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Abstract

The conjecture that hyperbolic rational maps are dense in the space of all
rational maps of degree d is one of the central problems in complex dynamics.
It is known that no invariant line field conjecture implies the density of
hyperbolicity (see [MS]).

In the case of quadratic polynomials, McMullen shows that a robust
infinitely renormalizable quadratic polynomial carries no invariant line field
on its Julia set [Mc].

In this paper, we give the extension of renormalization and the above
theorem of McMullen to polynomial of any degree.

1 Notation and backgrounds

Notation. Let f be a polynomial of degree d.

o The Fatou set F(f) of f is the maximal open set of C where {f™} is normal.

The Julia set J(f) of f is the complement of F'(f).

The filled Julia set K(f) of f is the set of all point in C whose forward orbit
by f does not tend to infinity. Note that K (f) = J (f)-

Let C(f) be the set of critical points of f.

The postcritical set P(f) is the closure of the strict forward image of critical
points by f:

P(f) = ()

n>1

*Partially supported by JSPS Research Fellowship for Young Scientists.
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Definition. A polynomial-like map f: U — V is a proper holomorphic map with
UcV.

The filled Julia set K(f) of a polynomial-like map f : U — V is the set of all
point z € U such that f*(z) € U for all n > 0. The Julia set J(f) is the boundary
of K(f).

Two polynomial-like map f and g are hybrid equivalent if there is a quasicon-
formal map ¢ from a neighborhood of K(f) to a neighborhood of K(g), such that

pof=go¢and dp=0on K(f).

Theorem 1.1. Every polynomial-like map f is hybrid equivalent to some polyno-
mial g of the same degree. Furthermore, if K(f) is connected, g is unique up to
affine conjugacy.

See [DH, Theorem 1].

Lemma 1.1. Let f; : U; — V; be polynomial-like maps of degree d; for + = 1,2.
Suppose fi = fo = f on U = Uy NU,y and let U’ be a component of U with U’ C
f(U"Y =V'. Then f :U" — V' is polynomial-like map of degree d < min(dy,d;),
and '

K(f)=K(fi)nK(f,)nU".
Moreover, if d = d;, then K(f) = K(f:).
See [Mc, Theorem 5.11].

Lemma 1.2. Let f be a polynomial with connected Julia set. Let f*:U — V be a
polynomial-like restriction of degree more than 1 with connected filled Julia set K.
Then:

1. The Julia set of f*: U — V is contained in J(f).
2. For any closed connected set L contained in K(f), LN K is also connected.
See [Mc, Theorem 6.13].

Definition. A line field supported on E C C is the choice of a real line through
the origin of T,C at each z € E. It is equivalent to take a Beltrami differential
p = p(z)dz/dz supported on E with |u| = 1.

We say f carries an invariant line field on its Julia set if there exists a measurable
Beltrami differential ¢ on C such that f*u = p and || = 1 on a set of positive
measure contained in J(f) and vanishes elsewhere.

Conjecture 1.1 (No invariant line fields). A polynomial carries no invariant
line field on its Julia set.
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If this conjecture is true, the following one is also true. Here the polynomial f
is hyperbolic if all critical points tend to attracting periodic cycles under iteration.

Conjecture 1.2 (Density of hyperbolicity). Hyperbolic maps are dense in the
family of polynomial of degree d.

See [MS].

2 Renormalization

In this section, we give the definition of renormalization and describe some basic
properties.

Deﬁnition. [ is called renormalizable if there exist open disks U,V C C satisfy-
ing the followings: :

1. UNC(f) # ¢.

2. f":U — V is a polynomial-like map with connected filled Julia set.

3. For each ¢ € C(f), there is at most one i, 0 < i < n, such that ¢ € FiU).

4. n>1or U p C(f).

A renormalization is a polynomial-like restriction f* : U — V as above.
Notation. Let f*: U — V be a renormalization.

e The filled Julia set of a renormalization f* : U — V is denoted by K,(U)
and the postcritical set by P,(U).

o For « = 1,...,n, the ith small filled Julia set is denoted by K,(U,7) =
IR (U)).

o The ¢th small postcritical set is denoted by P,(U,7) = K,.(U,7) N P(f).
o Ch(U,1) = Ky(U,:)NC(f). By definition, C,, (U, n) is nonempty and C, (U, ?)

is empty with at most d — 1 exceptions.

o Ko(U) =i, Kn(U,7) is the union of the small filled Julia sets.

o C,(U) =i, Cu(U,i) is the set of critical rpoints appear in the renormaliza-
tion f*: U — V.

o Let V,(U,7) = f{(U) and U,(U,1) be the component of fi="(U) contained in
Vo(U,2). Then f"* : U,(U,7) — V,(U,1) is polynomial-like map of the same
degree as f*: U — V. ’
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Now, when it is clear which U we consider, we will simply write /{,(z) instead
of K,(U,1), and so on.

In this paper, we fix a critical point ¢g € C(f) and consider only renormaliza-
tions about co, i.e. C,,(U) = C,(U,n) contains c.

The next proposition implies that two renormalizations are essentially the same
if their period and critical points are equal.

Proposition 2.1. Let f*: U* — V* be renormalizations for k = 1,2.
If for any i, 0 < i < n, C,(U',i) = C,(U%,1), their filled Julia sets are equal.

Proof. Let K* be the filled Julia set of f* : U¥ — V*. By Lemma 1.2, K = K'ni?
is connected.

Let U be the component of U' N U? containing K. Let V = f*(U). Since V
contains f(K) = K,V contains U. By Lemma 1.1, f* : U — V is polynomial-like
with filled Julia set /{. Since critical points of these three maps are equal, we have

K=K'=K2 O

Proposition 2.2. Let f*: U, — V, and f* : U, — V} be renormalizations about cy.
Then there exists a renormalization f¢: U — V with filled Julia set K, = K, N K,
where c is the least common multiple of a and b.

Proof. By Lemma 1.2, K = K, N K, is connected.
Let

U= {z€U,| fi*(z) €U, forj:l,...,g—'l}

ﬁbZ{ZEUbIfjb(Z)EUbforj:1,...,—z--—1}.

Then f¢: U, — V, and f¢: U, — Vj are polynomial-like. Let U, be a component,
of U, N U, which contains K. Then by Lemma 1.1, fe:U. — f¢(U,) is polynomial-
like map with filled Julia set K.

Suppose ¢ € C.(7). then ¢ € C,(j) is equivalent to j = i (mod @) and j = ¢
(mod b), which means j = 7. Therefore, f¢ : U, — V, is a renormalization with

filled Julia set K, = K. O

Define the intersecting set of a renormalization f*: U — V by

L(U) = K. (U) N (lj I(n(U,i)) .

We say a renormalization is intersecting if I,(U) # 0.

Proposition 2.3. If a renormalization f* : U — V 1is interseéting, then I,(U)
consists of only one point which is a repelling fized point. of f™.
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Proof. Suppose E = K,(U) N K,(U,t) # 0 for some 0 < ¢ < n. By Lemma 1.2, F
is connected.

Let U be the component of U N U(¢) containing E. By Lemma 1.1, f*: U —
Jf™(U) is a polynomial-like map of degree 1. By the Schwarz lemma, E consists of
a single repelling fixed point x of f".

Suppose K,(U) N K,(U,j) = {y} with y # z. Then there is a sequence
{0,701, ..., 1x} such that K,(U,ir) N K,(U,tk41) is nonempty and K, (U,7x) N
Kn(Uyigg1)) 0 Kp(U,thy2) is empty (where K + 1, K + 2 is interpreted as 0, 1,
respectively).

Let

L= K,(U,i))N ... K.(U,ix).

Then L is a closed connected set in K(f). But L N K,(U) consists of two points
and it contradicts Lemma 1.2. : O

Since a repelling fixed point separates filled Julia set into a finite number of
components, components of I{,,(U) — I,,(U) are finite. We say a renormalization is
simple if K,(U) — I,,(U) is connected, and crossed if it is disconnected.

Theorem 2.1. For p > 0, there are finitely many n > 0 such that there exists a
renormalization f" : U, — V,, such that K,(U) contains a periodic point of period
P.

Proof. Let © be a periodic point of period p. Assume the filled Julia set of a
renormalization f* : U — V with p < n contains z. Since z is a repelling fixed
point of f™ (by Proposition 2.3), p divides n and the number p of the components
of K,,(U,) — {x} is finite.

Let E be the component of K,(U) which contains . E — {z} has exactly pn/p
components. Let ¢ be the number of the components of K(f) — {z}. Since z is a
repelling periodic point of f, ¢ < co.

Suppose a component A of K(f) — {z} contains two components By, By of
E — {z}. Then we can take a path in A — (B, U B,) from z to some point in B.
It contradicts Lemma 1.2.

Therefore each component of I{(f) — {z} can contain at most one component
of E — {z}. So ¢ > pn/p, it concludes n < pq.

There are finitely many periodic points of period p, the theorem follows. O

Proposition 2.4. Let f* : U, — V, and f°: Uy, — V, be renormalizations about
co. Suppose that f° : Uy — V, is simple. Then either a divides b or b divides a.

Proof. Let ¢ be the greatest common devisor of @ and b. If ¢ = a or ¢ = b, the
proposition follows. So suppose ¢ < a, b.
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Since K, N K, is nonempty (it contains co), f(Ka) N f(K;) is nonempty for
any ¢ > 0. Therefore K,(c) N K(c), Kq(c) N K and K, N Ky(c) are all nonempty.
Therefore L = K, U K,(c) U K(c) is connected.

By Lemma 1.2, K, N L is connected. Since K, N K,(c) is at most one point and
L is a closed connected set, I, N (K, U K;(c)) is connected. So I, N K N Ki(c) is
nonempty. By Proposition 2.3, K N K;(c) = {x} where z is a repelling fixed point
of f¥, so K, 3 x. Since f*: U, — V, is simple, x does not disconnect Kj.

By Proposition 2.2, there exists a renormalization foble . U — V with Julia set
Kapje = Ko N K. But Ko/ cannot contain @ because K, — {z} is connected and

ab/c > b (see the proof of Theorem 2.1), it is a contradiction. O
Example. Let f(z) = 2° — 2z — %i. Then C(f) = {1} and +3 are periodic of

- period 2. Let W4 be the Fatou component which contains +1. They are superat-
tracting basin of period 2.

Every renormalization f*: U — V must satisfy U D W_ or W,. So n <2 and
by symmetry, we will consider only the case U D W_.

Type I. Let K be the connected component of the closure of | J,,,, f~"(W_-) which
contains W_ and let U; be a small neighborhood of I.

Then f : Uy — f(U;) is a renormalization with filled Julia set K(1,U) = K;
which is hybrid equivalent to z — 2% — 1.

Type II. Let U, be a small neighborhood of W_. Then f2 : Uy, — f*(U,) is a

renormalization with filled Julia set K (2,U;) = W_, which is hybrid equivalent to
2

z 22

Type IIL. Let K, be the connected component of | J, o f~2*(W_ U W,) which
contains W_ and let U; be a small neighborhood of K.

Then f?: U} — f%(U}) is a renormalization with filled Julia set K3, which is
hybrid equivalent to z — 2% — —\%z.

Type IV. Let K} be the connected component of | ., f~2"(W_ U f(W,)) which
contains W_ and let U, be a small neighborhood of K.

Then f%: Uy — f3(U}) is a renormalization with filled Julia set K3 and of
degree 4.

Similarly, consider |, o f~2"(W_U f(W_)UW,) and then we can construct
a polynomial-like map f% : U — V of degree 6. But it is not a renormalization
because —1% is contained in both U and f(U).

3 Infinite renormalization
For a subset Cr C C([f), let R(f,Cr) be the set of all n > 0 such that there exists

a renormalization f* : U, — V, about ¢y with C,(U,) = Cr. Let SR(f,Cg) be the
set of such n € R(n,Cg) that f*: U, — V, is simple.
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Figure 1: The filled Julia set of z — 23 — AR

4

Figure 2: Five types of Polynomial-like restrictions.
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Proposition 3.1. Let ny, ny € SR(f,Cr). If ny < ny, then ny divides ny and
K, (Uy) D Ky (Uy).

Proof. By Proposition 2.4, n; divides ns.

Assume I, (Uy) 2 K,,(U,). By Proposition 2.2, there exists a renormalization
fr2 U, — V, with filled Julia set I, (U, ) = Kn, (Un,) N Ky, (Un,).

For simplicity, we write K, = I, (Un, ), Kp, = Ky, (Up,) and K, = K., (U, ).

If C,,(U,,) = Cr, then K| = K,,. Therefore there exists a critical point
c1 € Cr — Cp, (U),). Let 4x be a number which satisfies Ky, (2;) 3 ¢;. Then ¢ # 1,
(mod ny). So there exists ip such that K, (¢0) intersects K,,.

Therefore let a closed connected subset L of I(f) as the following:

L = Kp,(t0) U I, (20) U Ky, (2i0) U - - - U I, .
Then L N K,, is disconnected and it contradicts Lemma 1.2. a

Proposition 3.2. If f can be infinitely renormalizable, f has infinitely many sim-
ple renormalizations.

More precisely, if R(n,CRr) ts infinite for some Cr C C(f), then there exists
some C', Cr C C C C(f), such that SR(f,C) is infinite.

Proof. For n € R(n,CR), Let k, be the number of components of K,,. Since «,, is
equal to the minimum of the period of periodic point of f contained in K, k, — oo
by Theorem 2.1.

Now we show f"* is simply renormalizable. For sufficiently large n, choose a
repelling periodic point & of f of period less than «,. Then = ¢ K,. We construct
the Yoccoz puzzle from the rays landing at x and some equipotential curve.

For any depth r > 0, the piece P,(cg) containing ¢y contains the component F
of K,, containing co. Thus the tableau P,(f*(co)) for ¢o is periodic of period p with
plkn, i.e. for any r > 0, P.(f?(co)) = Pr(f?(co)).

Then by slightly thickening the pieces, we can obtain a simple renormalization
f? U, = V, with I{, D E (more precisely, see [Mi2, Lemma 2]).

If p = k,, we are done.

Otherwise, let g be the polynomial hybrid equivalent to f? : U, — V,. There
exists a renormalization g"/” : Un/p — ~n/p corresponds to f*: U, — V.

Now apply the argument above to g and the renormalization g™/ : On/p -V, /p
and eventually we obtain a simple renormalization of f*n. W

Now we assume that f is infinitely renormalizable. By the proposition above,
#SR(f,Cr) is infinite for some Cr C C(f).

Furthermore, suppose f(Cr) = f(C(f)), i.e. for any ¢’ € C(f) — Cg, there
exists some ¢ € Cp such that f(c) = f(¢).
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Remark. The above condition is satisfied for a polynomial which is hybrid equiva-
lent to f*: U, — V, for n € SR(f,CRr).

So this assumption is to consider the polynomial hybrid equivalent to some
renormalization instead of the original polynomial.

Definition. Let f as above. For each n € SR(f,CRr), let 6,(i) be a closed curve
which separates I{,(z) from P(f) — P,(¢) (in our case, such a curve exists and its

homotopy class is uniquely determined). Let +,(¢) is the hyperbolic geodesic on
C — P(f) which is homotopic to 6,(z) on C — P(f) and let y, = y,(n).
We say SR(f,CR) is robust if

liminf #(v,) < oo

n—00

where {(-) denotes the hyperbolic length on C — P(f).

Let ¥ = projlim Z/n and define o : & — I by:
n€SR(f,Cr)

0 ((in)nesr(s,0r) = (in +1).
Theorem 3.1. Let f as above. When SR(f,CR) is robust, then:
1. The postcritical set P(f) is a Cantor set of measure zero.

2, lim sup diam P,(z) — 0.
neSR(f,Cr) 0<i<n

8. [ P(f) — P(f) is topologically conjugate to o : & — ¥. Especially, flee
is @ homeomorphism.

Proof. By the hyperbolic geometry, the geodesics v, (i) (n € SR(f,Cr),0 < i < n)
are simple and mutually disjoint, and their length are comparable with ().

Thus by the collar theorem, there is a standard collar A,(i) about v,(:) in
C — P(f) such that they are mutually disjoint and mod(An(7)) is a decreasing
function of {(,(7)). Note that A,(z) separates P,(z) from the rest of the postcritical
set.

Let E, = U Arn(2) and F,, be the union of the bounded components of C — E,,.

=1
Then F, contains P(f) and each component of F,, meets P(f).

For any sequence {A,(in)}nesr(s,cp) of nested annuli,

Z mod Ay (z,) = oo,

n€SR(f,Cr)

because liminf {(~y,) < oco.
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Therefore F' = ﬂ F,, is a Cantor set of measure zero. Since F' contains
n€SR(f,Cr)
P(f) and each component of F, contains F,(z) for some 1z, I is equal to P(f), so
the postcritical set is measure zero and diameter of P,(z) tends to zero.
For n € SR(f,Cr), we define ¢,, : P(f) — Z/n by ¢(2) = ¢ (mod n) when
z € P,(4). Then ¢(f(2)) = ¢(z) +1 (mod n).

Therefore, define ¢ : P(f) — projlim Z/n by ¢(z) = (én(2))nesr(s,cn) and it
nGS'R(f,CR)
gives the conjugacy between f|p(s) and o. O

Corollary 3.1. Let f as above. Suppose SR(f,Cr) is robust. Then for sufficiently
large n € SR(f,CRr) and any i, 0 <1 < n, #Cp(1) < 1. '

Proof. Suppose

# ﬂ Cn(n) ] > 1.

nESR(f,CR)

By Theorem 3.1, (] Pa(1) consists of only one point x. Therefore, f(Cn(n)) =
{z}. But it is impossible because there is no other critical point in Uy, for sufficiently
large n. |

4 Robust rigidity

In this section, we prove the following theorem:

Theorem 4.1 (Robust rigidity). Let f as above. If SR(f,CR) is robust, then
f carries no invariant line field on its Julia set.

The proof depends on the following two lemmas.

Lemma 4.1. Let f, : (Up,un) — (Va,va) be a sequence of holomorphic maps
between disks and let pu, is a sequence of fn-invariant line field on V,,. Suppose f,
converge to f : (U u) — (V,v) in the Carathéodory topology and pi, converge in
measure to u on V. Then p is f-invariant.

See [Mc, Theorem 5.14].

Lemma 4.2. Let o be a measurable line field on C. Assume p is almost continuous
at ¢ and |p(z)] = 1. Let (Vu,v,) — (V,v) be a convergent sequence of disks, and
let by 2V, — C be a sequence of univalent maps with hl(vn) — 0.
Suppose
|z — hp(vn)]

sup ———+— < 00.

Wy (vn)

Then there exists a subsequence such that h}(p) converges in measure to a
untvalent line field on V.
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See [Mc, Theorem 5.16].

Now we give the summary of the proof of the theorem. We divide the proof into
two cases: whether liminf{(+,) is zero or not. But outline of these two proof are
very similar. We assume there exists a measurable invariant lme field p supported
on J(f) and induce contradiction.

First, we take a point « € J(f) where p is almost contmuous, such that
N5 (2 )H — oo with respect to hyperbolic metric on C — P(f), and such that
f¥(x) does not land in but tends to P(f).

Next we construct some critically compact proper map f™ : X, — Y, from
f" Uy — V. By assumption, f*(z) eventually land in Y,. If we take disks X, Y,
properly, we can take a univalent inverse branch h, of f~* from Y, to the region
near x. Note that () = p is f™invariant line field on Y.

By properly scaling f* : X,, — Y, and taking a subsequence, they converge to
a proper map g : U — V. Furthermore, by Lemma 4.2 and Lemma 4.1, ¢ must
have an invariant univalent line field » on V.

But g have a critical point ¢ € U NV, then, by invariance, v(c) =0, that 1S a
contradiction.

4.1 Thin rigidity
Definition. A renormalization f* : U, — V,, is unbranched if
Vo N P(f)=P,.

Let f* : U, — V,, be an unbranched renormalization. Let W be a component
of f7Y(Vo(i + 1)) which is not V,(¢). Then any inverse branch of fFon Wis
univalent because W is disjoint from the postcritical set.

Lemma 4.3. There exists some M > 0 such that if £(v,) < M, we can choose U,
and V,, such that " : U, — V,, is unbranched renormalization and

mod(U,, V,,) > m(£(v,)) > 0
where m({) — oo as £ — 0. |

Proof. Let A, be the standard collar about «, with respect to the hyperbolic metric
on C — P(f). Let B, be the component of f~(A,) which is the same homotopy
class as v,. Let D,(resp. E,) be the union of B, (resp. A,) and the bounded
component of the complement. f* : D, — E, is a critically compact proper map
with postcritical set P,.

When {(v,) is sufficiently small, mod(P,, E,) > mod(4,) is sufficiently large.
Then we can choose U,, C D,, and V,, C E,, such that f*:U, — V, is a renormal-
ization and mod(U,, V) is bounded below in terms of mod(P,, E,).

The modulus of collar A, depends only on £(v,) and tends to infinity as O vn)
tends to zero. Since mod(P,, E,) > mod(A,), we are done. O
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Theorem 4.2. Let [ as above. Suppose for infinitely many n € SR(f,Cr) there
is a simple unbranched renormalization f™ : U, — V, with mod(Uy, Vo) > m for a
constant m > 0.

Then f carries no invariant line field on its Julia set.

By the previous lemma, the following corollary is trivial.

Corollary 4.1 (Thin rigidity). There is L > 0 such that if

liminf £(yn) < L,
Jiminf fm)

then f carries no invariant line field on its Julia set.

Proof of Theorem 4.2. Let USR(f,Cr,m) be a set of n € SR(f,Cg) such that
there is an unbranched simple renormalization f* : U, — V, with mod(Uy,, V,) >
m.

For n € USR(f,Cr,m), there is an annulus of definite modulus separating
Jo(2) from P(f) — P.(%). So SR(f,CRr) is robust and

(  J.=PU)

HESR(f,C'R)

Therefore, by the fact that a forward orbit of almost every point in J(f) tends
to P(f), almost every z in J(f) satisfies the followings:

1. The forward orbit of z does not meet the postcritical set.

nNo

. [(f*)(z)|| = oo in the hyperbolic metric on C — P(f).
3. For any n € SR(f,CRr), there is a k > 0 with f*(z) € J,.
4. For any k >0, there is an n € SR(f, Cr) such that f*(z) & J,.

(Note that the condition 2 is satisfied every point which satisfies the condition
1.)

Suppose that f carries an invariant line field y on J(f). Let z be a point in J(f)
at which g is almost continuous, |u(z)] = 1 and satisfies the above condition 1-4.
For each n € SR(f,CRr), let k(n) > 0 be the least integer such that fEe) () € T,
By the condition 3, such k(n) exists and tends to infinity by the condition 4. Now
fEm+(2) is contained in J,(i(n) + 1) for some 0 < i(n) < n.

For n sufficiently large, k(n) > 0 and f¥™(z) ¢ J,. So f*™(x) is contained
in some component W, of f~1(V,(i(n) + 1)) which is not V,(z(n)). W, is disjoint
from the postcritical set. Furthermore, W,, contains no critical point for sufficiently
large n (actually, it is true if k(n) > k(no) where ng = min(USR(f, Cr,m))).



Let j(rn) > i(n) be the least number such that C,(j(n)) is nonempty, so that
SIM=i) W, — V,(j(n)) is univalent. Then thele exists a univalent branch h,, of
fim)=itn)= k() defined on V;,(j(n)) which maps f/(M=i{n+k(n) () to .

Let J3 = ha(Ju(j(n))). Since there is an annulus of definite modulus in C— P(f)
enclosing it, the diameter of f¥™(J¥) (= f~1(J,.(i(n) + 1)) N W,,) is bounded with
respect to the hyperbolic metric on C — P(f). Therefore, by the condition 2, the
diameter of J; in the hyperbolic metric on C — P(f) tends to zero.

Let ¢ € Cg be a critical point such that for infinitely many n € USR(f, Chg, m),
Cn(j(n)) contains c. By taking a subsequence and replacing f* : U, — V, by
f” :Un(3(n)) — Vn(j(n)), we may assume ¢ = ¢g and j(n) = n, so h, is defined on

(Note that mod(Un(j(n)), Va(j(n))) > —mod(Un,V) > 7=, where dp is the
deglee of 1eno1mahzat10n f U, = V. Thus we should 1eplace m by & i )

Let
Z — Cg
An(2) = ———,
(=) diam(J,,)
gn:AnofnoA;la
Yn = An(ha_;l(x))
Then

gu't (AnU),0) = (Au(Vi), An(/"(c0))

is a polynomial-like map with diam(J(g,)) = 1 and mod(A,(U,), An(V,)) > m.

Thus, by taking a subsequence, g, converges to some polynomial-like map (or
polynomial) g : (U,0) — (V,¢(0)) with mod(U,V) > m in the Carathéodory
topology (see [Mc, Theorem 5.8]).

Let k, = hy,o0 A7' : A, (V,) =2 A V. Jny € and vn = ki(un). Then v, is g,-
invariant line field on A, (V) because p = h% () is f-invariant. Since diam(J(g,)) =
1 and diam(J}) — 0, k! (y,) — 0.

Now we take a further subsequence of n so that (A,(V,),y,) — (V,y). Then
by Lemma 4.2, after passing a further subsequence, v, converges to a univalent
g-invariant line field » on V.

For f: U, — V, have connected Julia set, so does g. Thus the critical point
and critical value lie in V. But it contradicts the fact that g has a univalent
invariant line field ». O

4.2 Thick rigidity
Theorem 4.3 (Thick rigidity). Let f as above. Suppose

0 < lminf {(y,) < oo,
n€SR(f,Cr) (%)

Then f carries no invariant line field on its Julia set.
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Notation. For n € SR(f,Cr),
o Let §,, be the component of f~"(~,) which is homotopic to v,, on C — P(f).

o Let X, (resp. Y,) be the disk bounded by é,(resp. 7,). Then f*: X, — ¥,

is a proper map whose degree is the same as that of f*: U, — V.

o Y, (i) = f1(X,) for 0 < i <n. Then Y,(¢) N P(f) = P.(3).
o ), = ﬂ Y,(¢). Then Y, contains P(f).
i=1 )

o Let B, be the largest Euclidean ball centered at ¢y and contained in X,, NY,,.

Lemma 4.4.

( Yu=P(f) |

ne€SR(f,Cr)

Proof. When n is sufficiently large, the diameter of P,(z) is small. But for m > n,
Ym(2) separates P,(z) into two pieces, so v, (1) passes very close to P(f). Since
the hyperbolic length of 7,,(z) on C — P(f) is bounded for infinitely many m, the
Euclidean diameter of Y,(z) is also small. O

Thus just as the proof of the ﬂlill rigidity, we obtain the following.
Lemma 4.5. Almost every x in J(f) satisfies the followings:

1. The forward orbit of x does not meet the postcritical set.

2. |(f*¥)(z)]| = oo in the hyperbolic metric on C — P(f).

8. For anyn € SR(f,CR), there is a k > 0 with f*(z) € YV,.

4. For any k > 0, there is an n € SR(f,Cg) such that f*(z) & V.
Let

SR(f,Cr,A) = {n € SR(f,Cr) | 1/X < l(ya) < A}.
When 0 < liminf{(y,) < oo, SR(f,Cr, A) is infinite for some A > 0.

By using the collar theorem, we obtain the Euclidean diameters of X,,, Y, and
B, are comparable for n € SR(f,Cr, A). So let A,(z) = Tam(y and then after
passing a subsequence,

(An(X5),0) — (X,0),

(An(Ya), An(f(0))) = (¥, 4(0)),
Anofrfo Al — g,

where ¢ : (X,0) — (Y, ¢(0)) is a proper map, 0 € X NY and ¢'(0) = 0.
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Lemma 4.6. For each n € SR(f,CRr,\), there exists a disk Z, € C — P(f) and
an teger m, 0 < m < 2n such that

)

1. f™: Zn — Yo(7) is a univalent map for some j with0 < j < n and C,(j) # 0
2. d(0X,,07,) is bounded above in terms of \.
3. L(0Z,) < A,
4. é,rea.(Zn) is bounded below in terms of X.
in the hyperbolic metric on C — P(f).

Proof. By the lower bound of v, (#), there exist v, (i) and v, (5) such that d(7,,(2), v.(4))
is bounded above in terms of A. Furthermore, v,(k) and 8Y,,(k) is uniformly close.
So d(8Yn(2),0Y,(7)) is bounded above.

Considering backward images of Y;,(¢) and ¥,,(7), there is a disk Z, close to X,
and maps to Y,(k) (k =7 or j) univalently by f™. ’

Since mod(FP,,Y,) is bounded below and ||(f™)(2)]| is not so expanding near

0X,, area(Z,) is bounded below. O

Proof of Theorem 4.3. Suppose p is an f-invariant line field supported on J(f).
Let = be a point at which p is almost continuous and satisfies the condition 1-4 of
Lemma 4.5. :

For each n € SR(f,Cr, ), let k(n) > 0 be the least integer such that f¥(M+1(z) €
Vn. For k(n) — oo, we consider n sufficiently large so that k(n) > 0 (so f¥")(z) ¢
).

Now we construct univalent maps &, : Y,(j(n)) — T, C C. Let i(n), 0 <
i(n) < n, be the number such that Y,(i(n) + 1) contains f*"+1(z).

Case I. i(n) > 0. Then f*™(z)is contained in a component W, of FH (Yo (i(n) +
1), which is not Y, (¢(n)). W, does not meet the postcritical set. Furthermore, for
n sufficiently large, W, contains no critical points.

So let j(n) > ¢(n) be the least integer such that C,(j(n)) # 0 and define h,, be
the following:

i(n)=3(n) —k(n)
Y,(i(n) 25w, 0 T e

where the branch of f~*™ is chosen to maps f*(*)(z) to .

Case IL i(n) = 0 and f¥"(2) € X,, — Y,. Since f*")(z) ¢ X, define hy, just the

same as Case I.

Case IIL i(n) = 0 and f¥"(z) € X,, — Y,. Since 8X, is close to 8Y,, f5™(z) is
close to Z,. So let {, be a path joining f*™(z) to Z, with length bounded above
in terms of A.
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Then by the previous lemma, there is a univalent map f™ : Z,, — Y,(7(n)). So
define h,, by:

-m —k(n)
Y.(i(n)) =5 z, =5 T, c C.

We choose the inverse branch of f~ so that the extension to Z, N {, maps

FE) (2) to .

By the estimates for the derivative ||(f¥™)/(2)|| on 8T, in terms of ||(f*¥))(z)||
and A, diam(T,,) — 0 and d(z,T,) < C; diam(T,) where C; is a constant which
depends only on A.

Let k, = h, 0 AZ'. Then |k!(0)] — 0. Therefore,

| — k. (0)| <c d(z,T,) + diam(T;,)

< Cs,
k. (0) — % diam(T,) -2
where Cy and Cj depend only on A.
Thus we can apply Lemma 4.2 and deduce the contradiction. O
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