
SHORT GEODESICS AND END INVARIANTS

YAIR N. MINSKY

Even topologically simple hyperbolic 3-manifolds can have very intricate
geometry. Consider in particular a closed surface $S$ of genus 2 or more, and
the product $N=S\cross \mathrm{R}$ . This 3-manifold admits a large family of complete,
infinite-volume hyperbolic metrics, corresponding to faithful representations
$\rho:\pi_{1}(S)arrow \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$ with discrete image.

The geometries of $N$ are very different from the product structure that
its topology would suggest. Typically, $N$ contains a complicated pattern
of “thin” and $\zeta$‘thick” parts. The thin parts are collar neighborhoods of
very short geodesics, typically infinitely many. Each one, called a $‘(\mathrm{M}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{u}\mathrm{l}\mathrm{i}\mathrm{s}$

tube”, has a well-understood shape, but the way in which these are arranged
in $N$ , and in particular the identities of the short geodesics as elements of
the fundamental group, are still something of a mystery.

This issue is closely related to the basic classification conjecture associ-
ated with these manifolds, Thurston’s $‘(\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$ lamination conjecture”. This
conjecture states that certain asymptotic invariants of the geometry of $N$ ,
called ending invariants, in fact determine $N$ completely. (Actually the
classification of hyperbolic structures for any manifold with incompressible
boundary reduces to this case, by restriction to boundary subgroups.)

In this expository paper we will focus on the following question: What
information do the ending invariants give about the presence of very short
geodesics in the manifold? We will summarize and discuss the theorem
below, part of whose proof appears in [40] and part of which will be in [33],
as well as a few conjectures.

Bounded Geometry Theorem. Let $S$ be a closed surface, and consider
a Kleinian surface group $\rho$ : $\pi_{\dot{1}}(S)arrow PSL_{2}(\mathrm{C})$ with no externally short
curves, and ending invariants $\iota/+andu_{-}$ . Then

$\inf_{\gamma\in\pi_{1(S)}}\ell_{\rho}(\gamma)>0\Leftrightarrow\sup_{Y\subset S}d_{Y}(\nu_{+}, \nu_{-})<\infty$ .

Here the supremum is over proper essential isotopy classes of subsurfaces
in $S$ , and the quantities $d_{Y}$ $(\nu_{+}, \nu-)$ , called “projection coefficients”, are
defined in Section 1.4. The quantity $\ell_{\rho}(\gamma)$ is the translation distance of $\rho(\gamma)$

in $\mathrm{H}^{3}$ , or the length of the closed geodesic associated to $\gamma$ in the 3-manifold.
(The condition on externally short curves is not really necessary-it is added
to simplify the other definitions and discussions–see \S 1.1 below).
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Part of our goal is to advertise a combinatorial object known as the com-
plex of curves on a surface, as a tool for studying the geometry of hyperbolic
3-manifolds. This object is used for definining the coefficients $d_{Y}$ , and in
general it encodes something about the structure of the set of simple loops on
a surface. In particular, face transitions between simplices in this complex
correspond to elementary moves on pants decompositions of $S$ , and these
in turn correspond to homotopies between elementary pleated surfaces in a
hyperbolic 3-manifold. The interaction between the combinatorial and geo-
metric aspects of these moves is our main object of study, and seems to be
worthy of further consideration.

1. DEFINITIONS

1.1. Surface groups and ending laminations. Let $S$ be a closed surface
of genus $g\geq 2$ . A Kleinian surface group will be a representation $\rho$ : $\pi_{1}(S)arrow$

$\mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$ , discrete and faithful. The quotient $\mathrm{H}^{3}/\rho(\pi_{1}(S))$ is denoted $N_{\rho}$ ,
and comes equipped with a homotopy class of homotopy equivalences $Sarrow$

$N_{\rho}$ , determined by $\rho$ . In fact $N_{\rho}$ is homeomorphic to $S\cross \mathrm{R}$ , by Thurston’s
theory of tame ends [45] and Bonahon’s Tameness theorem [7].

We can associate to $\rho$ two ending invariants $\nu$-and $u_{+}$ , which we will
describe in the special case that $\rho$ has no parabolics (see also [36] and Ohshika
[42] $)$ .

Let $C(N_{\rho})$ be the convex core of $N_{\rho}$ , the smallest convex submanifold
whose inclusion is a homotopy equivalence. Fixing an orientation on $S$ and
$N_{\rho}$ , there is an orientation-preserving homeomorphism of $N_{\rho}$ to $S\cross \mathrm{R}$ taking
$C(N_{\rho})$ onto exactly one of $S\cross \mathrm{R},$ $S\cross[0, \infty),$ $S\cross(-\infty, 1]$ or $S\cross[0,1]$ .

The end of $N$ defined by neighborhoods $S\cross(a, \infty)$ is called $e_{+}$ , and
the one defined by $S\cross(-\infty, a)$ is called $e_{-}$ . If an $\mathrm{e}\mathrm{n}\mathrm{d}$

)
$\mathrm{s}$ neighborhoods all

meet the convex hull it is called geometrically infinite, and otherwise it is
geometrically finite. Suppose $e_{+}$ is geometrically finite. Then the component
$\partial_{+}(C(N_{\rho}))$ corresponding to $S\cross\{1\}$ is a convex surface, and its exterior
$S\cross(1, \infty)$ develops out to a $\zeta$‘conformal structure at infinity” on $S$ , which
we call $\nu_{+}$ . (This surface is obtained from the action of $\rho(\pi_{1}(S)$ on the
Riemann sphere). We define $\nu_{-}$ in the same way when $e_{-}$ is geometrically
finite.

Thurston pointed out that boundary $\partial_{+}(C(N_{\rho}))$ is itself a hyperbolic
surface; let us call its structure $\nu_{+}’$ . A theorem of Sullivan (proof in Epstein-
Marden [15] $)$ states that $\nu_{+}’$ and $\nu_{+}$ differ by a uniformly bilipschitz distor-
tion.

To describe the invariant of a geometrically infinite end we need to briefly
recall the notion of a geodesic lamination. Fixing a hyperbolic metric on
$S$ , a geodesic lamination is a closed subset of $S$ foliated by geodesics. Let
$\mathcal{G}\mathcal{L}(S)$ denote the set of all of these. A measured lamination is a geodesic
lamination equipped with a Borel measure on transverse arcs, invariant un-
der transverse isotopy. The space $\mathcal{M}\mathcal{L}(S)$ of measured laminations admits
a natural topology coming from $\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}-*\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$ of the measures. On
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the supporting geodesic laminations, this is related to but not quite the
same as the topology of Hausdorff convergence. However the difference will
not be important to us here. Simple closed geodesics with positive weights
are dense in $\mathcal{M}\mathcal{L}(S)$ , and we will consider geodesic laminations obtained as
supports of limits in $\mathcal{M}\mathcal{L}(S)$ of sequences of simple closed curves. Finally
we remark that the choice of metric on $S$ is irrelevant, as any other choice
yields naturally isomorphic spaces of laminations. For more details on this
topic see Bonahon $[5, 6]$ , Canary-Epstein-Green [13]

$)$
or Casson-Bleiler [14].

If $e_{+}$ is geometrically infinite then the convex hull contains an infinite
sequence of closed geodesics $\gamma_{n}$ , all homotopic to simple closed loops on $S$ ,
and eventually contained in $S\cross(a, \infty)$ for any $a$ . This is a theorem of
Bonahon, and Thurston (previously) showed that for such a sequence the
curves on $S$ must converge in the sense of the previous paragraph to a unique
geodesic lamination on $S$ . We call this lamination $\nu_{+}$ , the ending lamination
of $e_{+}$ . The corresponding discussion for $e_{L}$ gives $\nu_{-}$ .

Finally let us define the technical simplifying condition in the statement of
the Bounded Geometry Theorem. Call a curve $\gamma$ in $S$ externally short, with
respect to a representation $\rho$ , if it is either parabolic or has length less than
$\epsilon_{1}$ with respect to the structures $\iota/$-and $\nu_{+}$ (if these are not laminations),
where $\epsilon_{1}$ is some fixed constant small enough that there exist hyperbolic
structures on $S$ with no curves of length less than $\epsilon_{1}$ . Note in particular
that if $\rho$ has two degenerate ends then it automatically has no externally
short curves.

1.2. Pleated surfaces. A pleated surface is a map $f$ : $Sarrow N$ together with
a hyperbolic metric on $S$ , written $\sigma_{f}$ and called the induced metric, and a $\sigma_{f^{-}}$

geodesic lamination $\lambda$ on $S$ , called the pleating locus, so that the following
holds: $f$ is length-preserving on paths, maps leaves of $\lambda$ to geodesics, and is
totally geodesic on the complement of $\lambda$ . These were introduced by Thurston
[45], and we will see some explicit examples in \S 4.1.

It is a consequence of the work of Thurston and Bonahon that a geo-
metrically infinite end of a surface group $\rho$ admits pleated surfaces in the
homotopy class of $\rho$ contained in any neighborhood of the end. The pleat-
ing loci of these surfaces must converge to the ending lamination, and their
hyperbolic structures converge to this lamination in Thurston’s compactifi-
cation of the Teichm\"uller space.

1.3. Complexes of arcs and curves: Let $Z$ be a compact finite genus
surface, possibly with boundary. If $Z$ is not an annulus, define $A_{0}(Z)$ to
be the set of essential homotopy classes of simple closed curves or properly
embedded arcs in $Z$ . Here “homotopy class” means free homotopy for closed
curves, and homotopy rel $\partial Z$ for arcs. “Essential” means the homotopy class
does not contain the constant map or a map into the boundary. If $Z$ is an
annulus, we make the same definition except that homotopy for arcs is rel
endpoints.
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We can extend $A_{0}$ to a simplicial complex $A(Z)$ by letting a $k$-simplex be
any $(k+1)$-tuple $[v_{0}, \ldots, v_{k}]$ with $v_{i}\in A_{0}(Z)$ distinct and having pairwise
disjoint representatives.

Let $A_{i}(Z)$ denote the $i$-skeleton of $A(Z)$ , and let $C(Z)$ denote the sub-
complex spanned by vertices corresponding to simple closed curves. This is
the “complex of curves of $Z$”.

If we put a path metric on $A(Z)$ making every simplex regular Euclidean
of sidelength 1, then it is clearly quasi-isometric to its 1-skeleton. It is also
quasi-isometric to $C(S)$ except in a few simple cases when $C(S)$ has no edges.
When $\partial Z=\emptyset$ , of course $A=C$ .

It is a nice exercise to compute $A(Z)$ exactly for $Z$ a one-holed torus, and
we leave this to the reader. The answer is closely related to the Farey graph
in the plane–see [37].

Fix our closed surface $S$ and let $\mathcal{G}\mathcal{L}(S)$ denote the set of geodesic lamina-
tions on $S$ (note that $A_{0}(S)=C_{0}(S)$ can identified with a subset of $\mathcal{G}\mathcal{L}(S)$ ).
Let $Y\subset S$ be a proper essential closed subsurface (all boundary curves
homotopically nontrivial). We have a $‘(\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ map”

$\pi_{Y}$ : $\mathcal{G}\mathcal{L}(S)arrow A(\hat{Y})\cup\{\emptyset\}$

defined as follows: there is a unique cover of $S$ corresponding to the inclusion
$\pi_{1}(Y)\subset\pi_{1}(S)$ , which can be naturally compactified using the circle at
infinity of the universal cover of $S$ to yield a surface $\hat{Y}$ homeomorphic to
$\mathrm{Y}$ (remove the limit set of $\pi_{1}(Y)$ and take the quotient of the rest). Any
lamination $\lambda\in \mathcal{G}\mathcal{L}(S)$ lifts to this cover as a collection of closed curves or arcs
that have well-defined endpoints in $\partial\hat{Y}$ . Removing the trivial components,
we have a simplex of $A(\hat{Y})$ and we can take, say, its barycenter (we can also
get the empty set if there are no essential components). A version of this
projection also appears in Ivanov $[26, 24]$ .

If $\beta,$ $\gamma\in \mathcal{G}\mathcal{L}(S)$ (in particular in $C(S)$ have non-trivial intersection with
$Y$ , we denote their “$Y$-distance” by:

$d_{Y}(\beta, \gamma)\equiv d_{A(\hat{Y})}(\pi_{Y}(\beta), \pi_{Y}(\gamma))$ .

Note that $A(\hat{Y})$ can be naturally identified with $A(Y)$ , except when $Y$ is an
annulus, in which case the pointwise correspondence of the boundaries mat-
ters. In the annulus case $d_{Y}$ measures relative twisting of arcs determined
rel endpoints, and in all other cases we ignore twisting on the boundary of
$\hat{Y}$ . If $\alpha$ is the core curve of an annulus $Y$ we will also write

$d_{\alpha}=d_{Y}$ .

See [16] for an application of this construction in the annulus case.
The complex of curves $C(S)$ was first introduced by Harvey [20]. It was

applied by Harer $[18, 19]$ and Ivanov [23, 27, 25] to study the mapping
class group of $S$ . Similar complexes were introduced by Hatcher-Thurston
[22]. Masur-Minsky [30] proved that $C(S)$ is $\delta$-hyperbolic in the sense of
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Gromov, and then applied this in [29] to prove the structural theorems on
pants decompositions that we will use in Section 4.

1.4. Projection coefficients. Let us now see how to define the coefficients
$d_{Y}(\nu_{+}, \nu_{-})$

which appear in the main theorem, where $U\pm \mathrm{a}\mathrm{r}\mathrm{e}$ ending invariants for a
surface group. Using $\pi_{Y}$ as above, we can already define this whenever $u\pm$

are laminations. In the case of a geometrically finite end when $\nu_{+^{\mathrm{o}\mathrm{r}\iota/}-}$ are
hyperbolic metrics, we can extend this definition as follows:

If $\sigma$ is a hyperbolic metric on $S$ , and $L_{1}$ a fixed constant, define

short $(\sigma)$

to be the set of pants decompositions of $S$ with total $\sigma$-length at most $L_{1}$ .
A theorem of Bers (see [3, 4] and Buser [10]) says that $L_{1}$ can be chosen,
depending only on genus of $S$ , so that short (a) is always non-empty. Let us
also choose $L_{1}$ sufficiently large that, if $\sigma$ has no curves of length less than
$\epsilon_{1}$ (the constant from the end of \S 1.1), then every curve in $S$ intersects some
$P\in \mathrm{s}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{t}(\sigma)$ .

Thus e.g. if both $u_{+}$ and $\nu$-are hyperbolic structures, we may consider
distances

$d_{Y}(P_{+}, P_{-})$

for any $P_{\pm}\in \mathrm{s}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{t}(u\pm)$ that both intersect $Y$ essentially, and notice that the
numbers obtained cannot vary by more than a uniformly bounded constant.
We let $d_{Y}(u_{+}, \iota\nearrow-)$ be, say, the minimum over all choices. The case when
one of $\iota/\pm \mathrm{i}\mathrm{s}$ a lamination and the other is a hyperbolic metric is handled
similarly. Note that the condition that $\rho$ has no externally short curves
implies that $d_{Y}(u_{+}, u_{-})$ is well-defined for all $Y$ .

2. MARGULIS TUBES

Let $\gamma$ be a loxodromic element of a Kleinian group $\Gamma$ . We denote its
complex translation length by $\lambda(\gamma)=\ell+i\theta$ (determined mod $2\pi i$ ). Let $\mathcal{T}_{\epsilon}$

be the $\gamma$-invariant set $\{x\in \mathrm{H}^{3} : \inf_{n}d(x, \gamma^{n}(x))\leq\epsilon\}$ . If $\ell(\gamma)<\epsilon$ This
is a tube of some radius $r$ around the axis of $\gamma$ , and The Margulis Lemma
and Thick-Thin decomposition tell us (see e.g. [28, 46, 1]) that there is a
universal constant $\epsilon_{0}$ such that if $\ell(\gamma)<\epsilon_{0}$ then $\mathcal{T}_{\epsilon_{0}}/\langle\gamma\rangle$ embeds as a solid
torus $\mathrm{T}_{\gamma}$ in $N=\mathrm{H}^{3}/\Gamma$ , called a Margulis tube, and furthermore that all
Margulis tubes in $N$ are disjoint.

The radius $r$ of the tube goes to $\infty$ as the length of the core goes to $0$ .
See Brooks-Matelski [9] and Meyerhoff [32] for more precise bounds.

Thus in some sense the geometry around a very short curve in $N$ is very
well understood. It is more difficult to determine the pattern in which these
tubes are arranged in the manifold, and in particular which curves $\gamma$ have
length less than a given $\epsilon$ .
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2.1. Margulis tubes in surface groups. When $\Gamma$ is the image $\rho(\pi_{1}(S))$

of a Kleinian surface group, there is a little more we can say. An observation
of Thurston [44], together with Bonahon’s tameness theorem [7], imply that
only simple curves can be short: that is, $\epsilon_{0}$ may be chosen so that, if $\ell_{\rho}(\gamma)<$

$\epsilon_{0}$ and $\gamma$ is a primitive element of $\pi_{1}(S)$ then $\gamma$ is represented by a simple
loop in $S$ . This is because, by Bonahon’s theorem, every point in $N_{\rho}$ is
uniformly near the image of a pleated surface. Thurston pointed out using a
simple area bound that if $\epsilon_{0}$ is sufficiently short a $\pi_{1}$ -injective pleated surface
can only meet $\mathrm{T}_{\gamma}$ in the image of its own 2-dimensional Margulis tube. The
core of this tube must therefore be $\gamma$ .

2.2. Bounds. An upper bound on the length of a curve in a surface group
can be obtained in terms of the conformal boundary at infinity. Bers showed
[2] for a Quasi-Fuchsian representation $\rho$ , that

$\frac{1}{\ell_{\rho}(\gamma)}\geq\frac{1}{2}(\frac{1}{\ell_{+}(\gamma)}+\frac{1}{\ell_{-}(\gamma)})$

where $\ell_{\pm}$ denote lengths in the hyperbolic structures on $S$ coming from the
two conformal structures $u\pm \mathrm{a}\mathrm{t}$ infinity. The argument uses a monotonicity
property for conformal moduli and the action of $\gamma$ on the Riemann sphere.
When $S$ is a once-punctured torus this upper bound can be generalized to
an estimate in both directions (see [39]). In general we have no such result,
but in Section 5 we will state a conjectural estimate.

3. BOUNDED GEOMETRY

We say that $\rho$ has bounded geometry if there is a positive lower bound
on the translation lengths of all group elements. This condition incidentally
disallows parabolic elements (in a more general discussion we would allow
them and revise the condition), but the real point is that there is a positive
lower bound on the lengths of all closed geodesics in the quotient manifold.

In $[34, 35]$ , we showed that bounded geometry implies a positive solution
to the ending lamination conjecture. That is, if $\rho_{1}$ and $\rho_{2}$ both have bounded
geometry, and have the same ending invariants, then they are conjugate in
$\mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$ . This result was accompanied by a fairly explicit bilipschitz model
for the metric on $N$ , derived from the Teichm\"uller geodesic joining the two
ending laminations.

The Bounded Geometry theorem gives us a way to strengthen this result,
since it implies that bounded geometry is detected by the ending invariants:

Corollary 3.1. Let $\rho_{1},$ $\rho_{2}$ be Kleinian surface groups with the same ending
invariants, and suppose that $\rho_{1}$ has bounded geometry. Then $\rho_{1}$ and $\rho_{2}$ are
conjugate in $PSL_{2}(\mathrm{C})$ .

It is worth noting that bounded geometry is a rare condition. In the
boundary of a Bers slice, for example, there is a topologically generic (dense
$G_{\delta})$ set of representations each of which has arbitrarily short elements (see

6



$\mathrm{M}\mathrm{c}\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{n}$ [ $31$ , Cor. 1.6], and Canary-Culler-Hersonsky-Shalen [11] for gen-
eralizations).

4. THE PROOF OF THE BOUNDED GEOMETRY THEOREM

The proof of the direction $(\Rightarrow)$ of the Bounded Geometry Theorem ap-
pears in [40]. The essential tool used there is Thurston’s (

$‘ \mathrm{e}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{y}$ of
pleated surfaces” theorem from [44]. We will outline the proof of $(\Leftarrow)$ , for
which the de4-iails- will appear in [33].

In roughest form, the argument is this: Let $\gamma\in\pi_{1}(S)$ be an element
with $\ell_{\rho}(\gamma)<\epsilon_{0}$ , and let $\mathrm{T}_{\gamma}$ be its Margulis tube. We will use the condition
$\sup d_{Y}(\nu_{+}, \iota/-)<\infty$ to construct a sequence of pleated surfaces $\{f_{i}\}_{i=0}^{M}$ with
the following properties:

1. The size $M$ of the sequence is bounded by
$M \leq K(\sup d_{Y}(\iota\nearrow+, \iota/-))^{a}$

where $K,$ $a$ depend only on the genus of $S$ .
2. Any successive $f_{i},$ $f_{i+1}$ are connected by a homotopy $H$ : $S\cross[i,$ $i+$

$1]arrow N_{\rho}$ which is uniformly bounded except in a special case, described
below.

3. The total homotopy $H:S\cross[0, M]arrow N_{\rho}$ homologically encloses $\mathrm{T}_{\gamma}$ .
Part (3) means that the image of $H$ must cover all of $\mathrm{T}_{\gamma}$ . Thus, if the

$c$ ‘special case” of (2) does not occur, then the bounds of (1) and (2) give a
uniform diameter bound on $\mathrm{T}_{\gamma}$ , and hence a lower bound on $\ell_{\rho}(\gamma)$ .

The “special case” of (2) corresponds to the curve $\gamma$ itself appearing in the
pleating locus of some subsequence of the $f_{i}$ . In this case a more delicate
argument is needed, using the annulus projection distance $d_{\gamma}(\iota/+, \nu_{-})$ to
bound the size of $\mathrm{T}_{\gamma}$ .

Let us now introduce the ingredients needed for this construction. In \S 4.5
we will return to the main proof.

4.1. Adapted pleated surfaces. If $Q$ is a collection of disjoint, homo-
topically distinct curves on $S$ (henceforth a $‘$ (

$\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{v}\mathrm{e}$ system”), and $\rho$ a fixed
Kleinian surface group, we let pleat $(Q, \rho)$ denote the set of pleated surfaces
$f$ : $Sarrow N_{\rho}$ , in the homotopy class determined by $\rho$ , which map representa-
tives of $Q$ to geodesics. There is the usual equivalence relation on this set,
in which $f\sim f\circ h$ if $h$ is a homeomorphism of $S$ homotopic to the identity.
Let $\sigma_{f}$ denote the hyperbolic metric on $S$ induced by $f$ .

In particular, if $Q$ is a maximal curve system, or (
$‘ \mathrm{p}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{s}$ decomposition”,

pleat $(Q, p)$ consists of finitely many equivalence classes, all constructed as
follows: Extend $Q$ to a triangulation of $S$ with one vertex on each component
of $Q$ , and “spin” this triangulation around $Q$ , arriving at a lamination $\lambda$

whose closed leaves are $Q$ and whose other leaves spiral onto $Q$ , as in Figure
1.

A unique pleated surface (up to equivalence) exists carrying $\lambda$ to geodesics,
since no element of $Q$ is parabolic (by hypothesis on $\rho$). This was originally
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FIGURE 1. The lamination obtained by spinning a triangu-
lation around a curve system. The picture shows one pair of
pants in a decomposition.

observed by Thurston (see [45] and Canary-Epstein-Green [13, Thm 5.3.6]
for a proof). The choices of $\lambda$ coming from the finite number of possible tri-
angulations up to isotopy, and the different directions of spiraling, account
for all of pleat $(Q, p)$ .

4.2. Elementary moves. An elementary move on a maximal curve system
$P$ is a replacement of a component $\alpha$ of $P$ by $\alpha’$ , disjoint from the rest of
$P$ , so that $\alpha$ and $\alpha’$ are in one of the two configurations shown in Figure 2.

FIGURE 2. The two types of elementary moves.

We indicate this by $Parrow P’$ where $P’=P\backslash \{\alpha\}\cup\{\alpha’\}$ is the new curve
system. Note that there are infinitely many choices for $\alpha’$ , naturally indexed
by Z.

Pleated surfaces associated to an elementary move are homotopic in a
controlled way. Let us first recall (see Buser [10]) that a simple geodesic $\gamma$

in a hyperbolic surface $(S, \sigma)$ always admits a (
$‘ \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{d}$ collar”, which is an

annulus of radius depending only on $\ell_{\sigma}(\gamma)$ , such that disjoint geodesics have
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disjoint collars, and when $\ell_{\sigma}(\gamma)<\epsilon_{0}$ the collar covers all but a bounded part
of the $\epsilon_{0}$ -Margulis tube. We write this collar as collar $(\gamma, \sigma)$ , or collar $(P, \sigma)$

for the union of collars over a curve system $P$ .

Lemma 4.1. (Elementary Homotopy) If $P_{0}arrow P_{1}$ is an elementary move
exchanging $\alpha_{0}$ and $\alpha_{1},$ $\rho$ is a Kleinian surface group, and $f_{i}\in \mathrm{p}\mathrm{l}\mathrm{e}\mathrm{a}\mathrm{t}(P_{i,\rho})$

for $i=0,1$ , then there exists a homotopy $H$ : $S\mathrm{x}[0,1]arrow N_{\rho}$ with the
following properties:

1. $H_{0}\sim f_{0}$ and $H_{1}\sim f_{1}$ under the usual equivalence.
2. If $\sigma_{i}$ is the induced metric of $H_{i}$ (for $i=0,1$) then collar $(P_{j}, \sigma_{i})=$

$\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{r}(P_{j}, \sigma_{1-i})$ , for $j=0,1$ .
3. The metrics $\sigma_{0}$ and $\sigma_{1}$ are $K$ -bilipschiiz except possibly when $l_{\rho}(\alpha_{i})<$

$\epsilon_{0}$ for $i=0$ or 1. In that case the metrics are locally K-bilipschitz
outside collar $(\alpha_{0})\cup \mathrm{c}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{r}(\alpha_{1})$ (or just one collar if only one curve is
short in $N_{\rho}$).

4. The trajectories $H(p\cross[0,1])$ are bounded in length by $K$ except possibly
when $p\in \mathrm{c}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{r}(\alpha_{i})$ and $\ell_{\rho}(\alpha_{i})<\epsilon_{0}$ , in which case they are bounded
outside of $\mathrm{T}_{\rho(\alpha_{i})}$ .

The constant $K$ depends only on the genus of $S$ .

(Note that collar $(\alpha_{i})$ in (3) and (4) makes sense without specifying the
metric $\sigma_{j}$ , since the two are equal by (2).)

It is worth pointing out that this theorem applies without any a-priori
bounds on the lengths $\ell_{\rho}(P_{i})$ . The proof is an application of Thurston’s
Uniform Injectivity theorem for pleated surfaces, and the closely related
Efficiency of Pleated Surfaces [44] (see also Canary [12]). These theorems
control the amount kind of bending that can occur in a pleated surface, and
in particular can be used to compare two pleated surfaces that share part
of their pleating locus.

We also remark that part (2) isjust for convenience–it is easy to arrange
by an appropriate isotopy.

4.3. Resolution sequences. In [29], we show the existence of special se-
quences of elementary moves that are controlled in terms of the geometry
of the complex of curves, and particularly the projections $\pi_{Y}$ . First some
terminology: if $P_{0}arrow P_{1}arrow\cdotsarrow P_{n}$ is an elementary-move sequence and
$\beta$ is any simple closed curve, denote

$J_{\beta}=\{i\in[0, n] : \beta\in P_{i}\}$ .

(Here $\beta\in P$ means $\beta$ is a component of $P.$ ) We also denote $J_{\beta_{1},\ldots,\beta_{k}}=\cup J_{\beta_{i}}$ .
Note that if $\beta$ is a curve and $J_{\beta}$ is an interval $[k, l]$ , then the elementary

move $P_{k-1}arrow P_{k}$ exchanges some $\alpha$ for $\beta$ , and $P_{l}arrow P_{l+1}$ exchanges $\beta$ for
some $\alpha’$ . Both $\alpha$ and $\alpha’$ intersect $\beta$ , and we call them the predecessor and
successor of $\beta$ , respectively.
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Theorem 4.2. (Controlled Resolution Sequences) Let $P$ and $Q$ be maximal
curve systems in S. There exists a geodesic $\beta_{0},$

$\ldots,$
$\beta_{m}$ in $C_{1}(S)$ and an

elementary move sequence $P_{0}arrow\ldotsarrow P_{n}$ , with the following properties:
1. $\beta_{0}\in P_{0}=P$ and $\beta_{m}\in P_{n}=Q$ .
2. Each $P_{i}$ contains some $\beta_{j}$ .
3. $J_{\beta}$ , if nonempty, is always an $interval_{f}$ and if $[i, j]\subset[0, m]$ then

$|J_{\beta_{i},\ldots,\beta_{j}}| \leq K(j-i)\sup_{Y}d_{Y}(P, Q)^{a}$ ,

where the supremum is over only those subsurfaces $Y$ whose boundary
curves are components of some $P_{k}$ with $k\in J_{\beta_{i},\ldots,\beta_{j}}$ .

4. If $\beta$ is a curve with non-empty $J_{\beta_{2}}$ then its predecessor and successor
curves $\alpha$ and $\alpha’$ satisfy

$|d_{\beta}(\alpha, \alpha’)-d_{\beta}(P, Q)|\leq\delta$ .

The constants $K,$ $a,$
$\delta$ depend only on the genus of S. The expression $|J|$ for

an interval $J$ denotes its diameter.

The sequence $\{P_{i}\}$ in this theorem is called a resolution sequence. Such
sequences are constructed in [29] by an inductive procedure: beginning with
a geodesic $\{\beta_{i}\}$ in $C_{1}(S)$ joining $P$ to $Q$ (we are describing a geodesic here
as a sequence of vertices where successive ones are joined by edges), we note
that the link of each $\beta_{i}$ is itself a curve complex for a subsurface. In each such
complex we add a new geodesic, and repeat. The final structure can then
be $‘(\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{v}\mathrm{e}\mathrm{d}$

” into a sequence of maximal curve systems. Control of the size
of the construction at each stage is achieved by applying the hyperbolicity
theorem of [30].

4.4. Contraction and quasi-convexity. Let $C(S, \rho, L)$ denote the sub-
complex of $C$ spanned by the vertices with $p$-length at most $L$ . We will
define a map $\Pi_{p}$ : $C(S)arrow P(C(S, \rho, L_{1}))$ , where $\prime \mathrm{p}(X)$ is the power set of
$X$ , as follows. For $x\in C(S)$ , let $P_{x}$ be the curve system associated to the
smallest simplex containing $x$ . We define

$\Pi_{\rho}(x)=\bigcup_{f\in \mathrm{p}\mathrm{l}\mathrm{e}\mathrm{a}\mathrm{t}(P_{x},\rho)}\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{t}(\sigma_{f})$

.

This map turns out to have coarsely the properties of a closest-point pro-
jection to a convex subset of a hyperbolic space.

Lemma 4.3. (Contraction Properties) There are constants $b,$ $c>0,$ de-
pending only on the genus of $S$ , such that for any $\rho$ the map $\Pi_{\rho}$ has the
following properties:

1. (Coarse Lipschitz) If $d_{C}(x, y)\leq 1$ then
$\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}_{C}(\Pi_{\rho}(x)\cup\Pi_{\rho}(y))\leq b$ .

2. (Coarse idempotence) If $x\in C(S, \rho, L_{1})$ then
$d_{C}(x, \Pi_{\rho}(x))\leq b$ .

10



3. (Contraction) If $r=d_{C}(x, \Pi_{\rho}(x))$ then
$\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}_{C}\Pi_{\rho}(B(x, cr))\leq b$.

Here $d_{C}$ and $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}_{C}$ refer to distance and diameter measured in $C(S)$ , and
$B(x, s)$ is a ball of $d_{C}$-radius $s$ around $x$ . By $\Pi_{\rho}(X)$ for a set $X$ we mean
$\bigcup_{x\in X}\Pi_{\rho}(x)$ .

Compare this with the contraction property in [30], which was used to
prove hyperbolicity of $C(S)$ , and the property in [38], which was used to
prove stability properties for certain geodesics in Teichm\"uller space.

An easy consequence of this theorem is the following quasiconvexity prop-
erty for $C(S, \rho, L_{1})$ :

Lemma 4.4. (Quasiconvexity) If $\beta_{0},$

$\ldots,$
$\beta_{m}$ is a geodesic in $C_{1}(S)$ and

$\beta_{0},$ $\beta_{m}\in C(S, \rho, L_{1})$ , then
$d_{C}(\beta_{i}, \Pi_{\rho}(\beta_{i}))\leq C$

for all $i\in[0, m]$ and a constant $C$ depending only on the genus of $S$ .

In particular a geodesic with endpoints in $C(S, \rho, L_{1})$ never strays too far
from $C(S, \rho, L_{1})$ . This can be compared to the “Connectivity” lemma in
[39].

The argument for this lemma is very simple, and has its origins in the
stability of quasi-geodesics argument in the proof of Mostow’s Rigidity The-
orem [41]: We compare the path $\{\beta_{i}\}$ to its image “quasi-path” $\{\Pi_{\rho}(\beta_{i})\}$ .
If the distance between these grows too much then the images slow down
because of the Contraction property (3). Since $\{\beta_{i}\}$ is a shortest path and
the two paths have nearly the same endpoints (Coarse idempotence (2)),
there is a bound on how far apart they can get.

The proof of Lemma 4.3 is another application of Thurston’s Uniform
Injectivity theorem, as well as some of the tools developed in [30]. For
example, to prove part (1), we note that if two vertices of $C(S)$ are at
distance 1 then they correspond to disjoint curves, and hence a pleated
surface exists that maps both geodesically. Thus the argument reduces to
bounding $\Pi_{\rho}(x)$ for one $x$ . Suppose two pleated surfaces share a curve $x$ . If
$x$ is short then their short curve sets intersect, and we finish by noting that
$\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}_{C}$ (short $(\sigma)$ ) is uniformly bounded for any $\sigma$ . If the curve $x$ is long,
then in one of the pleated surfaces we can find a curve $x’$ of bounded length
that runs along $x$ and then makes a very small jump in its complement
(a long curve in a hyperbolic surface must run very close to itself). The
Uniform Injectivity theorem is then applied to show that $x’$ can be realized
with bounded length on the second pleated surface as well.

Part (3) is the main point of the lemma. Its proof depends on the analysis
in [30], which shows roughly that if $x\in C(S)$ is far in $C(S)$ from the short
curves of a given hyperbolic metric $\sigma$ on $S$ , then sets of the form $B(x, R)$

for large $R$ can be carried in a long nested chain of “train tracks” (see [43])
whose branches mostly run nearly parallel to $x$ . These train tracks are then
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used to control $\Pi_{\rho}(B(x, R))$ , via a Uniform Injectivity argument similar to
the previous paragraph.

4.5. Building a resolution sequence for $\rho$ . We can now use Theorem
4.2 (Controlled Resolution Sequences) and Lemma 4.4 (Quasiconvexity) to
produce a resolution sequence adapted to the geometry of our representation
$\rho$ .

As a starting point we need an initial and terminal curve system:

Lemma 4.5. Given $\rho$ with no externally short curves, and a Margulis tube
$\mathrm{T}_{\gamma}$ in $N_{\rho}$ , there exist maximal curve systems $P_{+}$ and $P_{-}$ , and pleated sur-
faces $f_{+},$ $f_{-}$ (in the homotopy class of $\rho$) with the following properties:

1. $P_{\pm}\in \mathrm{s}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{t}(\sigma_{f\pm})$ ,
2. $f_{+}$ and $f$-homologically encase $\mathrm{T}_{\gamma}$ .

This is done roughly as follows. If $\nu_{+}$ is a lamination then there exists a
sequence $g_{i}$ of pleated surfaces exiting the end of $N_{\rho}$ corresponding to $\nu_{+}$ .
The curves in short $(\sigma_{\mathit{9}i})$ converge to $\iota/+\mathrm{i}\mathrm{n}$ the space of laminations (modulo
measure), and for large enough $i,$ $g_{i}$ can be deformed to $e_{+}$ without meeting
$\mathrm{T}_{\gamma}$ . We can pick $f_{+}=g_{i}$ and let $P_{+}\in$ short $(\sigma_{\mathit{9}i})$ . The same goes for
$f_{-},$ $P_{-}$ , so if both invariants are laminations we have the conclusion that $f_{+}$

and $f$-must encase $\mathrm{T}_{\gamma}$ .
If the end $e_{+}$ is geometrically finite we can let $f_{+}$ be the pleated map to

the convex hull boundary itself, and similarly for $e_{-}$ . Again choose $P_{\pm}\in$

$\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{t}(\sigma_{f\pm})=\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{t}(\iota/’\pm)$.

Note that, if the pleated surfaces $g_{i}$ are chosen far enough out the end
(in the geometrically infinite case) then the homotopy from $g_{i}$ to a map
in pleat $(P_{+}, \rho)$ does not pass through $\mathrm{T}_{\gamma}$ , and so we may assume $f_{\pm}\in$

$\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{a}\mathrm{t}(P_{\pm,\rho})$ and still have the encasing condition. When there are geomet-
rically finite ends this is trickier because $\mathrm{T}_{\gamma}$ may be close to the convex
hull boundary. Slightly more care is needed in the rest of the construction
in that case. Let us from now on assume that $f_{\pm}\in \mathrm{p}\mathrm{l}\mathrm{e}\mathrm{a}\mathrm{t}(P_{\pm,\rho})$ , and the
encasing condition holds.

Join $P_{+}$ to $P$-with a resolution sequence $P_{-}=P_{0}arrow\cdotsarrow P_{n}=P_{+}$ , as
in Theorem 4.2. Let $\{\beta_{i}\}_{i=0}^{m}$ be the associated geodesic. This sequence may
be much longer than we need, so we will use Lemma 4.4 to find a suitable
subsequence. Recall that we would like our sequence to have the property of
homologically encasing $\mathrm{T}_{\gamma}$ , so let us try to throw away those surfaces that
we are sure cannot meet $\mathrm{T}_{\gamma}$ . In particular, let $f\in \mathrm{p}\mathrm{l}\mathrm{e}\mathrm{a}\mathrm{t}(P_{i,\rho})$ for some
$i\in[0, n]$ , and let $P_{i}$ contain a curve $\beta_{j}$ . If $f(S)\cap \mathrm{T}_{\gamma}\neq\emptyset$ , then $\gamma$ itself is
short in $\sigma_{f}$ (as in \S 2.1) and so $\gamma$ is distance 1 from $\square _{p}(\beta_{j})$ . It follows from
Lemma 4.4 that

$d_{C}(\beta_{j,\gamma})\leq C$ $(*)$

where $C$ is a new constant depending only on the genus of $S$ . Thus we
conclude that there is a subinterval $I_{\gamma}$ of $[0, m]$ of diameter at most $2C$ ,
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such that $f$ can only meet $\mathrm{T}_{\gamma}$ when $\beta_{j}$ satisfies $j\in I_{\gamma}$ . Let us therefore
restrict our elementary move sequence to

$P_{s-1}arrow\cdotsarrow P_{t+1}$

where $[s, t]= \bigcup_{j\in I_{\gamma}}J_{\beta_{j}}$ , and renumber it as $P_{0}arrow\cdotsarrow P_{M}$ . This subse-
quence must also encase $\mathrm{T}_{\gamma}$ , since none of the pieces we have thrown away
can meet $\mathrm{T}_{\gamma}$ . Part (3) of Theorem 4.2 tells us that

$M \leq K(2C)\sup_{Y}d_{Y}(P_{+}, P_{-})^{a}$ ,

where the supremum is over subsurfaces $Y$ whose boundaries appear among
the $P_{i}$ in our subsequence. This means by $(*)$ that the $C(S)$ -distance
$d_{C}(\partial Y, \gamma)$ is bounded by $C+1$ for all such $Y$ . The analysis of [29] shows
that, for a fixed such bound,

$d_{Y}(P_{+}, P_{-})\leq d_{Y}(\nu_{+}, \nu_{-})+\delta$

with $\delta$ depending only on the genus of $S$ , provided, when $e_{+}$ or $e_{-}$ are
geometrically infinite, that the surface $f_{\pm}$ are taken sufficiently far out in the
ends (for geometrically finite ends this is an easier consequence of Sullivan’s
theorem comparing $\nu\pm \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\nu_{\pm}’$ , though here we must take a bit more care
with the constants to make sure that $\partial Y$ intersects $P_{\pm}$ ). Since the right side
is a priori bounded by hypothesis, we obtain our desired uniform bound on
$M$ .

Now let $H$ : $S\cross[i, i+1]arrow N_{p}$ be the homotopy provided by Lemma 4.1
(Elementary Homotopy), where $H_{i}\in \mathrm{p}\mathrm{l}\mathrm{e}\mathrm{a}\mathrm{t}(P_{i\rho},)$ . After possibly adjusting
by homeomorphisms of $S$ homotopic to the identity, we can piece these
together to a map $H:S\cross[0, M]arrow N_{p}$ .

Assume first that $\gamma$ is not a component of any $P_{i}$ . Then according to
Lemma 4.1, $H$ can make only uniformly bounded progress through the Mar-
gulis tube $\mathrm{T}_{\gamma}$ . Thus diam $\mathrm{T}_{\gamma}$ is bounded above, and $p_{p}(\gamma)$ is bounded below,
and we are done.

Now suppose that $\gamma$ does appear in the $\{P_{i}\}$ . Then $J_{\gamma}$ is some subinterval
of $[0, M]$ by Theorem 4.2, and we let $\alpha$ and $\alpha’$ be the predecessor and
successor curves to $\gamma$ in the sequence. Both of them cross $\gamma$ , and we have
by part (4) of Theorem 4.2 that $d_{\gamma}(\alpha, \alpha’)$ is uniformly approximated by
$d_{\gamma}(P_{+}, P_{-})$ and hence uniformly bounded.

For simplicity, let us consider now the case that both $\ell_{\rho}(\alpha)$ and $\ell_{\rho}(\alpha’)$

are uniformly bounded above and below. (There is in fact a uniform upper
bound on their lengths; if they become too short a small additional argument
is needed).

Let $\sigma_{i}\equiv\sigma_{H_{i}}$ and note that, by Lemma 4.1, for all $i\in J_{\gamma}$ the annuli
collar $(\gamma, \sigma_{i})$ coincide. Name this common annulus $B$ . Write $J_{\gamma}=[k, l]$ , and
consider in $S\cross[0, M]$ the solid torus

$U=B\cross[k-1, l+1]$ .
By Lemma 4.1, this is the only part of $S\cross[0, M]$ that $H$ can map more
than a bounded distance into $\mathrm{T}_{\gamma}$ . The height of this torus, $|k-l+2|$ ,
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is at most $M$ and this is uniformly bounded. The top and bottom annuli
$B\cross\{k-1\}$ and $B\cross\{l+1\}$ have uniformly bounded geometry (in $\sigma_{k-1}$ and
$\sigma_{l+1}$ , respectively), by the length bounds $\mathrm{w}\mathrm{e}’ \mathrm{v}\mathrm{e}$ assumed on $\alpha$ and $\alpha’$ . We
will control the size of the meridian of $U$ , and this will in turn bound the
size of $\mathrm{T}_{\gamma}$ .

Assume $\alpha$ is a geodesic in $\sigma_{k-1}$ (where we note its length is bounded
above), and let $a=\alpha\cap B$ . Similarly assume $\alpha’$ is a geodesic in $\sigma_{l+1}$ and
let $a’=\alpha’\cap B$ . The arc $a$ may a priori be long in $\sigma_{l+1}$ , but its length is
estimated by the number of times it twists around $a’$ , or $d_{A(B)}(a, a’)$ .

A lemma in 2 dimensional hyperbolic geometry establishes

$|d_{A(B)}(a, a’)-d_{\gamma}(\alpha, \alpha’)|\leq C$

where this $C$ depends only on $M$ , which we have already bounded uniformly.
The idea of this is that, in each elementary move, the metric $\sigma_{i}$ changes in
a bilipchitz way outside the collars of the curves involved in the elementary
move. From this it follows that, start\’ing with a geodesic passing through a
collar, we obtain a curve which does only a bounded amount of additional
twisting, outside the collar. After $M$ such moves the relative twisting of $\alpha$

and $\alpha’$ can still be estimated by their twisting inside the collar, up to an
additive bound proportional to $M$ .

With this estimate and the bound on $d_{\gamma}(\alpha, \alpha’)$ in terms of $d_{\gamma}(P_{+}, P-)$ , we
find that $a$ and $a’$ intersect a bounded number of times, so that the length
of $a$ is uniformly bounded in $S\cross\{l+1\}$ . It follows that the meridian of $U$

$m=\partial(a\cross[k-1, l+1])$

has uniformly bounded length in the induced melric. Thus its image is
bounded in $N_{\rho}$ . It therefore spans a disk of bounded diameter, and in fact
we can homotope $H$ on all of $U$ to a new map of bounded diameter. This
bounds the diameter of $\mathrm{T}_{\gamma}$ from above, and again we are done.

5. CONJECTURES

5.1. Length estimates. The reader may have noticed that in fact the argu-
ment outlined in the previous section shows that the infimum $\epsilon=\inf_{\gamma}\ell_{\rho}(\gamma)$

and the supremum $D= \sup_{Y}d_{Y}(\nu_{+}, \nu_{-})$ can be bounded one in terms of
the other. That is, any positive lower bound for $\epsilon$ implies some upper bound
for $D$ independent of $\rho$ , and vice versa. Thus there is a version of the theo-
rem which yields non-empty information for quasi-Fuchsian groups (where
$\epsilon>0$ and $D<\infty$ automatically) as well. However it would be nice to have
bounds that are more specific and more explicit.

“More specific” means that we would like to know an estimate on $p_{p}(\gamma)$

for a particular $\gamma$ . In [40] we actually show that for any subsurface $Y$ , a
large lower bound on $d_{Y}(u_{+}, \iota/-)$ implies a small upper bound for $\ell_{\rho}(\partial Y)$ .
In the other direction something more complicated would need to be stated,
since any curve $\gamma$ can be a boundary curve for many different subsurfaces.

14



“More explicit” means we would like to know the estimate itself more
explicitly. Furthermore it would be nice to estimate the complex translation
length $\lambda$ and not just its real part $\ell$ . In [39] this was done for the punctured-
torus case. Here is a possible generalization, stated again in the case of $\rho$

with no externally short curves.

Conjecture 5.1. Let $\rho$ be a Kleinian surface group with no externally short
curves. There exist $K,$ $\epsilon>0$ depending only on the genus of $S$ such that

$\ell_{\rho}(\gamma)>\epsilon\Rightarrow\sup_{\gamma\subset Y}d_{Y}(\iota/+, \nu_{-})<K$
.

Conversely, if $\sup_{Y}d_{Y}(\nu_{+}, \nu_{-})\geq K$ then

$\frac{2\pi i}{\lambda_{\rho}(\gamma)}\wedge\vee d_{\gamma}(\nu_{+}, \nu_{-})+i\tilde{\sum_{Y\subset S}}d_{Y}(\iota\nearrow_{+},$ $\nu_{-)}$

$\gamma\subset\partial YY\not\simeq\gamma$

Let us explain the notation used here. The expression $\tilde{\sum_{x\in X}}f(x)$ denotes

$1+$
$\sum_{x\in X,f(x)\geq K}f(x)$

where $K$ is our a-priori “threshold” constant. Our sum then is over all
subsurfaces whose boundary contains the isotopy class of $\gamma$ , except for the
annulus homotopic to $\gamma$ , excluding those where $d_{Y}(\nu_{+}, \nu_{-})$ is below $K$ . Both
sides of the (

$\zeta_{\vee,\wedge}$” symbol are points in the upper half plane of $\mathrm{C}$ , and we take
$‘\zeta_{\vee}-,$

, to mean that the hyperbolic distance between them is bounded by an
a-priori constant $D_{0}$ . Implicit in the statement is that it holds for some $D_{0}$

which depends only on the genus of $S$ .
The significance of the hyperbolic distance estimate on $2\pi i/\lambda(\gamma)$ is that

we can interpret $2\pi i/\lambda(\gamma)$ as a Teichm\"uller parameter for the Margulis tube
$\mathrm{T}_{\gamma}$ , as follows (cf. [39] and $\mathrm{M}\mathrm{c}\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{n}[31]$ ). Normalize $\rho(\gamma)$ so that it acts
on $\hat{\mathrm{C}}$ by $z-+e^{\lambda}z$ . The quotient $(\mathrm{C}\backslash \{0\})/\rho(\gamma)$ is then a torus, and there is
a preferred marking of this torus by the pair $(\hat{\gamma}, \mu)$ , where $\mu$ is the meridian
of the torus, or the image of the unit circle in $\mathrm{C}$ , and $\hat{\gamma}$ is the image of
the curve $\{e^{t\lambda} : t\in[0,1]\}$ . Note, this curve depends on the choice of $\lambda$

mod $2\pi i$ . In [39] we point out that if $p_{\rho}(\gamma)$ is sufficiently short then we can
choose $\hat{\gamma}$ to be a minimal representative of $\gamma$ on the torus just by choosing
$\theta={\rm Im}\lambda\in[0,2\pi)$ .

The quantity $2\pi i/\lambda$ turns out to be the point in the upper half-plane
representation of the Teichm\"uller space of the torus which represents the
marked quotient torus. Estimating this quantity up to bounded hyperbolic
distance is then equivalent to estimating the torus structure up to bounded
Teichm\"uller distance, which corresponds to knowing the action of $\rho(\gamma)$ up to
bounded quasi-conformal conjugacy. This finally is equivalent to bounded
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bilipchitz conjugacy of the action on $\mathrm{H}^{3}$ , and thus is the “right” kind of esti-
mate if we are interested in knowing the quotient geometry up to bilipschitz
equivalence.

The imaginary part of the conjectural estimate is supposed to estimate
the “height” of the margulis tube boundary for $\gamma$ , and its real part is sup-
posed to measure the $‘(\mathrm{t}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{t}$

” of the meridian around $\hat{\gamma}$ . In our discussion of
the Bounded Geometry Theorem, we essentially showed that the height was
bounded by the number of elementary moves it took to pass $\mathrm{T}_{\gamma}$ , and the
twisting was bounded by the relative twisting of the predecessor and suc-
cessor curves $\alpha$ and $\alpha’$ . In general we expect that large values of $d_{Y}(\nu_{+}, u_{-})$

with $\gamma\subset\partial Y$ will contribute to parts of the elementary move sequence that
make progress along the sides of $\mathrm{T}_{\gamma}$ , and thus give a good estimate for its
height.

In [39] we obtained a similar estimate for the case where $S$ is a once-
punctured torus. (In this case we are not requiring $S$ to be closed, and our
representations must satisfy the added condition that the conjugacy class
corresponding to loops around the puncture is mapped to parabolics.) Let
us state this just in the case that $\nu\pm \mathrm{a}\mathrm{r}\mathrm{e}$ both laminations. For the torus, a
lamination are determined by its slope in $H_{1}(S, \mathrm{R})=\mathrm{R}^{2}$ , which takes values
in $\hat{\mathrm{R}}=\mathrm{R}\cup\{\infty\}$ . Simple closed curves correspond to rational points. For
any simple closed curve $\alpha$ we defined a quantity analogous to $d_{\alpha}(\nu_{-}, \nu_{+})$ as
follows: after an appropriate basis change for $S$ (or equivalently action by
an element of $\mathrm{S}\mathrm{L}_{2}(\mathrm{Z})$ , we may assume that $\alpha$ is represented by $\infty$ , and let
$\nu_{-}(\alpha),$ $\nu_{+}(\alpha)$ be the irrational numbers representing the ending laminations.
Then define

$w(\alpha)=\nu_{+}(\alpha)-\nu_{-}(\alpha)$ .

We showed that $\ell_{p}(\alpha)$ can only be short if $w(\alpha)$ is above a uniform threshold,
and in this case we estimated

$\frac{2\pi i}{\lambda_{p}(\alpha)}\wedge-w(\alpha)+i$ .

In fact $w(\alpha)$ is just a measure of relative twisting of $\nu$-and $\nu_{+}$ around
$\alpha$ , and it is not hard to see that $|w(\alpha)|$ is estimated by our $d_{\alpha}(\nu_{-}, \nu_{+})$ ,
up to a uniform additive error. Thus, this is really the same estimate as
in Conjecture 5.1, since there are no essential subsurfaces in $S$ other than
annuli.

5.2. General representations. All the methods that we have presented
here depend heavily on the assumption that $\rho$ is both faithful and discrete. It
can be argued, however, that a full understanding of the deformation space
of hyperbolic structures on a manifold would require some better geometric
description of the whole representation variety, including indiscrete or non-
faithful points, and it is tempting to try to enlist the complex of curves for
this purpose.

The only results I know that offer any hope are in a paper of Bowditch
[8], in which he studies general representations for the once-punctured torus
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(again with the parabolicity condition for the puncture). Such a represen-
tation determines a $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ (closely related to complex translation length) for
every conjugacy class, and in particular for the simple closed curves, which
in this case correspond to $\mathrm{Q}\cup\{\infty\}$ , viewed as the vertices of the Farey
tesselation of the disk. To every triangle and adjacent pair of triangles
is associated a relation among the traces of the vertices, coming from the
standard trace identities in $\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$ . Bowditch uses these relations alone,
without discreteness, to analyze the global properties of the trace function,
in particular obtaining a connectedness property for sublevel sets closely
analogous to the quasi-convexity property of Lemma 4.4. Using this he is
able to define an invariant of the representation that generalizes the ending
lamination for discrete representations; but it is hard to know how to extract
more information from this invariant.

In the higher genus case, no such analysis has been done, and it would be
very interesting to try it. Elementary moves between pants decompositions
still give rise to trace identities among the curves involved, although they are
a bit more complicated. One wonders at least whether a result like Lemma
4.4 can be generalized to all representations.

Bowditch is led to the following question: Consider the quantity

$\frac{\ell_{\rho}(\gamma)}{\ell_{\rho_{0}}(\gamma)}$

where $\rho_{0}$ is some fixed Fuchsian representation, $\rho$ is a general representation,
and $\gamma$ is a non-trivial element of $\pi_{1}(S)$ . The infimum of this ratio is positive
for quasi-Fuchsian representations. For a non-quasi-Fuchsian discrete, faith-
ful representation, the infimum is $0$ , and can be achieved by considering only
$\gamma$ with simple representatives. The limit points of minimizing sequences in
the space of laminations give the ending laminations for $\rho$ .

If $\rho$ is indiscrete or non-faithful the infimum is again $0$ (indeed inf $\ell_{\rho}$ is $0$

as well), but the question is, is the infimum also $0$ for the simple elements.
In other words:

Question 5.2. Let $S$ be a closed surface of genus at least 2, and let let
$\rho$ : $\pi_{1}(S)arrow PSL_{2}(\mathrm{C})$ be a representation. If

$\inf\frac{\ell_{\rho}(\gamma)}{\ell_{\beta 0}(\gamma)}>0$

where $\gamma$ varies over all simple loops in $S$ , must $\rho$ be quasi-Fuchsian $‘.p$

This question appears to be difficult, and a positive answer would be
a good starting point in using the complex of curves to analyze general
representations. To indicate its difficulty, note that it is closely related to
the following:

Question 5.3. If $\rho$ : $\pi_{1}(S)arrow PSL_{2}(\mathrm{C})$ is any representation with non-
trivial kernel, does the kernel contain elements represented by simple loops?
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A positive answer to this question is at least as hard to prove as the simple
loop conjecture for hyperbolic 3-manifolds; see Gabai [17] and Hass [21].
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