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Cantor bouquet of holomorphic stable manifolds
for a periodic indeterminate point
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Abstract

In the rational dynamics of the complex projective plane, we construct a full-2-
shift family of holomorphic stable manifolds of a periodic indeterminate point with
two periodic orbits.

1 Introduction

The aim of this paper is a geometric study of the local dynamics of a rational mapping
¢ : PC? — PC? with a periodic indeterminate point Qo € PC2. A point Qg is called an
indeterminate point of ¢ if the intersection of the closures p(U), where U C PC? runs a
neighborhood of @)y, is not a point.

A periodic indeterminate point naturally arises in the dynamics of Newton’s method as
a multiple root of a system of equations. Newton’s method for the system of polynomial
equations F(z,y) = (Fi(z,y), F2(z,y)) = (0,0) is defined by the rational map NF :
(z,y) = (z,y) — (DF(sy)) ' F(z,y). If F has a multiple root (z¢,yp), i-e., F(zo,yp) =0
and det DF(,, ,,) = 0, then the image NF(z¢,yo) is not a single-point but an algebraic
curve that passes through (zg,yg). A multiple root is thus an ‘indeterminate attractor.’
An open problem of geometric dynamics is to give a complete description of the local
convergence of Newton’s method about a multiple root.

In this paper we study a general periodic indeterminate point Qg in the plane with
the simplest indeterminancy. If a point on the image-curve returns to Q, and satisfies a
stability condition, then the periodic orbit has a local holomorphic stable manifold. If,
moreover, two points ¢, g on the image-curve return to Qg, the local stable set is not
two curves but a family of holomorphic curves indexed by the full-2-shift £(2) = {0, l}N,
which we call a Cantor bouquet of holomorphic stable manifolds. The shift operator acts
naturally on the family. In the case that the orbits of q; and g, come only close to Q,,
we still have the Cantor family of holomorphic curves as the maximal local invariant set.

The local transformation that generates the Cantor bouquet seems like a couple of
pieces of ‘dango’, a traditional sweet of the author’s country, pierced by a bamboo stick.
It can also be compared to ‘barbecue’. It-is defined on two (once-punctured) polydisks
and it maps each of them homeomorphically onto a long-and-narrow region that intersects
through them.
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The Cantor bouquet is obtained by defining two contraction mappings in the function
space. Our argument of the construction of each holomorphic curve is parallel to the
standard unstable manifold theorem for a hyperbolic fixed point in [1]. A keypoint is that
the blow-down transformation is naturally super-contracting in one direction.

Numerical experiments are given at the end of the paper.
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2 Result

Here we state the main result.

In the complex projective plane PC?, we choose a pomt Qo- Let m: E — PC? be
a blow-up over Qo, where 771(Qo) ~ PC'. Let U be a neighborhood of Qo and let
V = n~}(U). Consider local coordinates (z,y)pc> and (u,v)g such that Qo = (0,0)
and 7 : (u,v)g — (v, uv)pc2.

Let ¢ = 1,2 throughout this paper. Choose two points ¢; = (0, a,)E'E 771(Qo) and
their nelghborhoods Vi3 qgi. Let By = D(O p) X D(O re) CU, B; = D( ,p) X D(al, ) C
Vi be closed polydisks with p,7g,7 > 0. For M > 0, let L; = = Lipy,(D(0, p), D(cs,7))
be the set of all Lipschitz functions = : D(0,p) — D(oy,r) with Lipschitz constants
Lip(r) < M, which is a bounded and complete metric space under the uniform topology.

Let $(2) = {1,2}" be a Cantor set and denote its element by w = wow w, - - - € X(2),
we € {1,2}, 0 < k < co. Let s : $(2) — 3(2) be the shift operator s(wowlwz---) =
wiwpws - - - Let C(X(2),L; U Ly,) be the space of continuous maps o : ¥(2) - Ly UL,.

PC?

Definition 1 A ‘Cantor family of holomorphic curves’ is a continuous injective map
o : X(2) = Ly UL, such that the restriction to the open disk o(w)|D(0, p) : D(0,p) —
D(au,,7) is holomorphic for eachw € £(2). It is called a ‘Cantor bouquet’ if graph(o(w))N
graph(o(w')) = {qu, } for any w,w’ E Z(2) with wo = wy. Its ‘graph’ is the union of the
curves G(0) = Uyex(2) graph(o {0' )(2) | (w, z) € (2) x D(0,p } C B; UB,.

Definition 2 Let f : Vi UV, — V be a mapping that may have an indeterminate point
in each V;. But suppose that the inverse f~' has two well-defined differentiable branches
V = V.. Let o be a Cantor family of holomorphic curves defined above. We say that (i) o
is “invariant’ under f if graph(o(w)) = By, N f~'(graph(o(s(w)))) for each w € B(2), and
(1) G(o) is the ‘mazimal local invariant set’ of f in By UB, if G(o) = Mo fM(B1UBy).

Suppose that o is a Cantor bouquet. We say that (iii) G(o) is the Docal stable set’
of {q1,92}, denoted by Wy, ({q1,4}), if G(o) is the mazimal local invariant set of f in
B, UB; and f"(2) = {q1,9:} asn — oo for every z € G(o)\ {q1, g}

Let n; > 0 be integers. Let R be the space of rational maps ¢ : PC? — PC? of a
fixed degree > 2 such that (i) Qg is an indeterminate point of ¢, (ii) o7 1 E — PC?is a
well-defined differentiable map on V/, (iii) there is no degenerate set passing through Q
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(a degenerate set is a curve that has a Zariski open subset whose well-defined image is a
point), and (iv) ¢™n|V; : V; = U is a diffeomorphism onto its image. For each ¢ € R, we
define the local dynamics f,: ViUV, =V by folVi = iV, = V.

Theorem 3 (Main Theorem) Let po € R. Suppose that pgin(g;) = Qo and that the
inverse go; = (¢o'7) ! has a Taylor ezpansion go; : (z,y)pcz > (az+biy+---,a; + ez +
diy + -+ -)p with 1 < |a; + b;a;|. There exzist p,ro,7, M > 0 defining L;, and there ezists
a Cantor bouquet 0®° of holomorphic curves invariant under f,, such that G(o*°) =
Wi .({g1,92}). There exists a neighborhood X C R of po and a continuous mapping
X 3 ¢+ 0¥ € C(B(2),L; ULy) such that 0¥ is a Cantor family of holomorphic curves
invariant under f, and G(o¥) is the mazimal local invariant set of f, for each .

3 Proof

Here we prove the Main Theorem.

Let 7,7 = 1,2 in the following. Let p; : V 3 (v,v) = u € C, pp : V 3 (u,v) = v € C,
and S; : U 3 (z,y) = (a;iz + biy,a; + ciz + d;y) € V. Let My > 0. Choose M > 0 and
p,7o,7,€ > 0 such that p(la;| +7) < 7o, M(p+€) +€ <7, € < p(lai + ba;] — 1 —4),
d+ %{%&l (1+48) < M, and pCy < 1, where § = 2rCy +€Cy, Cp = (M +1)(Ci+¢€),Cy =
max(|by|,|b2|,|di],|d2]), and Cp = max(1,|ay| + 27, |as| 4+ 2r). Choose a neighborhood
X C R of pq such that |p;g;(0,0)| < ¢, |p2g:(0,0) — ;] < € and Lip(g; — S;) < € for
gi = (pmn|Vi) ™ of p € X.

Fix a ¢ € X. Let 7; € L;. We are going to define two contractions I, in the function
space L U Ly by

Loilrs) = P29i"(id’7j)[l’lgi7f(idaTj)]_l € L;.
Let 7jo € L; be a constant function Tjo(u) = a;. Since the mapping u u(r;(uw) —
a;) has Lipschitz constant < 2r, we have Lip(n(id,7;)) < C3, and Lip(prSim(id, ;) —
peSim(id, 7)) < 2rCy, k = 1,2.

Lemma 4 The mapping T',,(7;) : D(0,p) — C is well-defined.
(proof) For k = 1,2,

Lip(prgim(id, 7;) — peSim(id, 750))
< Lip(pe)Lip(g: — Si)Lip(w(id, 75)) + Lip(paSim(id, 75) — peSim(id, 750))
< €Cy+2rCy = 6.

We can apply the Lipschitz inverse function theorem in [1], Appendix I. Thus p;g;m(id, 7;)
is a homeomorphism onto its image with Lipschitz constant

< 1
- |a,' + b,-aj| -4

Lip([p1gim(id, ;)] ") <1, (1)

and the image p;gi7(id, 7;)(D(0, p)) contains the closed disk with center p1gim(id, 7;)(0)
and radius p(|a; + b;a;] — &), which contains D(0, p). g
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Lemma 5 The graph transform I'y, : L; — L; is well-defined.

(proof) First,

(mi)(w) — aul

< Pa(m3)(w) — Coi(ms)(prgim(id, 73)(0))] + ITgi(75) (prgim (id, 7)(0)) — o
< Lip(Tg (7)) [u — prgim(id, 73)(0)] + |pagim(id, 7)(0) — |

< M(p+e)+e<r.

< Lip(f~ )Llp(g f)Lip(g~1) in general, we have Lip([p; g;n(id, ;)] -

Since Lip(f~t—g~!
{) < Bl 4 biag|”

[p1Sim(id, 7j0)] ")

LiP(Fy.'(TJ') - FS-'(TJ'O))
Lip(pag:m(id, 'l',-)[plg,-ﬂ'(id,*rj)]“1 — p2Sim(id, 750) [p1 Sim(id, Tjo)]_l)

IA I

Lip(pagim(id, ;) — p2.5',-'7r(id,Tjo))Lip([plgivr(id,Tj)]‘l) :
+Lip(p2Sim(id, 7o) ) Lip([p1gim(id, ;)] ™" — [p1Sim(id, 750)] 1)
< 8+ 8| + diaj| |ai + biay| 7,

and thus Lip(T'y,(7;)) < Lip(Ty,(75) — Ts,(mj0)) + Lip(T's;(rj0)) < M. y
Lemma 6 The graph transform T',, is a contraction:

lngi(Tj) - Fg;("}")” < pCo ”TJ' - TJ'” :
(proof) Consider a point (u,v) € B; with pig;w(u,v) € D(0, p). First,

lpkgiﬂ(u,v) - Pkgi"r(uﬂ'ju)l ~
< Lip(px)Lip(g: — S;) Im(u,v) — w(u, 7u)| + |prSim(u,v) — ppSim(u, 7ju)]
< eplv—T7i(u)| 4 Crp v — 75(u)|

for k = 1,2. Since pygim(u,;u) = Tg,(r;)(p1gim(u, Tju)), we have

lp2gim(u,v) — Ty, (Tj)(plgi”(mv))l
Ip2gim(u,v) — pagim(u, Tju)| + Lip(Ty, (75)) [prgim (u, 7ju) — prgim(u, v)]
ple+ Cr) v — 7i(u)| + Mp(e + C1) Jo — 75(u)|
- pCov — 7i(u)|. (2)

IIA A

By taking v = 7}(u), we obtain the lemma. y

P =Tg, - Ty be the composite of the graph transforms. We define
"’0 Wn1 wo wy,

the mapping ¢¥ : £(2) — L; U L2 by

{o*(w)} = fjl Couvgm. . (Lu)-
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Lemma 7 The mapping 0¥ is a Cantor family of holomorphic curves invariant under
fo- The graph G(o¥) is the mazimal local invariant set of f, in By U By. The mapping
X 5 ¢+ 0¥ € C(X(2),L; ULy) is also continuous.

For ¢ = g, 0%° is a Cantor bouquet and G(c%°) = W .({q1,¢2})-

(proof) First, we have 'y, (d¥(s(w))) € Ty, T4y, -gu,_, (Lw,). By the uniqueness of
o¥(w), we obtain I'y, (0%(s(w))) = o¥(w). This implies the invariance of o%.

For w, w' € X(2) with wy = w, 0 < k < n, we have 0¥ (w),0%(w’) € Ty, g, _, (Luw,),
and hence ||o¥(w) — o¥?(w')|| < 27(pCh)". Thus ¢¥ is continuous.

If w # w' € %(2), there exist n such that w, # w). But we have o¥(w) €
Lguy-gw,_, (L), and the graph transform Ty, is injective because 7 |(V\7~'(Qo)) and
g; are diffeomorphisms. Thus o¥(w) # o¥(w') and 0¥ is injective.

If (u,v) € Buy N (Guwo™ - Gwn_y 7)(Buw, ), there exists a sequence (ug,v) € By,, 0 <
k < n, such that (ug,v9) = (u,v) and gy, _,7(uk,v%) = (Uk—1,v%—1). By (2), we have
lv — o?(w)(u)| < 2r(pCy)". Taking n — 0o, we obtain (u,v) € graph(o?(w)).

Let H; = {r; € L; | ;|D(0, p) is holomorphic}. Then H; U H, is a closed subset of L;
invariant under the graph transform: I'y,(H;) C H;. Thus o¥(w) € H; U H,.

For ¢ = g, we have go;w(B;) N go:(B;) = {¢:}. Thus o is a Cantor bouquet of
holomorphic curves. By (1) and go;w(g;) = ¢i, we obtain G(o%°) = W .({q1,42})-

The mapping ¢ — Iy, is continuous on X in the uniform topology. For two pairs of
contraction mappings (['y,,T'y,) and ([, Ty ) with “P o« —Lg ” < € on the bounded metric

space L ULy, with contraction constants < pCy, we obtain Ila"’(w) — a""(w)" < ¢/(1—pCh)
for each w € £(2). Thus ¢ — o¥ is continuous. g

4 Experiments

Here is an example of a periodic indeterminate point with two periodic orbits, having the
Cantor bouquet of stable manifolds.

Let po : (z,y) = (y* + 23/2 — 62%y + 18zy® — 33y3/2) /2%, (zy + zy® — 3y®)/z?). The
origin Qo = (0,0) is an indeterminate point. Its image is the conic z — y? = 0 that
passes through Qg itself.” We also have ¢((4,2) = Qp. So there are two periodic orbits
Qo — [4,2,1] — Qo (of period two) and Qo — Qo (of period one). This example also
satisfies the conditions of our main theorem.

Figure 1 is the region V} = {|z| < 0.1, |y| < 0.1} in the real (z,y)-plane, in 1024 x 1024
bitmap image. Figure 2 is VJ = {|z — 4| < 1,|y — 2| < 1}. In Figure 1, the gray region
represents the subset V' N o5 (V/ U VJ); the black region is the union of the subsets
Vi 0 @5 (V) N pa®(V{ UV;) with Vi 0 (V) N 65 2(V0) N 93 (V; U V).

In Figure 2, the gray region is the subset V; N g (V); the black region is the subset
Vs N (V) Npg (VU V).
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