0 =X
it 0 T
F |
G X2 472
— X252

Theorem 6.9. The generators of the cohomology algebra H*(GL(3,F,), Fp) in Theorem 6.7
and relations in Theorem 6.8 are fundamental defining relations. -
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