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§1. Introduction.

This is an expository paper which explains our recent work on Yang-Mills theory,
Weyl geometry, and affine differential geometry, based on [Ul], [U2], [U3], [U4],
[IFU], [DIU].

Yang-Mills theory and the other variational theory as Seiberg-Witten theory
have been developed greatly and influenced to topology and physics, especially in
the case of 4-dimensional manifolds. The aim of this paper is to see relationships
between Yang-Mills theory and differential geometry, and to give a new insight
on Yang-Mills theory, and apply it to the theory of Weyl geometry and affine
differential geometry.

§2. Yang-Mills theory in differential geometry.

2.1.  Yang-Mills theory appeared in differential geometry as Riemannian mani-
folds with harmonic curvature (cf. [Bo], [Be, p. 443]). This means that Riemannian
manifolds (M, g) of which curvature tensor R of the Levi-Civita connection V satis-
fies SR = 0, i.e., V is a Yang-Mills connection, taking E = T M, the tangent bundle
of M, and h = g as in §4. For recent works, see [Del], [De2], [O], [KN], [Um].

2.2.  In this subsection, we see the ralationship between Ynag-Mills theory
and Kihler geometry. In 1985, Donaldson showed a stable holomorphic vector
bundle over a projective surface admits a unique hermitian Yang-Mills connection
(cf. [Do]). Kobayashi formulated this theorem for a holomorphic vector bundle E
over a compact Kihler manifold (M, g) with a hermitian metric h as follows (cf.
[Ko]). A connection D of (E, h) is hermitian if it satisfies that

(i) Dyxs=0xs, X eI(T™'M), sel(E),



(ii) Xh(s,t) =h(Dxs,t) + h(s,Dxt), X € (T°M), s,t € T(E),
where 9 is the holomorphic structure of E, TC®M is the complexification of TM
which decomposed into TCM = TLWOM @ T%'M, X is the complex conjugate of
X € TCM, and I'(E) is the space of smooth sections of E. Then the curvature
tensor RP belongs to the space AV!(End(E)) of 2 forms on M with values in
End(E) of type (1,1). We can define the trace ARP of RP naturally by

V=IARP =) " RP(e;, &),

t=1

where {e;}7, is a basis of TVOM satisfying g(e;, €;) = d:j. Kobayashi defined for
a hermitian connection D, to be Einstein-Hermitian connection by

(2.1) v—1ARP =clId,

for some constant ¢, where Id is the identity operator of End(F), and showed
that D is a Yang-Mills connection of (E, h) if D is Einstein-Hermitian (cf. [Ko])
Furthermore, it holds (cf. [Ko], [UY], and see also [Su]) that

Theorem 2.2. Let E be a holomorphic vector bundle with a hermitian metric
h over a compact Kdhler manifold (M,g). Then there exists a unique Einstein-
Hermitian connection D if and only if E is stable in the sense of algebraic geometry.

2.3. In the case of odd dimensional manifolds, one can also formulate a similar
theory. Let M be a smooth manifold of dimension 2n + 1. M is called to be a CR
manifold if there exists an n-dimensional subbundle S of TCM satisfying that

() SNS={0}), and (i) [X,Y]eI(S) forall X,Y eI(S).

Then there exist a subbundle P of TM and a bundle map I of P satisfying that
=S®S, I?=-Id and S = {X — v/=1IX; X € P}. We assume a contact
1-form @ on M whose anihilater in T M coincides with P, for all z € M, and
= —df is non-degenerate everywhere on M. There exists a unique vector field &
on M satisfying 6(¢) = 1, w(&,#) =0, and [¢, X] € I'(P) for all X € I'(P). Then
T:M =RE@ P, z € M. A contact CR manifold (M, ) is strongly pseudoconvez
if the Levi form L defined by L(X,Y) =w(IX,Y), X,Y € P;, z € M, is positive
definite everywhere on M. Putting L(£,e) = 0, we can define a Riemannian metric
g by
9(X,Y)=L(X,Y)+0(X)8(Y), X,Y e T, M,z € M.

In 1975, Tanaka (cf. [T]) introduced the notion of holomorphic vector bundle
over this strongly pseudoconver CR manifold (M, g). A complex vector bundle E
over M is holomorphic if there exists a differential operator 0 of E satisfying that

(i) X(fs)=Xfs+fXs, feC®M),XeI(S),
() [X,Y]s=X(Ys)-Y(Xs), X,Y eIl(S).

Then one can define by the same way, the notion of hermitian connection as the
case of Kihler manifolds. Furthermore, Tanaka (cf. [T]) showed
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Theorem 2.3. There exists a unique hermitian connection ( called Tanaka's con-
nection ) D on a holomorphic vector bundle E with a hermitian metric h over a
compact strongly pseudoconver CR manifold (M, g) satisfying that

V=IARP =Y " RP(e;,&) =0,

1=1

where {e;}"_; is a basis of Sy satisfying g(e:, €;) = ;5 (x € M).
Then we obtain (cf. [U1])

Theorem 2.4. Assume that (E,h) is as in Theorem 2.8 and D is a hermitian
connection whose curvature RP is of (1,1) type, i.e., RP e T'\(S* RS ® End(E)).
Then D is a Yang-Mills connection if and only if D is Tanaka’s connection.

The moduli space theory of Yang-Mills connections over compact strongly pseu-
doconvex CR manifolds (M, g) can be obtained as in the case of Kahler manifolds
(cf. [Ko], [U1]).

§3 Affine differential geometry and Weyl geometry.

Weyl geometry was formulated by H.Weyl to initiate the gauge theory, and
affine differential geometry was initiated by W.Blaschke, and recently they have
been developed extensively (cf. [NS]). Due to Rao and Amari (cf. [R], [A]), it turns
out that the affine differential geometry is closely related to statistics .

Following [NS}, we first explain affine differential geometry. Let f: M™ — R™*!
be an immersion, and take a transversal vector field £ on M, i.e.,

TyR™ = LT.M +RE, z€M.
We denote by Dg the standard affine connection on R**!. Then we have
(Do)x fY = fo(DxY)+ R(X,Y)¢, X,Y € T(TM),

where D is a torsion free affine connection on M and h is a symmetric bilinear
form on M, called the affine second fundamental form. We always assume that
h is non-degenerate. An immersion f : M — R™*! is called centro-affine if the
transversal vector field £ is given by &, = f(z), x € M.

Recently, Shima showed (cf. [Sh]) that

Theorem 3.1. Let M = G/K be a homogeneous space. Then M admits a G-
invariant projectively flat affine connection D if and only if there exists an equi-
variant centro-affine immersion f: M™ — R™+1.

Here D is called to be projectively flat if in a neighborhood of each point of
M, D is projectively equivalent to an affine connection whose curvature tensor
vanishes. Then we classified all Riemannian symmetric spaces admitting invariant
projectively flat affine connections (cf. [U4]):
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Theorem 3.2. Let M = G/K be a Riemannian symmetric space. Then M ad-
mits an invariant projectively flat affine connection if and only if M is one of the
following:

(1) S* =S0O(n+1)/SO(n), n 2 2,

(2) H™* = SO¢(n,1)/SO(n), n 2 2,

(3) SL(n,R)/SO(n), n 2 3,

(4) SL(n,C)/SU(n), n 2 2,

(5) SL(n,H)/Sp(n) = SU*(2n)/Sp(n), n 2 3,

(6) E¢/Fy (noncompact type of EIV ).

We also obtained (cf. [U4])

Theorem 3.3. Let G be a real simple Lie group. Then G admits a left invariant
projectively flat affine connection if and only if the Lie algebra g is one of the
following:

(a) o(3),

(b) sl(n+1,R), n 2 1,

(c) su*(2n), n 2 2,

(d) su(r,s) (r+ s: even 2 4); 0(3,4), 0(1,9), 0(5,5), 0(3,11), o(7,7).

Remark 8.4. In the cases (a) ~ (c), G admits a left invariant projectively flat affine
connection. We do not know whether G admits the one for the case (d).

Let us recall for a pair (D, g) of a torsion free affine connection D and a Rie-
mannian metric g to be a Weyl structure if Dxg = w(X)g for all X € I'(TM), for
some 1-form w on M. A Weyl structure (D, g) is called to be Einstein- Weyl if the
symmetrization of Ricci tensor of D coincides with g up to a multiple by a C*°
function on M. It is known that

Theorem 3.5. (cf. [PPS]) Let M be a 4 dimensional closed manifold, and
(D,g) be a Weyl structure with Dg = w ® g for some I-form w on M. Then the
following two conditions are equivalent:

(1)  The connection D attains the minimum, 4n2|p,(TM)|, of the functional
(D,g) — 1 [, IRP|?v, among the set of Weyl structures.

(2) (D,g) is Einstein-Weyl and dw = 0.

§4. Yang-Mills theory.

4.1. Let us recall the framework of Yang-Mills theory which has been intro-
duced by physicists. Let E be a vector bundle with an inner product h over a
Riemannian manifold (M, g). Let C% be the set of all connections D of E satisfying
the metric condition, that is,

(41)  Xh(s,t) = h(Dxs,t) + h(s, Dxt), s,te(E), X € I(TM).

We consider the Yang-Mills functional YM on C%, which is given as usually (cf.
[BL]) by

(42) ymo) =1 [ 177,



where RD is the curvature of D. Then a connection D € C% is a Yang-Mills
connection, if for all smooth deformation D; of D in C% with Dy = D,

d
(4.3) p YM (D) = 0.
=0
It is well known (cf. [BL]) that the left hand side of (4.3) is calculated as
41 yMmDy) = / < dPB,RP > v, =/ < B,6PRP > v,

where § = £|,_ D: € A(End(E)).
Therefore, D is a Yang-Mills connection if and only if
(4.4) | 6PRP = 0.
Here, AP(End(FE)) is the space of p forms on M with valued in the vector bundle
End(E) of endomorphisms of E, d” is the exterior differentiation which is given by

p+1

(45) (dD"p)(Xl) ceey XP+1) = Z(_l)k(DXk¢)(X1) cee 7Xk1 e ’XP+1))
k=1

and 47 is the formal adjoint of d7, i.e., for 1) € AP(End(E)) and ¢ € AP*}(End(E)),

(6P 0, ¥) = (,d"y).
It holds that

(6D30)(X1)' . 7XP) = Z(Dej(P)(ej,Xl,-- . )Xp))

60 = (~1)PH 2P p = ~(~1)"P x dP % g,
In particular,

§PRP(X)=+"1dP x RP(X) = - Xn:(DejRD)(ej,X), X e I(TM).
j=1 )

Notice here that these calculations are valid only for connections D € C$.

The following due to Atiyah, Hitchin and Singer is well known:

Theorem 4.6. Let (M, g) be a four dimensional closed Riemannian manifold, and
V, the Levei-Civita connection on E = TM. Then the following three conditions
are equivalent:

(1) V is a minimizer of the functional YM, i.e., YM(V) = 4x%|p,(TM)),
where p1(T M) is the first Pontryagin number of the tangent bundle TM.

(2) The Riemannian metric g is Einstein.

(3) The Levi-Civita connection V of g is (anti-)self-dual, i.e., *RY = xR" .

4.2. Comparing Theorems 3.5 and 4.6, the condition (3) in Theorem 4.6 is
missing in Theorem 3.5. In order to full this lack and apply Yang-Mills theory
to affine geometry, we have to relax the metric condition in the frame work of
Yang-Mills theory. To overcome the above difficulty, we consider the conjugate
connection.
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Definition 4.7. Let F be a vector bundle over a Riemannian manifold (M, g)
admitting the inner product h and D, a connection of F. The conjugate connection
(or the dual connection) D for D is the unique connection satisfying the condition

(cf. [A] or [DNV]):
(4.8) Xh(s,t) = h(Dxs,t) + h(s,Dxt), s, t € ['(F), X € I'(TM).

The connection D on F together with the Levi-Civita connection V of g in
AP T* M induces a tensor product connection in A T? M ® F which we denote by D.
Using this connection, we define the exterior differentiation d : AP(F) — AP1(F)
as usual on the space AP(F) = I'(A’ T*M ® F) of differential p-forms on M with
values in F' by the same way as (4.5).

We define an inner product <, > in A" To M ® F; by

<, p>= Z h(¢(ei1:"' ’eip),w(ei]"'. ’eip))’

i< <ip

where {ej,...,e,} is an orthonormal basis of T, M with respect to g. Integrating
this pointwise inner product over M with respect to the volume element v, of g
gives a global inner product (, ) on AP(F). Then we can again define the operator
8P, AP*1(F) — AP(F) to be the formal adjoint of the operator d°. Then we have

Proposition 4.9. For ¢ € AP*Y(F) and X; e T(TM),i=1,...,p,

(410) (6D90)(X17 s 7Xp) == Z(_D_c,-‘p)(e_‘i’ D STPR ’Xp)’
i=1
(4.11) 6Pp = (~1)PH4"1dD x p = —(=1)"" x dP x

where D is the conjugate connection of D and *; AY(F) — A"~ 9(F) is the star
operator with respect to g.

Proof. Let {6*}7_; be the dual basis to an orthonormal local frame field {e;}7,
on M with respect to g. Then each £ € AP(F) can be written as £ = 3,6 @ uy,
where 8/ = 6 A--- A with uy = u;,.;, € ['(F) and also € APHI(F) can
be written as n = Y, 87 ® v;, where 87 = 9 A .. A 97+ with v; € ['(F). Let
us define < £ Axnp >= 3, ; h(us,vs)0" A +87 € A*71(M), where h(ur,vy) is a
function defined locally on M. Then we have, by the definition of D,

d(h(ur,vy)) = h(Duy,vy) + h(ur, Dvy).
Therefore, we have
d < &N >=< dPEA* > +(=1)P < £ Ax(x"1dD (xn)) > .

Integrating this over M and 67 being (4.11), we have

0= [ d<gnwm>v,= (@ - (€8P
M
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Calculating (4.11), we have (4.10). O

Let F = End(E) be the endomorphism bundle of a given vector bundle E with
the inner product h. The conncetion D of E induces a natural connection on

End(E) by

(Vxe)(o) = Vx(p(0)) — ¢(Vx0))
for X € T(TM), ¢ € I'(End(E)) and o € I'(E). Furthermore, the inner product
h on E can be extended to End(E) by h(,¢) = Y, h(¥(a:), (o)), for two

sections ¢ and ¢ of End(F) and an orthonormal basis {o;}]_, of E; with respect
to hz, x € M, where r is rank of E.

We define the connections D and D for 9 € I'(End(E)), by

(Dx¥)(Y) = Dx(¥(Y)) —=%(DxY), (Dx9)(¥)=Dx®(Y)) —4(DxY).
Then the connection D is conjugate to D, i.e.,

Xh(, ) = h(Dx¥,9) + h(¥, Dx ), %, ¢ € [(End(E)), X € I(TM).

4.3 Now we define the Yang-Mills functional on the space Cg of all connections
of E by

@12 ymD) =3 [ IRPIv,

where || || is the pointwise norm induced from the above pointwise inner product
<,> of the bundle A’TM ® End(E) over M, and RP € A%(End(E)) is the
curvature tensor of D. For a fixed D € Cg and a smooth one-parameter family of
connections Dt, —e < t < ¢, such that D° = D, we write D* = D + A*, where
At € A%(End(E)) for |t| < € and A° = 0. Then the curvature RD" is given by

(4.13) RP'(X,Y) = RP(X,Y) + dPAY(X,Y) + -;-[At A AY(X,Y),
where [t A ](X,Y) := [Y(X), (Y)] — [(Y), p(X)].
Theorem 4.14. The first variation of the Yang-Mills functional is given by

d

dt

YM(DY) =/ < dPB,RP > v, =/ < B3,6PRP > v,
M M

t=0

where 8= &|,_, D' = &|,_,A* € A'(End(E)).

Consequently, D is a Yang-Mills connection if and only if

(4.15) 6PRP =o.



In the case of a non compact or semi-Riemannian manifold (M, g), we take any
relatively compact open domain U in M, and consider the functional

1
YMy(D) = ; [ IRPI,

For a fixed D € Cg and smooth one-parameter family of connections D?, —e < t < ¢,
such that D° = D, and D* = D+ A%, where A* € A}(End(E)) have all their support
in U for |t| < € and A° =0, '

4 YMy(DY) =/ <dPB,RP > v, =/ < B,6PRP > v,,
U

dt|,_o M
where 8 = &| _ A* € A}(End(E)) with support in U. Therefore, D is a Yang-Mills

connection if and only if §° RP = 0 everywhere on M.
Since the second Bianchi identity for D, dP R = 0, (4.15) is equivalent to

(4.16) APRP =,
where the Laplacian AP on A?(End(E)) is given by AP = dP§D 4 §DdPD,

§5. Four dimensional manifolds.

For four dimensional closed Riemannian manifold (M, g), we define for a con-
nection D of E to be (anti-)self-dual if *RP = +RP where * is the Hodge star

operator and RP is the curvature of the conjugate connection D.
Note that the (anti-)self-dual connection D is a Yang-Mills connection, because

6PRP =+ 1dP « D=+ +~1 4DRD = 0,
since the second Bianchi identity for D, dPRD =0.

For a torsion Eee affine connection D, we consider the affine connection D defined
by D = 3(D + D). Then we have (cf. [DIU))

Proposition 5.1. Assume that dimM = 4. Let (D,g) be a Weyl structure with
Dg =w® g for some 1-form w. Then the following are eguivalent:

(1) «RP = +RD,
) «R? = +R? and *dw+dw=0,
(3) «RP = +RP and dw =0,

where the sign + corresponds to each other, respectively.

We obtain (cf. [DIU])

Theorem 5.2. Let M be a 4 dimensional closed manifold, and (D, g) be a Weyl
structure with Dg = w @ g for some I-form w on M. Then the following four
conditions are equivalent:

(1) YM(D) = an?lpy (TM)],

(2) IYM(D) = 4n?|p;(TM)| and dw = 0,

(3) +RP =4+RP,

(4) D is (anti-)self-dual and dw = 0.
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§6. Yang-Mills theory in affine differential geometry.

Furthermore, our Yang-Mills theory can be applied to affine differential geometry.
It is known ( cf. [NS]) that

Theorem 6.1. Let f : M — R™t! be a nondegenerate affine hypersurface (n 2 2).
Then we can choose a transversal vector field ¢ on M for D, h and S satisfying the
following seven conditions:

(1) (Gauss) RP(X,Y)Z = h(Y,2)SX - h(X, Z)SY,

(2) (Codazzi for h)  (Dxh)(Y, Z) = (Dyh)(X, Z),

(3) (Codazzi for §) (DxS)(Y) = (DyS)(X),

(4) (Ricci) h(SX,Y) = h(X,SY),
(5) (equiaffine condition) D@ =0, i.e, 7=0,
(6) (volume condiiton) 0 = wp, and

(7) (apolarity condition) Dwy = 0.
Here 0 is the induced volume form on M by the immersion f, £ and the standard
volume form on R, and wy, is the volume form on M corresponding to h.

Proposition 6.2. ([NS]) The apolarity condition (7) in Theorem 6.1 s equivalent
to the following condition (7'):

(7"} For all X € T;M, the trace Tra(Dxh) vanishes.
Here Trn(Dxh) is defined by

Tra(Dxh) := Trace{(Y, Z) — (Dxh)(Y, 2)} = ‘::ej(th)(ej,ej),
j=1

where g(eivej) = Ei(sij, and €ij = +1.

Now our theorem is (cf. [DIU})

Theorem 6.3. Let f : M — R™*! be a non-degenerate affine immersion, D, the
induced connection on M from the standard connection of R™*! via f, and S, the
affine shape operator. Assume that a transversal vector field ¢ is chosen such as
for D, h and S satisfy all the conditions in Theorem 6.1. Then D is a Yang-Mills
connection with respect to h if and only if Dx (SY) = S(DxY) for X, Y € N(TM).
Here D is the conjugate connection of D with respcet to h.

As an application, we have (cf. [DIU])

Corollary 6.4. Let f: M — R™*! be a non-degenerate affine immersion and §
satisfy as in Theorem 6.1. Furthermore, assume that S = A1d for some non-zero
constant . Then D is a Yang-Mills connection with respect to h if and only if
F(M) is a quadratic hypersurface of R™1.
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