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Abstract

We consider dynamics on fiber bundles whose fibers are the Rie-
mann spheres and the base spaces are compact metric spaces. We
investigate entropy. We define the semi-hyperbolicity of dynamics on
fiber bundles. We will show that if a dynamics on a fiber bundle is
semi-hyperbolic, then we have that 2-dimensional Lebesgue measure
of each fiberwise Julia set is equal to zero, that each fiberwise Julia
set is uniformly perfect and that the dynamics hae a kind of weak
rigidity. Moreover if the fiberwise dynamics are polynomials, then the
fiberwise basin of infinity is a $c$-John domain, where the constant $c$

does not depend on any points in the base space.

1 Introduction
To investigate random 1-dimensional complex dynamics or fiber-preserving
holomorphic dynamics on fiber bundles in several dimensions, we introduce
the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$ dynamical systems on fiber bundles which preserve fibers. The
notion of fibered rational maps were introduced by M.Jonsson in [J2]. The
research on dynamics of semigroups generated by rational maps on the Rie-
mann sphere ( $[\mathrm{H}\mathrm{M}1],$ $[\mathrm{H}\mathrm{M}2],$ $[\mathrm{H}\mathrm{M}3]$ [GR], [Bo], [Stl], [St2], [S1], [S2], [S4],
[S5] $)$ , the research of random iterations of rational functions( $[\mathrm{F}\mathrm{S}]$ , [BBR])
and the research on polynomial skew products on $\mathbb{C}^{2}$ ([H1], [H2], [J1]) are
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directly related to this subject. For the research of polynomial skew products
whose base spaces are compact metric spaces, see [Sel] and [Se2]. For the
research of ergodic theory of random diffeomorphisms, see [K].

In this paper applying some results of [S4] obtained by the author, we will
get that semi-hyperbolicity along fibers of fibered rational maps implies that
fiberwise Julia sets have 2-dimensional measure zero $(\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}2.1)$ , that the
dynamics have a kind of weak rigidity (Theorem 2.2), that the fiberwise Julia
sets are uniformly perfect such that the constants concerning the uniform
perfectness do not depend on any points of base spaces (Theorem 2.4) and
that if fiberwise maps are polynomials then fiberwise basins of infinity are
$c$-John domains where $c$ is a constant not depending on any points of base
spaces $(\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}2.6)$ . This is a generalized result of a result in [CJY] to the
version of skew products. For the research of semi-.hyperbolicity of usual
dynamics of rational functions, see [CJY] and [Ma].

To show those we need the potential theoritic stories $(\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}3)$ , distortion
lemmas for holomorphic proper maps and key results (continuity of fiberwise
Julia sets with respect to the points in base spaces: this is very important
property and not easy to show) from [S4].

In section 4 we also show some results on entropy of fibered rational
maps, which are a kind of generalization of some results in [J2], without a.ny
conditions on $(\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}-)\mathrm{h}\mathrm{y}\mathrm{p}\mathrm{e}\dot{\mathrm{r}}\mathrm{b}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{y}$.

Definition 1.1. ([J2]) A triplet $(\pi, \mathrm{Y}, X)$ is called a ” $\overline{\mathbb{C}}$-bundle ” if

1. $\mathrm{Y}$ and $X$ are compact metric spaces,

2. $\pi$ : $\mathrm{Y}arrow X$ is a continuous and surjective map,

3. There exists an open covering $\{U_{i}\}$ of $X$ such that for each $i$ there exists
a homeomorphism $\Phi_{i}$ : $U_{i}\cross\overline{\mathbb{C}}arrow\pi^{-1}(U_{i})$ satisfying that $\Phi_{i}(\{x\}\cross\overline{\mathbb{C}})=$

$\pi^{-1}(x)$ and $\Phi_{j}^{-1}0\Phi_{i}$ : $(U_{i}\cap U_{j})\mathrm{x}\overline{\mathbb{C}}arrow(U_{i}\cap U_{j})\mathrm{x}\overline{\mathbb{C}}$ is a M\"obius map
for each $x\in U_{i}\cap U_{j}$ .

Remark 1. By the condition 3, each fiber $\mathrm{Y}_{x}:=\pi^{-1}(x)$ has a complex
structure. We also have that given $x_{0}\in X$ we may find a continuous family
$i_{x}$ : $\overline{\mathbb{C}}arrow \mathrm{Y}_{x}$ of homeomorphisms for $x$ close to $x_{0}$ . Such a family $\{i_{x}\}$ will be
called a ”lacal parameterization.” Since $X$ is compact, we may assume that
there exists a compact subset $M_{0}$ of the set of M\"obius transformations of $\overline{\mathbb{C}}$

such that $i_{x}\mathrm{o}j_{x}^{-1}\in M_{0}$ for any two local parametrizatios $\{i_{x}\}$ and $\{j_{x}\}$ . In
this paper we always assume that.

Definition 1.2. $([\mathrm{J}2])$ We say that $\mathrm{a}\overline{\mathbb{C}}$-bundle $(\pi, \mathrm{Y},X)$ satisfies the ”con-
tinuous forms condition” if for each $x\in X$ there exists a smooth $(1, 1)$ -form
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$\omega_{x}>0$ inducing the metric on $\mathrm{Y}_{x}$ and $x\vdash+\omega_{x}$ is continuous. That is, if $\{i_{x}\}$

is a local parametrization, then the pull back $i_{x}^{*}\omega_{x}$ is a positive smooth forms
on $\overline{\mathbb{C}}$ depending continuously on $x$ .

Definition 1.3. Let $(\pi, \mathrm{Y},X)$ be $\mathrm{a}\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ and $g:Xarrow$

$X$ be continuous maps. We say that $f$ is a rational map fibered over $g$ if

1. $\pi \mathrm{o}f=g\mathrm{o}\pi$

2. $f|_{\mathrm{Y}_{x}}$ : $\mathrm{Y}_{x}arrow \mathrm{Y}_{g(x)}$ is a rational map for any $x\in X$ . That is, $(i_{g_{x}})^{-1}\mathrm{o}f\mathrm{o}i_{x}$

is a rational map from $\overline{\mathbb{C}}$ to itself for any local parametrization $i_{x}$ at
$x\in X$ and $i_{g(x)}$ at $g(x)$ .

Notation: If $f$ : $\mathrm{Y}arrow \mathrm{Y}$ is a rational map fibered over $g$ : $Xarrow X$,
then we put $f_{x}^{n}=f^{n}|_{\mathrm{Y}ae}$ for any $x\in X$ and $n\in \mathbb{N}$ . Furthermore we put
$d_{n}(x)=\deg(f_{x}^{n})$ and $d(x)=d_{1}(x)$ for any $x\in X$ and $n\in \mathbb{N}$ .

Definition 1.4. Let $(\pi, \mathrm{Y}, X)$ be $\mathrm{a}\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ is a rational
map fibered over $g:Xarrow X$ . Then for any $x\in X$ we denote by $F_{x}$ the set of
points $y\in \mathrm{Y}_{x}$ which has a neighborhood $U$ in $\mathrm{Y}_{x}$ satisfying that $\{f_{x}^{n}\}_{n\in \mathrm{N}}$ is a
normal family in $U$, that is, $y\in F_{x}$ if and only if the family $Q_{x}^{n}=i_{x_{n}}^{-1}\mathrm{o}f_{x}^{n}\mathrm{o}i_{x}$

of rational maps on $\overline{\mathbb{C}}$ ( $x_{n}$ denotes $g^{n}(x)$ ) is normal near $i_{x}^{-1}(y)$ : note that
by Remark 1, this does not depend on the choices local parametrizations at $x$

and $x_{n}$ . Still equivalently, $F_{x}$ is the open subset of $\mathrm{Y}_{x}$ where the family $\{f_{x}^{n}\}$

of mappings from $\mathrm{Y}_{x}$ into $\mathrm{Y}$ is local equicontinuous. We put $J_{x}=\mathrm{Y}_{x}\backslash F_{x}$ .
Furthermore, we put

$\tilde{J}(f)=\overline{\bigcup_{x\in X}J_{x}},\tilde{F}(f)=\mathrm{Y}\backslash \tilde{J}(f)$.

Remark 2. There exists a fibered rational map $f$ : $\mathrm{Y}arrow \mathrm{Y}$ satysfying that
$\bigcup_{x\in X}J_{x}$ is NOT compact.

Example 1.5. 1. $([\mathrm{S}4].)$ Let $h_{1},$
$\ldots$ , $h_{m}$ be non-constant rational maps.

Let $\Sigma_{m}=\{1, \ldots , m\}^{\mathrm{N}}$ be the space of one-sided infinite sequences of
$m$ symbols and $g:\Sigma_{m}arrow\Sigma_{m}$ be the shift map: that is, $g$ is defined by
$g((w_{1}, w_{2}, \ldots))=(w_{2}, w_{3}, \ldots)$ . Let $X$ be a compact subset of $\Sigma_{m}$ such
that $g(X)\subset X$ . Let $\mathrm{Y}=X\cross\overline{\mathbb{C}}$ and $\pi$ : $\mathrm{Y}arrow X$ be the natural pro-
jection. Then $(\pi, \mathrm{Y}, X)$ is $\mathrm{a}\overline{\mathbb{C}}$-bundle with continuous forms condition.
Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a map defined by: $f((w, y))=(g(w), h_{w_{1}}(y))$ . Then
$f:\mathrm{Y}arrow \mathrm{Y}$ is a rational map fibered over $g:Xarrow X$.
In the above if $X=\Sigma_{m}$ then we say that $f$ : $\mathrm{Y}arrow \mathrm{Y}$ is the skew
product map assosiated with the generator system $\{h_{1}, \ldots h_{m}\}$ of the

156



rational semigroup $G=\langle h_{1}, \ldots , h_{m}\rangle$ , where we denote by $\langle h_{1}, \ldots , h_{m}\rangle$

the semigroup generated by $\{h_{1}, \ldots , h_{m}\}$ with the semigroup operation
being compos\’ition of maps. We denote by $J(G)$ the Julia set of rational
semigroup $G$ : that is, the set of points $z\in\overline{\mathbb{C}}$ satisfying that $z$ has no
neighborhood where the family of maps $G$ is normal. Then we have

$\pi_{\overline{\mathbb{C}}}(\tilde{J}(f))=J(G)$ ,

where $\pi_{\overline{\mathbb{C}}}$ : $\mathrm{Y}arrow\overline{\mathbb{C}}$ is the projection. See [S4] for more details.

2. Let $\mathrm{Y}$ be a ruled surface over a Riemann surface $X$ : that is, $\mathrm{Y}$ is
a smooth projective variety of complex dimension 2 which is also a
holomorphic $P^{1}(\mathbb{C})$ -bundle over $X$ . Every $\mathrm{Y}_{x}$ has a unique conformal
structure and a positive form $\omega_{x}=\omega|_{\mathrm{Y}_{x}}$ , where $\omega$ is the K\"ahler form
on Y. Let $\pi$ : $\mathrm{Y}arrow X$ be the projection. Then $(\pi, \mathrm{Y}, X)$ is $\mathrm{a}\overline{\mathbb{C}}$-bundle
satisfying the continuous forms condition with $(\omega_{x})_{x\in X}$ .
Dabija [D] showed that (almost) every holomorphic selfmap $f$ of $\mathrm{Y}$ is
a rational map fibered over a holomorphic map $g:Xarrow X$ .

3. Let $p(x)\in \mathbb{C}[x]$ be a polynomial with degree at least two and $q(x, y)\in$
$\mathbb{C}[x,y]$ a polynomial of the form: $q(x,y)=y^{n}+a_{1}(x)y^{n-1}+\cdots$ . Let
$f$ : $\mathbb{C}^{2}arrow \mathbb{C}^{2}$ be a map defined by

$f((x, y))=(p(x), q(x, y))$ .

This is called a polynomial skew product in $\mathbb{C}^{2}$ . Such a kind of maps
were investigated by S.-M.Heinemann in [H1] and [H2] and by M.Jonsson
in [J1].

Let $X$ be a compact subset of $\overline{\mathbb{C}}$ such that $p(X)\subseteq X$ . (e.g. the Julia
set of $p.$ ) Let $(\pi, \mathrm{Y}=X\cross\overline{\mathbb{C}}, X)$ be a trivial $\overline{\mathbb{C}}$-bundle. Then the map
$\tilde{f}$ : $\mathrm{Y}arrow \mathrm{Y}$ defined by $\tilde{f}((x,y))=(p(x), q(x, y))$ is a rational map
fibered over $p:Xarrow X$.

Notation :

$\bullet$ Let $Z_{1}$ and $Z_{2}$ be two topological spaces and $g$ : $Z_{1}arrow Z_{2}$ be a map.
For any subset $A$ of $Z_{2}$ , we denote by $c(g, A)$ the set of all connected
components of $g^{-1}(A)$ .

$\bullet$ for any $y\in\overline{\mathbb{C}}$ and $\delta>0$ , we put $B(y, \delta)=\{y’\in\overline{\mathbb{C}}|d(y, y’)<\mathit{5}\}$,
where $d$ is the spherical metric. Similarly, for any $y\in \mathbb{C}$ and $\mathit{5}>0$ we
put $D(y, \delta)=\{y’\in \mathbb{C}||y-y’|<\delta\}$ .
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Now we will define the semi-hyperbolicity of fibered rational maps.

Definition 1.6. (semi-hyperbolicity) Let $(\pi, \mathrm{Y}, X)$ be $\mathrm{a}\overline{\mathbb{C}}$-bundle. Let
$f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a rational map fibered over $g$ : $Xarrow X$ . Let $N\in \mathbb{N}$ .
We say that a point $z\in \mathrm{Y}$ belongs to $SH_{N}(f)$ if there exists a positive
number $\delta$ , a neighborhood $U$ of $\pi(z)$ and a local parametrization $\{i_{x}\}$ in
$U$ such that for any $x\in U$, any $n\in \mathbb{N}$ , any $x_{n}\in g^{-1}(x)$ and any $V\in$

$c(i_{x}(B(i_{\pi(z)}^{-1}(z), \delta)),$ $f_{x}^{n})$ , we have

$\deg(f_{x}^{n} : Varrow i_{x}(B(i_{\pi(z)}^{-1}(z), \delta)))\leq N$ .

We set
$UH(f)= \mathrm{Y}\backslash \bigcup_{N\in \mathrm{N}}SH_{N}(f)$

.

We say that $f$ is semi-hyperbolic (along fibers) if for any point $z\in \mathrm{Y}$ there
exists a positive integer $N\in \mathbb{N}$ satisfying that $z\in SH_{N}(f)$ .

Example 1.7. 1. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a rational map fibered over $g:Xarrow$

X. We set
$P(f)= \bigcup_{n\in \mathrm{N}}\bigcup_{x\in X}f_{x}^{n}$

( critical points of $f_{x}$ ).

This is called the fiber post critical sets of fibered rational map $f$ . If
$f$ : $\mathrm{Y}arrow \mathrm{Y}$ is hyperbolic along fiberes: that is, $P(f)\subset F(f)$ , then $f$

is semi-hyperbolic along fiberes with the constant $N=1$ .

2. Let $\{h_{1}, \ldots , h_{m}\}$ be non-constant rational functions on $\overline{\mathbb{C}}$. Let $f$ : $\mathrm{Y}arrow$

$\mathrm{Y}$ be the skew product map in Example 1.5.1. By easy arguments we
can show that $f$ : $\mathrm{Y}arrow \mathrm{Y}$ is semi-hyperbolic along fiberes if and only
if $G$ is semi-hyperbolic: that is, for each $x\in J(G)$ there exists an open
neighborhood $U$ of $x$ in $\overline{\mathbb{C}}$ and a number $\delta>0$ such that for each $g\in G$

and $V\in c(B(x, \delta),$ $g)$

$\deg(g:Varrow B(x, \delta)\leq N$ .

In [S4], the following statement was shown:

Assume that there exists an element of $G$ with the degree at least two,
that each element of Aut $\overline{\mathbb{C}}\cap G$(if this is not empty) is loxodromic
and that $J(G)\neq\overline{\mathbb{C}}$. Then $G$ is semi-hyperbolic if and only if all of the
following conditions are satisfied.

(a) for each $z\in J(G)$ there exists a neighborhood $U$ of $z$ in $\overline{\mathbb{C}}$ such
that for any sequence $(g_{n})\subset G$ , any domain $V$ in $\overline{\mathbb{C}}$ and any
point $\zeta\in U$, we have that the sequence $(g_{n})$ does NOT converge
to $\zeta$ locally uniformly on $V$
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(b) for each $j=1,$ $\ldots$ , $m$ each $c\in C(f_{j})\cap J(G)$ satisfies

$d(c, (G\cup\{id\})(f_{j}(c)))>0$

From this fact it was shown in $[\mathrm{S}4]^{*}$ that if we assume that there exists
an element of $G$ with the degree at least two, that each element of
$\mathrm{A}\mathrm{u}\mathrm{t}\overline{\mathbb{C}}\cap G$(if this is not empty) is loxodromic, that there is no super
attracting fixed point of any element of $G$ in $J(G)$ and $F(G)\neq\emptyset$ , then
$G$ is semi-hyperbolic.

By this theorem we know that $G=\langle z^{2}+2, z^{2}-2\rangle$ is semi-hyperbolic.
This is NOT hyperbolic. See [S4].

We need some technical conditions.

Definition 1.8 (Condition $(\mathrm{C}\mathrm{l})$ ). Let $(\pi, \mathrm{Y}, X)$ be $\mathrm{a}\overline{\mathbb{C}}$-bundle. Let $f$ :
$\mathrm{Y}arrow \mathrm{Y}$ be a rational fibered over $g$ : $Xarrow X$. We say that $f$ satisfies the
condition (C1) if there exists a family $\{D_{x}\}_{x\in X}$ of topological discs with
$D_{x}\subset \mathrm{Y}_{x},$ $x\in X$ such that the following three conditions are satisfied:

1. $\bigcup_{n\geq 0}f_{x}^{n}(D_{x})\subset\tilde{F}(f)$ for each $x\in X$ .

2. for any $x\in X$ , we have that $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}_{\mathrm{Y}}(f_{x}^{(n)}(D_{x}))arrow 0$ , as $narrow\infty$ .

3. $\inf_{x\in X}$ diam $\mathrm{Y}(D_{x})>0$ .

Definition 1.9 (Condition $(\mathrm{C}2)$ ). Let $(\pi, \mathrm{Y}, X)$ be a $\overline{\mathbb{C}}$-bundle. Let $f$ :
$\mathrm{Y}arrow \mathrm{Y}$ be a rational map fibered over $g$ : $Xarrow X$ . We say that $f$ satisfies
the condition (C2) if for each $x_{0}\in X$ there exists an open neighborhood $O$

of $x_{0}$ and a family $\{D_{x}\}_{x\in O}$ of topological discs with $D_{x}\subset \mathrm{Y}_{x},$ $x\in O$ such
that the following three conditions are satisfied:

1. $\bigcup_{n\geq 0}f_{x}^{n}(D_{x})\subset\tilde{F}(f)\mathrm{f}\mathrm{o}\mathrm{r}’ \mathrm{e}\mathrm{a}\mathrm{c}\mathrm{h}x\in O$.

2. for any $x\in O$ , we have that $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}_{\mathrm{Y}}(f_{x}^{(n)}(D_{x}))arrow 0$ , as $narrow\infty$ .

3. $x\vdash\succ D_{x}$ is continuous in $O$ .

Example 1.10. 1. Let $\{h_{1}, \ldots h_{m}\}$ be non-constant rational functions on
$\overline{\mathbb{C}}$ with $\deg(h_{1})\geq 2$ . Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be the skew product map assosiated
with the generator system $\{h_{1}, \ldots , h_{m}\}$ of rational semigroup $G=$

$\langle h_{1}, \ldots , h_{m}\rangle$ , which is described in Example 1.5.1. Suppose that $f$ is
semi-hyperbolic along fibers and that $\pi_{\overline{\mathbb{C}}}(\tilde{J}(f))=J(G)$ is not equal to
the Riemann sphere. Then we have that $f$ satisfies the condition (C2).
Actually, there exists an attracting periodic point $a$ in $\overline{\mathbb{C}}\backslash J(G)$ . Since
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$G$ is semi-hyperbolic, we have that setting $D_{x}=D(a, \epsilon)$ for each $x\in X$

where $\epsilon$ is a positive number, $f$ satisfies the condition (C2) with the
family of discs $(D_{x})_{x\in X}$ .

2. Let $(\pi, \mathrm{Y}=X\cross\overline{\mathbb{C}}, X)$ be a trivial $\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a
rational map fibered over $g:Xarrow X$ satisfying that $f_{x}$ is a polynomial
mapping of degree at least two for each $x\in X$ . Then setting $D_{x}=D$

where $D$ is a small neighborhood of infinity for each $x\in X$ , the rational
map $f$ satisfies the condition (C2) with the family of discs $(D_{x})_{x\in X}$ .

2 Results
In this section we intrduce some results which are deduced by semi-hyperbolicity.

Theorem 2.1. (measure zero) Let $(\pi, \mathrm{Y}, X)$ be $a\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow$

$\mathrm{Y}$ be a rational map fibered over $g$ : $Xarrow X$. Suppose $f$ is semi-hyperbolic
along fibers and satisfies the condition $(C\mathit{2})$ . Then for each $x\in X$ , the
2-dimensional Lebesgue measure of $J_{x}$ is equal to zero.

Theorem 2.2. (a rigidity) Let $(\pi, \mathrm{Y}, X)$ and $(\tilde{\pi},\tilde{\mathrm{Y}}, \tilde{X})$ be two $\overline{\mathbb{C}}$ -bundles.
Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a rational map fibered over $g:Xarrow X$ and $\tilde{f}$ : $\tilde{\mathrm{Y}}$ $:arrow\tilde{\mathrm{Y}}a$

rational map fibered over $\tilde{g}$ : $\tilde{X}arrow\tilde{X}$ . Let $u:\mathrm{Y}arrow\tilde{\mathrm{Y}}$ be a homeomorphism
which is a bundle conjugacy between $f$ and $\tilde{f}:i.e$ . $u$ satisfies that $\tilde{\pi}\mathrm{o}u=v\mathrm{o}\pi$

for some homeomorphism $v$ : $Xarrow X$ and $\tilde{f}\mathrm{o}u=u\mathrm{o}f$. Suppose that $f$ is
semi-hyperbolic along fiberes and satisfies the condition $(C\mathit{2})$ . Suppose also
that the restriction $u_{x}$ : $\mathrm{Y}_{x}arrow\tilde{\mathrm{Y}}_{v(x)}$ of $u$ is holomorphic on $F_{x}$ for all $x\in X$ .
Then we have that $u_{x}$ is holomorphic on the whole $\mathrm{Y}_{x}$ for all $x\in X$ .
Definition 2.3. Let $C$ be a positive number. Let $K$ be a closed subset $\mathrm{o}\mathrm{f}\overline{\mathbb{C}}$.
We say that $K$ is $C$-uniformly perfect if for any doubly connected domain $A$

in $\overline{\mathbb{C}}$ satisfying that both two connected components $\mathrm{o}\mathrm{f}\overline{\mathbb{C}}\backslash A$ have non-empty
intersection with $K$, the modulus of $A$ is less than $C$ .
Theorem 2.4. (uniform perfectness) Let $(\pi, \mathrm{Y}.X)$ be a $\overline{\mathbb{C}}$-bundle with
continuous fcrms condition. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a rational map fibered over
$g:Xarrow X$ with $d(x)\geq 2$ for any $x\in X$ . Suppose that $f$ is semi-hyperbolic
along fiberes and satisfies the condition $(Cl)$ . Then there exists a positive
constant $C$ such that $J_{x}$ is $C$ -uniformly perfect for any $x\in X$ .

Notation: Let $y\in \mathbb{C}$ and $b\in\overline{\mathbb{C}}$ be two distinct points. Let $E$ be a curve
in $\overline{\mathbb{C}}$ joining $y$ to $b$ satisfying that $E\backslash \{b\}\subset \mathbb{C}$ . For any $c\geq 1$ we set

car $(E, c, y, b)=$ $\cup$ $D(z, \frac{|y-z|}{c})$ .
$z\in E\backslash \{y,b\}$
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This is called the $c$-carrot with core $E$ and vertex $y$ joining $y$ to $b$ .

Definition 2.5. Let $V$ be a subdomain $\mathrm{o}\mathrm{f}\overline{\mathbb{C}}$. Let $c\geq 1$ be a number. We say
that $V$ is a $c$-John domain if there exists a point $y_{0}\in\overline{V}$ satisfying that for
any $y\in V\backslash \{y_{0}\}$ there exists a curve $E$ joining $y_{0}$ to $y$ such that $E\backslash \{y_{0}\}\subset \mathbb{C}$

and
car $(E, c, y, y_{0})\subset V$.

In the above the point $y_{0}$ is called the center of John domain $V$.

Remark 3. Johnness implies many good properties $([\mathrm{N}\mathrm{V}], [\mathrm{J}\mathrm{o}\mathrm{n}\mathrm{e}]).\mathrm{F}\mathrm{o}\mathrm{r}$ ex-
ample, if $V$ is a John domain, then the following facts hold.

$\bullet$ If $\infty\in\overline{V}$ , then the center of $V$ is $\infty$ .
$\bullet$ Let $a\in\partial V\backslash \{\infty\}$ and $b\in V$. Then there exists a curve $E$ joining $a$

to $b$ and a constant $c$ such that car $(E, c, a, b)\subset V$. In particular, $a$ is
accessible from $b$ .

$\bullet$ $V$ is finitely connected at any point in $\partial V$ : that is, if $y\in\partial V$, then
there exists an arbitrary small open neighborhood $U$ of $y$ in $\overline{\mathbb{C}}$ such
that $U\cap V$ has only finitely many connected components.

$\bullet$ If $V$ is simply connected and $\partial V\subset \mathbb{C}$ , then we have that $\partial V$ is locally
connected.

$\bullet$ If $\partial V\subset \mathbb{C}$ then $\partial V$ is holomorphic removable: that is, if $\varphi$ : $\overline{\mathbb{C}}arrow\overline{\mathbb{C}}$ is a
homeomorphim and is holomorphic on $\overline{\mathbb{C}}\backslash \partial V$, then $\varphi$ is holomorphic
on $\overline{\mathbb{C}}$ . From this fact, we can deduce that the 2-dimensional Lebesgue
measure of $\partial V$ is equal to zero.

Theorem 2.6. (Johnness) Let $(\pi, \mathrm{Y}=X\mathrm{x}\overline{\mathbb{C}}, X)$ be a trivial $\overline{\mathbb{C}}$-buundle.
Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a rational map fibered over $g:Xarrow X$ satisfying that $f_{x}$

is a polynomial with $d(x)\geq 2$ for any $x\in X.$ Then there exists a positive
constant $c$ such that for any $x\in X$ the basin of infinity $A_{x}:=\{y\in \mathrm{Y}_{x}|$

$f_{x}^{n}(y)arrow\infty,$ $narrow\infty\}$ in $\mathrm{Y}_{x}$ (here we identify $f_{x}^{n}$ with a usual polynomial)
satisfies that it is a $c$ -John domain.

Remark 4. In the Theorem 2.6 if $X$ is a set consisting of one point, then $f$

is semi-hyperbolic if and only if the basin of infinity is a John domain $([\mathrm{C}\mathrm{J}\mathrm{Y}])$ .
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3Potential Theory and Measure Theory

We need some notations from [J2] and [S4], concerning potential theoritic as-
pects. Let $(\pi, \mathrm{Y},X)$ be $\mathrm{a}\overline{\mathbb{C}}$-bundle satisfying the continuous forms condition
with a family $\{\omega_{x}\}_{x\in X}$ of positive $(1, 1)$ -forms. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a rational
map fibered over $g$ : $Xarrow X$. Let $x\in X$ be a point. We set $x_{n}=g^{n}(x)$ for
each $n\in \mathbb{N}$ . The form $\omega_{x}$ on $\mathrm{Y}_{x}$ induces a measure which is also called $\omega_{x}$

on $\mathrm{Y}_{x}$ or even on Y. As measures on $\mathrm{Y}$ we have that $x\vdash+\omega_{x}$ is weakly con-
tinuous. For each continuous function $\varphi$ on $\mathrm{Y}_{x}$ let $(f_{x}^{n})_{*}\varphi$ be the continuous
function on $\mathrm{Y}_{x_{n}}$ defined by

$((f_{x}^{n})_{*} \varphi)(z)=\sum_{f_{x}^{n}(w)=z}\varphi(w)$
for each $n\in \mathbb{N}$ . We

define pullbacks of measures by duality: $\langle(f_{x}^{n})^{*}\nu, \varphi\rangle=\langle\nu, (f_{x}^{n})_{*}\varphi\rangle$ . Let $\mu_{x,n}$

be the probability measure on $\mathrm{Y}_{x}$ defined by $\mu_{x,n}=\frac{1}{d_{n}(x)}(f_{x}^{n})^{*}\omega_{x_{n}}$ .
We will lift $f_{x}$ : $\mathrm{Y}_{x}arrow \mathrm{Y}_{x_{1}}$ to self maps of $\overline{\mathbb{C}}$ and $\mathbb{C}_{*}^{2}:=\mathbb{C}^{2}\backslash \{0\}$ . Let $i_{x}$

and $i_{x_{1}}$ be local parametrizations near $x$ and $x_{1}$ . Define $Q_{x}$ : $\overline{\mathbb{C}}arrow\overline{\mathbb{C}}$ to be a
rational map and $R_{x}$ : $\overline{\mathbb{C}}arrow\overline{\mathbb{C}}$ to be a homogeneous polynomial map, both
of degree $d(x)$ , such that

$\sup\{|R_{x}(z, w)| : |(z,w)|=1\}=1$

and such that
$f_{x}\mathrm{o}i_{x}=i_{x_{1}}\mathrm{o}Q_{x},$ $Q_{x}\mathrm{o}\pi’=\pi’\mathrm{o}R_{x}$ ,

where we denote by $\pi’$ the projection from $\mathbb{C}_{*}^{2}$ to $\overline{\mathbb{C}}$ . Given the local parametriza-
tions $i_{x}$ and $i_{x_{1}}$ these properties determine $Q_{x}$ uniquely, and $R_{x}$ uniquely up
to multiplication by a complex number of unit modulus.

Now consider and orbit $(x_{j})_{j\in \mathrm{N}}$ in $X$ , select parametrizations at each
point $x_{j}$ and let $R_{x_{j}}$ be the corresponding homogeneous selfmaps of $\mathbb{C}_{*}^{2}$ . Let
$R_{x}^{n}$ be the composition $R_{x_{n}}\mathrm{o}\cdots \mathrm{o}R_{x}$ . Then $R_{x}^{n}$ is a homogeneous polynomial
mapping of $\mathbb{C}_{*}^{2}$ of degree $d_{n}(x)$ . Notice that $R_{x}^{n}$ is determined, up to multipli-
cation of by a complex number of unit modulus, by the local parametrizations
at $x$ and $x_{n}$ .

Given a local parametrization $i_{x}$ : $\overline{\mathbb{C}}arrow \mathrm{Y}_{x}$ there exists a smooth potential
$G_{x,0}$ for $\omega_{x}$ in the sense that $\omega_{x}=dd^{c}(G_{x,0}\mathrm{o}s\mathrm{o}i_{x}^{-1})$ , where $s$ is any local
section of $\pi’$ and $d^{c}= \frac{i}{2\pi}(\overline{\partial}-\partial)$ .

Define the plurisubharmonic function $G_{x,n}$ on $\mathbb{C}_{*}^{2}$ by

$G_{x,n}= \frac{1}{d_{n}(x)}G_{x,0}\mathrm{o}R_{x}^{n}$ .

If we change the local parametrizations at $x_{n}$ and the potential $G_{x,0}$ , then the
modified plurisubharmonic function $\tilde{G}_{x,n}$ satisfies that there exists a constant
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$C>0$ such that

$|G_{x,n}(z, w)- \tilde{G}_{x}^{n}(z, w)|\leq\frac{C}{d_{n}(x)}$ , (1)

for all $x\in X,$ $(z,w)$ and $n\in \mathbb{N}$ . By (1) and the arguments in [J2] and [S4],
we get the following.

Proposition 3.1. Let $(\pi, \mathrm{Y},X)$ be $a\overline{\mathbb{C}}$-bundle satisfying the continuous forms
condition with a family $\{\omega_{x}\}_{x\in X}$ of positive $(1, 1)$ -forms. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a
rational map fibered over $g:Xarrow X$ . Assume that $d(x)\geq 2$ for each $x\in X$ .
Then we have the following.

1. $\mu_{x,n}$ converges to a probability measure $\mu_{x}$ on $\mathrm{Y}_{x}$ weakly as $narrow\infty$ for
each $x\in X$ .

2. $G_{x,n}$ converges to a continuous plurisubharmonic function $G_{x}$ locally
uniformly on $\mathbb{C}_{*}^{2}$ as $narrow\infty$ for each $x\in X$ . This function does not de-
pend on the choice of local parametrizations at $x_{j},j\geq 1$ and potentials
$G_{x,0}$ .

3. $\mu_{x}=(i_{x}^{-1})_{*}(dd^{c}(G_{x}\mathrm{o}s))$ where $s$ is a local section of $\pi’$ : $\mathbb{C}_{*}^{2}arrow\overline{\mathbb{C}}$ . Fur-
ther $G_{x}(z, w)\leq\log|(z,w)|+O(1)$ as $|(z, w)|arrow\infty$ and $G_{x}(\lambda z, \lambda w)=$

$G_{x}(z, w)+\log\lambda$ for each $\lambda\in \mathbb{C}$ , for each $x\in X$ .

4. $G_{x_{1}}\mathrm{o}R_{x}=d(x)\cdot G_{x}$ for each $x\in X$ .

5. if $xarrow x’$ then $G_{x}arrow G_{x’}$ uniformly on $\mathbb{C}_{*}^{2}$ .

6. $(f_{x})_{*}\mu_{x}=\mu_{x_{1}},$ $(f_{x})^{*}\mu_{x_{1}}=d(x_{1})\cdot\mu_{x}$ for each $x\in X$ .

7. $\mu_{x}$ puts no mass on polar subsets of $\mathrm{Y}_{x}$ for each $x\in X$ .

8. $x\vdash+\mu_{x}$ is continuous with respect to the weak topology of measures in
Y.

9. supp$(\mu_{x})=J_{x}$ for each $x\in X$ .

10. $J_{x}$ has no isolated points for each $x\in X$ .

11. $x\vdash+J_{x}$ is lower semicontinuous with respect to the Hausdorff metric
in the space of non-empty compact subsets of Y. That is, if $x,$ $x^{n}\in$

$X,$ $x^{n}arrow x$ as $narrow\infty$ and $y\in \mathrm{Y}_{x}$ , then there exists a sequence $(y_{n})$ of
points in $Y$ with $y_{n}\in \mathrm{Y}_{x^{n}}$ for each $n\in \mathbb{N}$ such that $y_{n}arrow y$ as $narrow\infty$ .
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4 Entropy

Now we show some results on entropy of rational maps on $\overline{\mathbb{C}}$-bundles without
any conditions on (semi-) hyperbolicity, using the arguments in [J2].

Notation: Let $(Y, d)$ be a metric space. Let $f:\mathrm{Y}arrow Y$ be a continuous
mapping. For any compact subset $Z$ of $\mathrm{Y}$ we denote by $h(f, Z)$ the entropy
of $f$ on $Z$ . We set $h(f)=h(f, \mathrm{Y})$ . For any $f$-invariant probability measure
$\nu$ on $\mathrm{Y}$ we denote by $h_{\nu}(f)$ the metric entropy of $f$ with respect to $\nu$ . If
$g$ : $Xarrow X$ is a continuous mapping on a compact metric space $X$ and
$\pi$ : $\mathrm{Y}arrow X$ is a continuous mapping such that $g\mathrm{o}\pi=\pi \mathrm{o}f$, then we denote
by $h_{\nu}(f|g)$ the metric entropy of $f$ relative to $g$ with respect to $\nu$ . See [J2]
for these notations and definitions.

Theorem 4.1. Let $(\pi, \mathrm{Y},X)$ be $a\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a rational
map fibered over $g:Xarrow X$ . Then the following holds.

1. $h(f, Y_{x}) \leq\lim\sup_{narrow\infty}\frac{1}{n}\sum_{j=1}^{n-1}\log d(x_{n})$ for any $x\in X$ .

2. If $\mu$ is an $f$ -invariant probability measure on $\mathrm{Y}$, then we have

$h_{\mu}(f|g) \leq\int_{X}\log d(x)d(\pi_{*}\mu)(x)$ .

3. $h(f) \leq\sup\{h_{\pi_{*}\mu}(g)+\int_{X}\log d(x)d(\pi_{*}\mu)(x))\}$ , where the supremum is
taken over all f-invariant probability measures $\mu$ on Y.

Proof. The statement 1 is shown by the following lemma 4.2. The statement
2 and 3 follows from the statement 1, ergodic theorem, Abramov-Rohklin
formula

$h_{\mu}(f)=h_{\pi_{*}\mu}(g)+h_{\mu}(f|g)$

and the variational principle: that is, if $\nu’$ is a $g$-invariant probability measure
on $X$ , then

$\sup h_{\nu}(f|g)=\int_{X}h(f, \mathrm{Y}_{x})d\nu’(x)$ ,

where the supremum is taken over $\mathrm{a}\mathrm{U}f$-invariant probability measure $\nu$ on
$Y$ such that $\pi_{*}\nu=\nu’$ . $\square$

Lemma 4.2. Let $(\pi, \mathrm{Y},X)$ be $a\overline{\mathbb{C}}$-bundle. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a rational
map fibered over $g$ : $Xarrow X$ . Then for every $\delta>0$ there exists a constant
$C(\delta)>0$ with the following property.for every $x\in X$ and every $n\in \mathbb{N}$ there
exists an $(n, \delta)$ -spanning set in $\mathrm{Y}_{x}$ with at most $C(\delta)n^{5}d_{n}(x)$ elements.

164



Proof. This can be shown by the same arguments in the proof of Lemma 3.3
in [J2]. $\square$

Theorem 4.3. Let $(\pi, \mathrm{Y}, X)$ be $a\overline{\mathbb{C}}$-bundle satisfying the continuous forms
condition with a family $(\omega_{x})_{x\in X}$ of positive $(1, 1)$ -forms. Let $f$ : $\mathrm{Y}arrow \mathrm{Y}$ be a
rational map fibered over $g:Xarrow X$. Assume that $d(x)\geq 2$ for any $x\in X$ .
Let $\mu’$ be a $g$ -invariant Borel probability measure on X. Define the measure
$\mu$ on $\mathrm{Y}$ by:

$\langle\mu, \varphi\rangle=\int_{X}(\int_{\mathrm{Y}_{x}}\varphi(y)d\mu_{x}(y))d\mu’(x)$

for continuous funcitions $\varphi$ on $\mathrm{Y}$, where $\mu_{x}$ is the measure in Proposition 3.1.
Then we have the following.

1. $\mu$ is f-invariant.
2. if $\mu’$ is ergodic, then so is $\mu$ .

3. if $\mu’$ is $(strongly)mixing_{f}$ then so is $\mu$ .

4. $h_{\mu}(f|g)= \sup h_{\nu}(f|g)=\int_{X}\log d(x)d\mu’(x)$ , where the supremum is
$\nu$

taken over all $f$ -invariant probability measures $\nu$ satisfying $\pi_{*}\nu=\mu’$ .

Proof. By the same arguments of the proof of Theorem 6.1 in [J2], Proposi-
tion 3.1 and Theorem 4.1. $\square$

Remark 5. In some cases, the maximal entropy measure of $f$ (or the mea-
sure $\mu$ with $\pi_{*}\mu=\mu’$ which gives us the equality in Therem 4.3.4) is unique.
For example,

$\bullet$ the case that there exists a constant $d\geq 2$ satysfying that $d(x)=d$ for
any $x\in X$ . $([\mathrm{J}2])$ .

$\bullet$ $(\pi, \mathrm{Y},X)$ is the trivial bundle assosiated with a generator system of
any (with a slight assumption) finitely generated rational semigroup.
$([\mathrm{S}5])$ (In this case, each $d(x)$ may be different and might be equal to
1. )

It is a conjecture that for any fibered rational map $f$ with $d(x)\geq 2,$ $x\in X$ ,
the maximal entropy measure of $f$ (or the measure $\mu$ with $\pi_{*}\mu=\mu’$ which
gives us the equality in Therem 4.3.4) is unique.
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5 Tools and Proofs
To show theorems in the section2, we need the followings. For the research
on semi-hyperbolicity of usual dynamics of rational functions, see [CJY] and
[Ma].

Lemma 5.1 $([\mathrm{C}\mathrm{J}\mathrm{Y}])$ . (distortion lemma for proper maps) For any
positive integer $N$ and real number $r$ with $0<r<1$ , there exists a constant
$C=C(N,r)$ such that if $f$ : $D(\mathrm{O}, 1)arrow D(\mathrm{O}, 1)$ is a proper holomorphic map
with $\deg(f)=N$ and $f(\mathrm{O})=0$ , then

$D(f(z_{0}), C)\subset f(D(z_{0},r))\subset D(f(z_{0}),r)$

for any $z_{0}\in D(0,1)$ . Here we can take $C=C(N, r)$ independent of $f$ .
The following is a generalized distortion lemma for proper maps.

Lemma 5.2 $([\mathrm{S}4])$ . Let $V$ be a domain in $\overline{\mathbb{C}}$ , $K$ a continuum in $\overline{\mathbb{C}}$ with
$diam_{S}K=a$ . Assume $V\subset\overline{\mathbb{C}}\backslash K$. Let $f:Varrow D(\mathrm{O}, 1)$ be a proper holomor-
phic map of degree N. Then there exists a constant $r(N, a)$ depending only on
$N$ and $a$ such that for each $r$ with $0<r\leq r(N, a)$ , there exists a constant
$C=C(N, r)$ depending only on $N$ and $r$ satisfying that for each connected
component $U$ of $f^{-1}(D(\mathrm{O}, r))$ ,

$diam_{S}U\leq C$ ,

where we denote by $diam_{S}$ the spherical diameter. Also we have $C(N, r)arrow \mathrm{O}$

as $rarrow 0$ .

The following theorem says that the backward dynamics of semi-hyperbolic
dynamics on $\overline{\mathbb{C}}$-bundles are ”contracting” in a sense. Moreover, we will show
that the union of the fiberwise Julia sets is copact. This is very important
and useful property. Note that there exists a rational map on $\mathrm{a}\overline{\mathbb{C}}$-bundle
which is not semi-hyperbolic satisfying that the union of the fiberwise Julia
sets is not compact.

Theorem 5.3 $([\mathrm{S}4])$ . (Key theorem) Let $(\pi, \mathrm{Y}, X)$ be $a\overline{\mathbb{C}}$-bundle. Let
$f$ : $Yarrow \mathrm{Y}$ be a rational map fibered over $g$ : $Xarrow X$ . Assume $f$ is semi-
hyperbolic along fibers and satisfies the condition $(Cl)$ . Then the following
hold.

1. Let $z\in \mathrm{Y}$ be any point with $z\in F_{\pi(z)}$ . Then for any local parametriza-
tion $(i_{x})$ and any open connected neighborhood $U$ of $i_{\pi(z)}^{-1}(z)$ in $\overline{\mathbb{C}}$,
there exists no subsequence of $(i_{\pi f^{n}(z)}^{-1}\mathrm{o}f_{\pi(z)}^{n}\mathrm{o}i_{\pi(z)})_{n}$ converging to a
non-constant map locally uniformly on $U$.
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2.
$\tilde{J}(f)=\bigcup_{x\in X}J_{x}$

.

3. Suppose the condition $(C\mathit{2})$ is satisiied. Then there exist positive con-
stants $\delta,$ $L$ and $\lambda(0<\lambda<1)$ such that for any $n\in \mathbb{N}$ ,

$\sup\{diam_{\mathrm{Y}}U|U\in c(\tilde{B}(z, \delta), f_{x,}^{n}.), z\in\tilde{J}(f), x_{n}\in g^{-n}(\pi(z))\}\leq L\lambda^{n}$ ,

where we denote by $\tilde{B}(z, \delta)$ the ball in $\mathrm{Y}_{\pi(z)}$ with the center $z$ and the
radius 5 with respect to the metric in $\mathrm{Y}_{\pi(z)}$ induced by the metric of Y.

4. Assume that $(\pi, \mathrm{Y},X)$ satisfies the continuous forms condition and that
$d(x)\geq 2$ for each $x\in X$ . Then we have that $x-+J_{x}$ is continuous with
respect to the Hausdorff metric in the space of compact subsets of Y.

5. Assume that $(\pi, \mathrm{Y},X)$ satisfies the continuous forms condition with a
family $(\omega_{x})$ of positive $(1, 1)$ -forms and that $d(x)\geq 2$ for each $x\in X$ .
Then for any compact subset $K$ of $\tilde{F}(f)$ , we have that $\overline{\bigcup_{n\geq 0}f^{n}(K)}\subset$

$\tilde{F}(f)$ and there exist constants $C>0$ and $\tau<1$ such that for each $n$ ,
$\sup||(f^{n})’(z)||\leq C\tau^{n}$ , where we denote by $||(f^{n})’(z)||$ the norm of the
$z\in K$

derivative measured from $\omega_{\pi(z)}$ to $\omega_{g^{n}(\pi(z))}$ . In particular, the condition
$(C\mathit{2})$ is satisfied.

Proof. of Theorem 2.1. Suppose that there exists a point $x\in X$ such that $J_{x}$

has positive measure. Then there exists a Lebesgue density point $y\in J_{x}$ . Let
$y_{n}=f_{x}^{n}(y)$ and $x_{n}=g^{n}(x)$ for any $n\in \mathbb{N}$ . Let $\delta$ be a positive number which
is sufficiently small. Let $U_{n}$ be the element of $c(\tilde{B}(y_{n}, \delta),$ $f_{x}^{n})$ containing
$y$ , where we denote by $\tilde{B}(y_{n}, \delta)$ the ball in $\mathrm{Y}_{x_{n}}$ with respect to the metric
induced by the metric of Y. By Lemma 5.1 and Lemma 5.2, we have that for
any local parametrization $i_{x}$ ,

$\lim\frac{m(i_{x}^{-1}(U_{n}\cap J_{x}))}{m(i_{x}^{-1}(U_{n}))}=1$ ,

where $m$ denotes the spherical measure of $\overline{\mathbb{C}}$. This implies that

$\lim\frac{m(1_{x_{n}}^{-1}(\tilde{B}(y_{n},\delta)\cap F_{x_{n}}))}{m(i_{x_{n}}^{-1}(\tilde{B}(y_{n},\delta)))}=0$ , (2)

where $i_{x_{n}}$ denotes a local parametrization. There exists a subsequence $(n_{j})$ of
$(n)$ , a point $y_{\infty}\in Y$ and a point $x_{\infty}\in X$ such that $y_{n_{j}}arrow y_{\infty}$ and $x_{n_{j}}arrow x_{\infty}$

as $jarrow\infty$ . By (2) and Theorem 5.3.2, we have that $\tilde{B}(y_{\infty}, \delta)\subset J_{x_{\infty}}$ . On the
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other hand, by the condition (C2) we have that for any $a\in X$ the Julia set
$J_{a}$ has no interior point. This is a contradiction.

$\square$

Proof. of Theorem 2.2. By Lemma 5.1 and Lemma 5.2, we can show that
there exists a constant $C>0$ such that

$\lim\inf_{rarrow 0}\{\frac{d(\tilde{u}_{x}(y),\tilde{u}_{x}(y’))}{d(\tilde{u}_{x}(y),\tilde{u}_{x}(y’))},|d(y, y’)=d(y,y’’)=r\}\leq C$ ,

where $\tilde{u}_{x}=\mathrm{J}_{v(x)^{\mathrm{o}u_{x}\mathrm{o}i_{x}}}^{-1}$ for some local parametrizations $i_{x}$ and $j_{v(x)}$ and $d$

denotes the spherical metric. By the theorem concerning the definition of qc
maps (that we can replace ”$\lim\sup$ ” by ” $\lim\inf$’ in the definition of qc map
using the circular dilatation) in [HK], we can show that $u_{x}$ is a quasiconformal
mapping on $\mathrm{Y}_{x}$ . Since for any $x\in X$ the 2-dimensional Lebesgue measure of
the fiberwise Julia set $J_{x}$ of $f$ is equal to zero, which is the consequence of
Theorem 2.1, we have that $u_{x}$ is holomorphic on $\mathrm{Y}_{x}$ . $\square$

Proof. of Theorem 2.4. Suppose there exists a sequence $(x_{n})$ of points $X$

and a sequence $(B_{n})$ of annulus with $B_{n}\subset \mathrm{Y}_{x_{n}}$ such that $B_{n}$ separates $J_{x_{n}}$

and $\mathrm{m}\mathrm{o}\mathrm{d} (B_{n})arrow\infty$ . We can assume diam $\mathrm{Y}(B_{n})arrow 0$ . Let $y_{n}\in J_{x_{n}}\backslash B_{n}$

be a point for any $n\in \mathbb{N}$ . By Lemma 5.1 and Lemma 5.2, for any $n\in \mathbb{N}$

there exists a positive integer $m_{n}$ such that $f^{m_{n}}(B_{n})$ contains an annulus $\tilde{B}_{n}$

satisfying that

$\bullet f^{m_{n}}(y_{n})\in J_{g^{m_{n}}x_{n}}\backslash \tilde{B}_{n}$ ,

$\bullet$ if we denote by $e_{n,1}$ the distance from $f^{m_{n}}(y_{n})$ to the outer boundary
of $\tilde{B}_{n}$ and we denote by $e_{n,2}$ the distance from $f^{m_{n}}(y_{n})$ to the inner
boundary of $\tilde{B}_{n}$ then $e_{n,1}\sim 1$ and

$\bullet e_{n,2}/e_{n,1}arrow 0$ as $narrow\infty$ .

We can assume that $f^{m_{n}}(y_{n})$ tends to some point $y\in\tilde{J}(f)$ . By Theorem 5.3.2,
we have $y\in J_{\pi(y)}$ . Since $e_{n,1}\sim 1$ and $e_{n,2}/e_{n,1}arrow\infty$ , by Proposition 3.1.11
we conclude that $y\in J_{\pi(y)}$ is an isolated point of $J_{\pi(y)}$ . But this contradicts
to Proposition 3.1.10. $\square$

Proof. of Theorem 2.6. We can show the statement in a similar way to that
in [CJY] using Theorem 5.3.3, Theorem 2.4, Lemma 5.1 and Lemma 5.2.

The procedure is: first for any $x\in X$ we take Green’s function $H_{x}$ in $A_{x}$ .
Then by Propotion 3.1and the arguments in the previous paragraph of it, $H_{x}$

can be extended to $\mathrm{Y}_{x}$ and $(x,y)\vdash+H_{x}(y)$ is continuous in Y.
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Secondly we show that any Green’s line in $A_{x}$ lands to some point in
$J_{x}$ . Finally by distortion lemmas for proper maps we show that each point
$y\in A_{x}$ can be joined with a $c$-carrot with core Green’s line from $\infty$ to $y$ .
Since the constants in Theorem 5.3.3 and Theorem 2.4 are not depending on
$x\in X$ , we can choose $c$ not depending on $x\in X$ . $\square$
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