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Abstfact In this note, the dynamics of real cubic polynomials is invaetigated. Especially, in the parameter space,
landing and non-landing of stretching rays on the parabolic arc is studied. It turns out that stretching rays with irrational
B\"ottcher vectors have non-trivial accumulation sets.

1 Introduction

In this note, we shall investigate the dynamics of the family of real cubic polynomials :

$P(z)=P_{A,B}(z)=z^{3}-3Az+\sqrt{B}$; $A,$ $B>0$ .

Our main concern is the landing of real stretching rays for this family. Since the stretching ray passing
through a point in this family stays in this family, we can consider its landing property, aepecially on
Per1 (1), the locus where $P$ has a parabolic fixed point with multiplier 1.

There are only a few works on the landing of stretching rays for degree greater than two. Kiwi [Ki]
has considered critical portraits in the visible shift locus of polynomials of arbitrary degree and charac-
terized their impressions in terms of rational laminations. Especially, he showed that the impression of
a strictly preperiodic critical portrait consists of a single polynomial, whose critical points are strictly
preperiodic. And he conjectured the existence of non-trivial impraesions of critical portraits with ape-
riodic kneading. Willumsen [W] gave necessary conditions for stretching rays to accumulate on some
part of $Per_{1}(1)$ in the family of complex cubic polynomials. This study is much inspired by her work.
Quite recently, Buff and Henriksen $[\mathrm{B}\mathrm{u}\mathrm{H}\mathrm{e}]$ has announced the existence of stretching rays with non-
trivial accumulation sets through the study of the parameter space of the family $f_{b}(z)=\lambda z+bz^{2}+z^{3}$

where $\lambda=e^{2\pi i\theta}$ and 9 is a non-Bruno number.
Here we consider stretching rays only in the family of real cubic polynomials. Especially, in the

first quadrant, the boundary of the connectedness locus is very simple. It consists of two real algebraic
curves. And stretching rays must accumulate on these curves. This really simplifies things. Our main
result is that, most stretching rays in some region of the shift locus of the first quadrant do not land at
any point on $Per_{1}(1)$ (but, of course, they accumulate on it). Hence their accumulation sets must be
non-trivial arcs. Although this doae not answer the above conjecture in Kiwi [Ki], this givae a feature
characteristic to higher degree polynomial dynamics. In fact, the Mandelbrot Local Connectivity
Conjecture suggests that this does not happen to quadratic polynomials. The same argument works
also in the third quadrant.

The locus $Per_{1}(1)$ in cubic polynomials has been investigated by several authors. Douady-Hubbard
[DH] studied $Pe7^{\cdot}1(1)$ to show the discontinuity of the straightening map of polynomial-like maps of
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degree three. Milnor [M] considered the family of real cubic polynomials and conjectured the non
local connectivity of the cubic connectedness locus. Lavaurs [L] settled this conjecture by considering
the parabolic implosion from Per1 (1). Recently through the study of Per1 (1), Epstein-Yampolsky
[EY] showed the conjecture in [M] that the connectedness locus of real cubic polynomials is not locally
connected. Thus $Per_{1}(1)$ reflects the featurae of the dynamics of cubic polynomials much different
from that of quadratic polynomials. And we add one more to it.

The authors would like to express their hearty thanks to Mitsuhiro Shishikura for valuable advice.

2 Stretching rays
Let $\prime p_{d}$ be the family of monic centered polynomials of degree $d\geq 2$ . For $p\in P_{d}$ , let $h_{P}(z)=$

$\lim_{narrow\infty}\frac{1}{d^{n}}\log_{+}|P^{n}(z)|$ be the Green function for $P$ , which is continued continuously to the whole
plane by the functional equation $h_{P}(P(z))=d\cdot hp(z)$ and is harmonic in $\mathrm{C}-K(P)$ , the com-
plement of the filled-in Julia set. And let $\varphi_{P}$ be the B\"ottcher coordinate of $P$ defined in a neigh-
borhood of $\infty$ . It satisfies $\varphi_{P}(P(z))=\varphi_{P}(z)^{d}$ and is tangent to the identity at $\infty$ . Put $G(P)=$
$\max${ $h_{P}(\omega);\omega$ is a critical point of $P$}. Then $\varphi_{P}$ can be continued analytically to $U_{P}=\{z;h_{P}(z)>$

$G(P)\}$ . Actually we have $hp(z)=\log_{+}|\varphi p(z)|$ . For a complex number $u\in H_{+}=\{u=s+it\in$
$\mathrm{C},$ $s>0\}$ , put $f_{u}(z)=z|z|^{u-1}$ and we define a $P$-invariant complex structure $\sigma_{u}$ by

$\sigma_{u}=\{$

$(f_{u}\mathrm{o}\varphi_{P})^{*}\sigma_{0}$ on $U_{P}$ ,
$\sigma_{0}$ on $K(P)$ ,

where $\sigma_{0}$ is the standard complex structure. Then, by the Measurable Riemann Mapping Theorem,
there exists a unique $\mathrm{q}\mathrm{c}$-map $F_{u}$ satisqing

$F_{u}^{*} \sigma_{0}=\sigma_{u},\lim_{zarrow\infty}\frac{f_{u}\circ\varphi_{P}\circ F_{u}^{-1}(z)}{z}=1,$ $P_{u}=F_{u}\circ P\circ F_{u}^{-1}\in P_{d}$ .

Since $F_{u}$ depends holomorphically on $u$ , so doae $P_{u}$ . Thus we define a holomorphic map $Wp:H_{+}arrow P_{d}$

by $W_{P}(u)=P_{u}$ . The B\"ottcher coordinate $\varphi_{P_{u}}$ of $P_{u}$ is equal to $f_{u}\mathrm{o}\varphi_{P}\mathrm{o}F_{u}^{-1}$ . This operation is called
unin.qin.q. Since $P_{u}$ is hybrid equivalent to $P$ , it holds $P_{u}\equiv P$ for $P\in C_{d}$ , the connectedness locvs.
For $P\in \mathcal{E}_{d}$ , the escape locus, we define the stoetchin.$q$ ray through $P$ by

$R(P)=W_{P}(\mathrm{R}_{+})=\{P_{s};s\in \mathrm{R}_{+}\}$ .

For example, in case $d=2$ , stretching rays coincide with the external rays for the Mandelbrot set.
As for stretching rays, see Branner [Br] or Branner-Hubbard [BH1]. If $P\in P_{d}$ is a real polynomial,
$\varphi p$ and $f_{s}$ are sy.mmetric with respect to the real axis, hence so are $\sigma_{s}$ and $F_{s}$ , and $P_{s}$ is also a real
polynomial. The following is a direct consequence from the definition.

Lemma 2.1 Let $\omega_{j}=\omega_{j}(P),$ $j=1,2$ be two escapin.$q$ critical points of $P\in \mathcal{E}_{d}$ . Then $\overline{\eta}(P_{s})=\frac{h_{P_{\delta}}(\omega_{1})}{h_{P_{s}}(\omega_{2})}$

$\dot{u}$ invariant on the stretchin.$q$ ray $R(P)$ throu.qh $P$ .

proof. Since $|\varphi_{P_{S}}(z)|=|f_{s}\circ\varphi_{P}\circ F_{s}^{-1}(z)|=|\varphi_{P}\circ F_{s}^{-1}(z)|^{s}$ , we have $h_{P_{\delta}}(z)=s\cdot h_{P}(F_{s}^{-1}(z))$ and

$\tilde{\eta}(P_{s})=\frac{h_{P_{s}}(F_{s}(\omega_{1}))}{h_{P_{\theta}}(F_{s}(\omega_{2}))}=\frac{h_{P}(\omega_{1})}{h_{P}(\omega_{2})}=\tilde{\eta}(P)$.

This completes the proof. $\square$

Generally speaking, in this lemma, we cannot replace $h_{P}(\omega_{j})=\log|\varphi_{P}(\omega_{j})|$ by $\log\varphi p(\omega_{j})$ in the defi-
nition of $\tilde{\eta}(P)$ . But, in case of real cubic polynomials in the first quadrant, we can do so because both
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Figure 1: The connectedness locus $C_{3}^{R}$

critical $\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{s}\pm\sqrt{A}$ are real and their orbits lie on the positive real axis in the B\"ottcher coordinate.

Here is an advantage of considering the real cubic polynomials. We set $\zeta_{P}(z)=\frac{\log\log\varphi_{P}(z)}{\log 3}$ and

define, for $P\in \mathcal{E}_{3}^{2}$ (the real shift locus, i.e. the locus where both critical points escape to infinity), the
B\"ottcher vector $\eta(P)$ by

$\eta(P)=\frac{\log h_{P}(-\sqrt{A})-\log h_{P}(\sqrt{A})}{\log 3}=\zeta_{P}(-\sqrt{A})-\zeta_{P}(\sqrt{A})$.

Note tllat, since $\varphi_{P}(\pm\sqrt{A})>1,$ $\zeta_{P}(\pm\sqrt{A})$ is well defined. Then Lemma 2.1 implies the following.

Lemma 2.2 On the stretchin.$q$ ray $R(P)$ throu.gh $P\in \mathcal{E}_{3}^{2},$ $\eta(P_{s})$ is invariant.

This lemma will play an important role in the following sections. We label each stretching ray the
Fatou vector $\eta$ on it and denote it by $R(\eta)$ .

3 The parameter space of real cubic polynomials

We mainly restrict our attention to the first quadrant of the parameter space of real cubic polynomials.
In the first quadrant, the connectedness locus $C_{3}^{R}$ is bounded by two real algebraic curves:

$Per_{1}(1)$ $=$ $\{B=4(A+1/3)^{3};0\leq A\leq 1/9\}$ ,
$Preper_{(1)1}$ $=$ $\{B=4A(A-1)^{2}; 1/9\leq A\leq 1\}$ .

This terminology is due to Milnor [M]. See Figure 1. $C_{3}^{R}$ is the black region and there appear some
stretching rays in its complement. The shift locus is colored by the B\"ottcher vectors. For $Q\in Per_{1}(1)$ ,
$Q$ has a parabolic fixed point $\beta_{Q}=\sqrt{A+1}/3$ with multiplier 1. For $Q\in Preper_{(1)1}$ , its critical value
$Q(-\sqrt{A})$ is the fixed point where the external ray of angle $0$ lands.

4 Landing and non-landing of stretching rays on $Per_{1}(1)$

In $\mathrm{t}l_{1}\mathrm{i}\mathrm{s}$ section, wc consider the landing and non-landing of stretching rays in the region $D=\{(A, B)\in$

$\mathrm{R}_{+}^{2};$ $B>4(A+1/3)^{3}\}$ on $Per_{1}(1)$ . First we shall show some stretching rays on which certain critical
orbit relations hold actually land there. Note that $Per_{1}(1)$ is parametrized by $A$ and that $Q\in Per_{1}(1)$

is written by $Q(z)=Q_{A}(z)=z^{3}-3Az+2(A+1/3)^{3/2}$ . For $Q\in Per\iota(1)$ and for $k\geq 1$ , put
$g\kappa.(A)=Q(-\sqrt{A})-Q^{k+1}(\sqrt{A})$ .
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Lemma 4.1 $g_{k}$ is a monotone increasin.$q$ function on $[0,1/9]$ .

proof. By a direct calculation, we have

$g_{k}’(A)$ $=$ $3(Q^{k}(\sqrt{A})+\sqrt{A})-3(Q^{k}(\sqrt{A})^{2}-\sqrt{A})dQ^{k}(\sqrt{A})/dA$

$=$ $3(Q^{k}(\sqrt{A})+\sqrt{A})\{1-(Q^{k}(\sqrt{A})-\sqrt{A})dQ^{k}(\sqrt{A})/dA\}$.

Since $Q^{k}(\sqrt{A})>\sqrt{A}$ , we have only to show

$dQ^{k}( \sqrt{A})/dA<\frac{1}{Q^{k}(\sqrt{A})-\sqrt{A}}$ , $0\leq A\leq 1/9$ .

We do this by induction on $k$ . For $k=1$ ,

$\frac{1}{dQ(\sqrt{A})/dA}-(Q(\sqrt{A})-\sqrt{A})$ $=$ $\frac{1}{3\sqrt{A+1/3}-3\sqrt{A}}-\{2(A+1/3)^{3/2}-2A^{3/2}-\sqrt{A}\}$

$=$ $\sqrt{A+1/3}+\sqrt{A}-\{2(A+1/3)^{3/2}-2A^{3/2}-\sqrt{A}\}$

$=$ $\sqrt{A+1/3}\{1-2(A+1/3)\}+2\sqrt{A}(A+1)>0$ ,

and the conclusion is true. Next suppose it is true for $k$ . Then by the induction hypothesis,

$dQ^{k+1}(\sqrt{A})/dA$ $=$ $3(\sqrt{A+1/3}-Q^{k}(\sqrt{A}))+3(Q^{k}(\sqrt{A})^{2}-A)dQ^{k}(\sqrt{A})/dA$

$<$ $3(\sqrt{A+1/3}-Q^{k}(\sqrt{A}))+3(Q^{k}(\sqrt{A})+\sqrt{A})$

$=$ $\frac{1}{\sqrt{A+1/3}-\sqrt{A}}$

$<$ $\frac{1}{Q^{k+1}(\sqrt{A})-\sqrt{A}}$ .

Hence the conclusion holds also for $k+1$ . This completes the proof. $\square$

Lemma 4.2 There enist a countable set of stretchin.$q$ rays $R_{k}$ : $P(-\sqrt{A})-P^{k+1}(\sqrt{A})=0,$ $k\geq 1$

landin.g at $(A_{k}, B_{k})\in Per_{1}(1)$ . $R_{k}$ is expressed also by $R(k):\eta(P)=k$ .

proof. Since $g_{k}(0)=Q_{0}(0)-Q_{0}^{k+1}(0)<0$ and $g_{k}(1/9)=Q_{1/9}(-1/3)-Q_{1/9}^{k+1}(1/3)=\beta_{Q_{1/9}}$ -

$Q_{1/9}^{k+1}(1/3)>0,$ $g_{k}$ has a unique zero $A_{k}$ in $(0,1/9)$ . Since $Q^{k}(\sqrt{A})<Q^{k+1}(\sqrt{A})$ , it follows $A_{k-1}<A_{k}$ .
The above estimate holds also for small perturbation $Q_{A,\epsilon}(z)=z^{3}-3Az+2(A+1/3)^{3/2}+\epsilon,$ $\epsilon>0$

above Per1 (1). Thus we conclude that there exist real algebraic curves $R_{k}$ : $P(-\sqrt{A})-P^{k+1}(\sqrt{A})=0$

through the point $(A_{k}, B_{k})\in Per_{1}(1)$ . Since this critical orbit relation is preserved under stretching,
they form stretching rays and are real algebraic. On the other hand, $Per_{1}(1)$ is also real algebraic.
Hence they must land at some point on $Per_{1}(1)$ . In fact, if their accumulation sets contain an open
interval, they must coincide with Per1 (1), which is impossible. This completes the proof. $\square$

Next we consider the stretching rays between $R(k)$ . For $Q\in Per_{1}(1)$ , the immediate basin $B_{Q}$ of
the parabolic fixed point $\beta_{Q}$ contains both critical $\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{s}\pm\sqrt{A}$ and $J(Q)=\partial B_{Q}$ is a Jordan curve.
Let $\phi_{Q,-}$ and $\phi_{Q,+}$ be the attracting and repelling Fatou coordinates respectively. Originally, they
are defined only on the attracting and repelling petals $\Omega_{Q}$,-and $\Omega_{Q,+}$ respectively and $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\theta$ the
functional equation:

$\phi_{Q,\pm}\circ Q(z)=\phi_{Q,\pm}(z)+1$ .

They can be continued analytically by this relation. Especially $\phi_{Q,-}$ is continued to the entire $B_{Q}$ .
Fatou coordinates have ambiguity of additive constants. So, we take real constants $C\pm\in \mathrm{R}\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}6^{r}\mathrm{i}\mathrm{n}\mathrm{g}$
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$c_{-}<\beta_{Q}<c_{+}$ for all $A\in[0,1/9]$ and normalize them so that they $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\theta\phi Q,\pm(C\pm)=0$ . Then $\phi_{Q,\pm}$

are determined uniquely and are symmetric with respect to the real axis. We define the Fatou vector
$\tau(Q)$ of $Q$ by $\tau(Q)=\phi_{Q,-}(-\sqrt{A})-\phi_{Q,-}(\sqrt{A})$ , the difference of the critical points in the attracting
Fatou coordinate.

Lemma 4.3 The Fatou vector.gives a real analytic $pammetr\dot{\tau z}ation$ of Per1 (1), $0<A<1/9$ .

proof. First we show that the Fatou vector map $Qrightarrow\tau(Q)$ has a local inverse in each connected
component of $\mathrm{R}-\mathrm{Z}$ . Suppose $k<\tau_{0}=\tau(Q_{0})<k+1$ . Take any $\tau\in(k, k+1)$ . Consider the
piecewise affine map $S_{\tau}(x+yi)=s_{\tau}(x)+yi$ , where

$s_{\tau}(x)=\{$
$\frac{\tau}{\eta_{)}-k}(x-k)$ if $k\leq x\leq\tau_{0}$ ,
$k+1- \frac{k+1-\tau}{k+1-\eta)}(k+1-x)$ if $\tau_{0}\leq x\leq k+1$ ,

It is easy to see that $S_{\tau}$ is a $\mathrm{q}\mathrm{c}$-map from $\{k\leq\Re w\leq k+1\}$ onto itself, identity on its boundary and
satisfies $S_{\tau}(\tau_{0})=\tau$. We deform the complex structure by this $\mathrm{q}\mathrm{c}$-map in this region and $\mathrm{p}\mathrm{u}\mathrm{U}$ it back
by the Fatou coordinate $\phi_{Q_{0}}$ ,-and then pull it back to $\mathcal{B}_{Q\mathrm{o}}$ by $Q_{0}$ . If we take the standard complex
structure outside the ffiled-in Julia set $K(Q_{0})$ , then we get a complex structure $\sigma_{\tau}$ . Let $\xi_{\tau}$ be the
integrating $\mathrm{q}\mathrm{c}$-map of $\sigma_{r}$ so that $Q_{\tau}=\xi_{\tau}\circ Q_{0}\circ\xi_{r}^{-1}\in Per_{1}(1)$ . Then $\tau(Q_{\tau})=\tau$ . This gives a local
inverse of the Fatou vector map $\tau$ .

The above argument does not work when $\tau_{0}=k=1,2,3\ldots$ In this case, $Q_{0}^{k+1}(\sqrt{A})=Q_{0}(-\sqrt{A})$

and we do surgery instead of $\mathrm{q}\mathrm{c}$-deformation. We normalize the attracting Fatou coordinate by
$\phi_{Q\mathrm{o},-}(Q_{0}(-\sqrt{A}))=0$ . Then $\phi_{Q_{0},-}(Q_{0}(\sqrt{A}))=-k$. Take a small open neighborhood $U\mathrm{o}\mathrm{f}-k$ in the
attracting Fatou coordinate and let $s_{\tau}$ : $Uarrow U$ be a $\mathrm{q}\mathrm{c}$-map, identity on $\partial U$ and $s_{\tau}(-k)=\tau-k$ . Here
$\tau\in(-\epsilon, \epsilon)$ for some small $\epsilon>0$ . Take an open neighborhood $V$ of $Q_{0}^{k}(\Gamma A)$ so that $U\subset T_{1}(\phi_{Q\mathrm{o},-}(V))$

and put $U’=T_{1}^{-1}(U),$ $V’=\phi_{Q\mathrm{o},-}^{-1}(U’)\cap V$ . We define a $\mathrm{q}\mathrm{c}$-mqp $T_{\tau}’$ by $s_{\tau}\circ T_{1}$ on $U’$ and $T_{1}$ elsewhere.
Then the map $R_{\tau}$ , defined by $\phi_{Q_{0},-}^{-1}\circ T_{\tau}’\circ\phi_{Q_{0},-}$ on $V’$ and $Q_{0}$ ekewhere is a quasi-regular map on
$B_{Q_{0}}$ depending real analytically on $\tau$ . Let $\sigma_{\mathcal{T}}=\phi_{Q_{0},-}^{*}s_{\tau}^{*}\sigma_{0}$ and $\sigma_{\tau}=\sigma_{0}$ on the fundamental regions
containing $V$ and $R_{\tau}(V)$ respectively, and then pull it back or push it forward by $Q_{0}$ . Then we get
an $R_{\Gamma}$-invariant complex structure $\sigma_{\tau}$ on $B_{Q_{0}}$ . Put $\sigma_{\tau}=\sigma_{0}$ outside $K(Q_{0})$ . Let $\xi_{\tau}$ be its integrating
$\mathrm{q}\mathrm{c}$-map such that $Q_{\tau}’=\xi_{\tau}\circ R_{\tau}\circ\xi_{\tau}^{-1}\in Per_{1}(1)$. Then $Q_{\tau}’$ depends real analytically on $\tau,$ $Q_{0}’=Q_{0}$ and
$\tau(Q_{\tau}’)=k+\tau$ . Thus we obtain a real analytic local parametrization of $Per_{1}(1)$ at $Q_{0}$ with $\tau(Q_{0})=k$ .
This completes the proof. $\square$

The Fatou vector corresponds to $0<\tau(A)<\infty$ . Now Lemma 4.2 can be stated in terms of two
vectors.

Lemma 4.4 The stretchin.$q$ my $R(k)$ with $k=1,2,3,$ $.$ . lands at a map $Q\in Per_{1}(1)$ with $\tau(Q)=k$ .
Conversely, at a map $Q\in Per_{1}(1)$ with $\tau(Q)=1,2,3,$ $\ldots$ , a stretchin.$q$ my $R(\eta)$ with $\eta=\tau(Q)$ lands.

The ”limit” of $R(k)$ is also a stretching ray $R(\infty)$ : $B=4(A+1/3)^{3},$ $A>1/9$ , which consists of a
parabolic maps and is contained in the boundary of $D$ . It lands at $(A_{\infty}, B_{\infty})=(1/9,4^{4}/9^{3})$ .

Our main result is the following.

Theorem 4.1 Suppose $\eta$ is irmtiond. Then the stretchin.$q$ ray $R(\eta)$ does not land at any point on
$Per_{1}(1)$ . Consequently, its accumulation set $I(\eta)=\overline{R(\eta)}-R(\eta)$ is a non-trivial arc on $Per_{1}(1)$ .

Figure 2 is an enlargement of Figure 1 and suggests that a stretching ray oscillates like the graph
of $\sin(1/x)$ as they approaches Per1 (1).

The proof is an application of the parabolic implosion analysis, for which see Douady [D], Lavaurs
[L], Shishikura [Sh] or Willumsen [W]. The following lemma assures the existence of the Fatou
coordinates for $Q_{A,\epsilon}$ .
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Figure 2: Stretching rays which accumulate but do not land

Lemma 4.5 Let $\beta_{Q_{A,\epsilon}}^{\pm}$ be the fixed points of $Q_{A,\epsilon}$ bifurcatin.q ffom $\beta_{Q_{A}}$ and let $\rho\pm(\epsilon)$ be their multi-
pliers. Then we have

$\beta_{Q_{A,\epsilon}}^{\pm}$ $=$ $\pm i\sqrt{\frac{\epsilon}{3A+1}}+\frac{\epsilon}{18A+6}+O(\epsilon^{3/2})$,

$\rho\pm(\epsilon)$ $=$ $1\pm 2i(A+1/3)^{1/4_{\sqrt{3\epsilon}-\frac{2\epsilon}{3\sqrt{A+1/3}}}}+O(\epsilon^{3/2})$ .

So, let $\phi_{P,\pm}$ be the Fatou coordinates of $P\in \mathcal{E}_{3}^{2}$ above Per1 (1) normalized by $\phi_{P,\pm}(c\pm)=0$ . They are
continuous up to Per1 (1). After perturbation, the gate between two fixed points $\beta_{P}^{\pm}$ is open and the
incoming Fatou coordinate can be regarded also as an outgoing Fatou coordinate and vice versa. Thus
$\phi_{P,+}$ and $\phi p$,-differ only by an additive constant. We call this difference $\tilde{\sigma}(P)=\phi_{P,+}(z)-\phi_{P,-}(z)$

the lifled phase and its class $\sigma(P)=[\tilde{\sigma}(P)]$ in $\mathrm{C}/\mathrm{Z}$ the phase of $P$ . Since all mappings are symmetric
with respect to the real axis, the lifted phase is always real. Roughly speaking, minus the lifted phase
is the time needed for the orbits of $P$ to pass through the gate.

Lemma 4.6 The lifled phase $\tilde{\sigma}\langle P_{\theta}$ ) tends $to-\infty$ as $sarrow \mathrm{O}$ on a stretchin.$q$ my.

pmof. For any $s$ , there exists an $n=n_{s}$ such that $c_{+}\leq P_{s}^{n}(c_{-})<P_{s}(c_{+})$ . Then, since

$0=\phi P_{s},+(c_{+})\leq\phi P_{s},+(P_{s}^{n}(c_{-}))=\phi_{P_{\epsilon},+}(c_{-})+n<\phi_{P_{s},+}(P_{s}(c_{+}))=1$ ,

it follows $-n\leq\tilde{\sigma}(P_{s})=\phi_{P_{s},+}(c_{-})<-n+1$ . Suppose $\tilde{\sigma}(P_{s})$ does not tend to $-\infty$ as $sarrow 0$ . Then
there exists a $k$ and a sequence $P_{n}\in R(P)$ such that $\tilde{\sigma}(P_{n})\geq-k$. This implies $P_{n}^{k}(c_{-})\geq c_{+}$ . We
can assume $P_{n}$ tends to some $Q\in Per$1(1) by taking a subsequence if necessary. Then it follows
$Q^{k}(c_{-})\geq c_{+}$ , which is a contradiction. This completes the proof. $\square$

We ako define, for $Q\in Per_{1}(1)$ and for $\tilde{\sigma}\in \mathrm{C}$ , the Lavaurs map $g_{\tilde{\sigma}}$ : $\mathcal{B}_{Q}arrow \mathrm{C}$ of lifted phase $\tilde{\sigma}$ by
$g_{\tilde{\sigma}}=\phi_{Q,+}^{-1}\circ T_{\overline{\sigma}}\circ\phi_{Q}$ ,-, where $T_{\tilde{\sigma}}(w)=w+\tilde{\sigma}$ . The following is a fundamental fact. (See Douady [D],
Prop.18.2, for example.)

Lemma 4.7 Suppose $P_{n}arrow Q\in Per_{1}(1)$ and $\sigma(P_{n})arrow\sigma\in \mathrm{C}/\mathrm{Z}$. Let $\tilde{\sigma}$ be any lifl of $\sigma$ . If we take
$N_{n}arrow\infty$ satisfyin.g $N_{n}+\tilde{\sigma}(P_{n})arrow\tilde{\sigma}$ , then $P_{n}^{N_{n}}arrow g_{\tilde{\sigma}}$ locally unifomly on $B_{Q}$ .

pmof. Since we have

$P_{n}^{N_{n}}$ $=$ $\phi_{P_{n},+}^{-1}\circ(\phi_{P_{n},+}\mathrm{o}P_{n}^{N_{n}}\circ\phi_{P_{n},-}^{-1})\circ\phi_{P_{n},-}$

$=$ $\phi_{P_{n},+}^{-1}\circ(T_{N_{n}}\mathrm{o}\phi_{P_{n},+}\circ\phi_{P_{n},-}^{-1})\circ\phi_{P_{n},-}$
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$=$ $\phi_{P_{n},+}^{-1}\circ(T_{N_{n}}\circ T_{\overline{\sigma}(P_{n})})\circ\phi_{P_{n},-}$

$=$ $\phi_{P_{n},+}^{-1}\circ T_{N_{n}+\tilde{\sigma}(P_{n})}\circ\phi_{P_{n},-}$

$\phi_{Q,+}^{-1}\circ T_{\overline{\sigma}}\circ\phi_{Q,-}$

$=$ $g_{\overline{\sigma}}$ ,

this completes the proof. $\square$

Since, in our case, $K(Q)$ is symmetric with respect to the real axis, connected and locally connected,
its image in the repelling Fatou coordinate does not intersect the real axis. Then it follows $g_{\overline{\sigma}}(\pm\sqrt{A})\in$

$\mathrm{C}-K(Q)$ . Hence we can define the B\"ottcher vector $\eta(Q,\tilde{\sigma})$ with lifted phase $\tilde{\sigma}$ also for $Q\in Per_{1}(1)$ :

$\eta(Q,\tilde{\sigma})=\zeta_{Q}(g_{\tilde{\sigma}}(-\sqrt{A}))-\zeta_{Q}(g_{\tilde{\sigma}}(\sqrt{A}))$.

Note that it depends only on the class $\sigma\in \mathrm{C}/\mathrm{Z}$ of $\tilde{\sigma}$ . Generally speaking, $\eta(Q,\tilde{\sigma})$ depends on $\tilde{\sigma}$ . But
we have

Proposition 4.1 Suppose $R(\eta)$ lands at $Q\in Per_{1}(1)$ . Then $\eta(Q,\tilde{\sigma})$ is equd to $\eta$ for any $\tilde{\sigma}$ . Especially
$\eta(Q,\tilde{\sigma})$ is independent of $\tilde{\sigma}$ .

proof. First we show the following lemma.

Lemma 4.8 Suppose a sequence $P_{n}$ in $Dconver.qi\ddot{n}.q$ to $Q\in Per$1(1) satisfies $\sigma(P_{n})arrow\sigma$ . Then,
$\eta(P_{n})arrow\eta(Q,\tilde{\sigma})$ for any lift $\tilde{\sigma}$ of $\sigma$ .

proof. By Lemma 4.7, for any lift $\tilde{\sigma}$ of $\sigma$ , there exists a sequence $N_{n}arrow\infty$ such that $P_{n}^{N_{n}}arrow \mathit{9}\tilde{\sigma}$

locally uniformly in $B_{Q}$ . Then it follows

$\eta(P_{n})$ $=$ $\zeta_{P_{n}}(-\sqrt{A(P_{n})})-\zeta_{P_{n}}(\sqrt{A(P_{n})})$

$=$ $\zeta_{P_{n}}(P_{n}^{N_{n}}(-\sqrt{A(P_{n})}))-\zeta_{P_{n}}(P_{n}^{N_{n}}(\sqrt{A(P_{n})}))$

$arrow$
$\zeta_{Q}(g_{\overline{\sigma}}(-\sqrt{A(Q)}))-\zeta_{Q}(g_{\tilde{\sigma}}(\sqrt{A(Q)}))$

$=$ $\eta(Q,\tilde{\sigma})$ .
This completes the proof of Lemma 4.8. $\square$

Now suppose $R(\eta)$ lands at $Q$ . Then Lemma 4.6 says that, for any $\sigma\in \mathrm{R}/\mathrm{Z}$ , there exists a
sequence $P_{n}\in R(\eta)$ tending to $Q$ and $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}6^{r}\mathrm{i}\mathrm{n}\mathrm{g}\sigma(P_{n})=\sigma$. By Lemma 4.8, it follows $\eta(Q,\tilde{\sigma})=$

$\lim_{narrow\infty}\eta(P_{n})=\eta$ for any lift $\tilde{\sigma}$ of $\sigma$ . Since $\sigma$ is arbitrary, this completes the proof of Proposition 4.1.
$\square$

This proposition is a key to the proof of the main theorem. Let $\tilde{A}(Q)$ be the annulus in the repelling
Ecalle cylinder of $Q$ , bounded by the images of the Julia set $J(Q)$ . Note that $\zeta_{Q}$ maps $\Omega_{Q,+}-K(Q)$

conformally into the strip region $\Sigma=\{|\Im w\}<\pi/(2\log 3)\}$ and satisfies $\zeta_{Q}\circ Q(z)=\zeta_{Q}(z)+1$

there (the same functional equation as the Fatou coordinates). This yields a flat annulus $A’(Q)=$

{ $|\Im w|<\pi/(2$ log3)} in $\mathrm{C}/\mathrm{Z}$ of modulus $\pi/\log 3$ . Put $A(Q)=\phi_{Q,+}(\tilde{A}(Q))$ . Then the quotient map
$\psi_{Q}$ : $A’(Q)arrow$. $A(Q)$ of the map $\phi_{Q,+}0\zeta_{Q}^{-1}$ : $\Sigmaarrow\Omega_{Q,+}-K(Q)$ gives a conformal equivalence between
the annuli $A’(Q)$ and $A(Q)$ . In terms of the Lavaurs map, the Fatou vector is also written by

$\tau(Q)=\phi_{Q,+}(g_{\overline{\sigma}}(-\sqrt{A}))-\phi_{Q,+}(g_{\tilde{\sigma}}(\sqrt{A}))$ ,

which easily follows from the definition. Now we can see the geometric meanings of $\tau(Q)$ and $\eta(Q,\tilde{\sigma})$ .
That is, $\tau(Q)$ is the difference of $g_{\tilde{\sigma}}(\pm\sqrt{A})$ in the repelling Fatou coordinate and $\eta(Q,\tilde{\sigma})$ is their
difference in the $\zeta_{Q}$-coordinate. $\tau(Q)$ does not depend on $\tilde{\sigma}$ . On the other hand, $\eta(Q,\tilde{\sigma})$ generally
depends on $\tilde{\sigma}$ . But Proposition 4.1 assures its independence of $\tilde{\sigma}$ if $R(\eta)$ lands at $Q$ . If we change $\tilde{\sigma}$ ,
the positions of $g_{\overline{\sigma}}(\pm\sqrt{A})$ in the repelling Fatou coordinate are translated according to that change.
Nevertheless, their difference in the $\zeta_{Q}$-coordinate does not change. Since we can take $\tilde{\sigma}$ arbitrarily,
this gives a strong restriction on the property of the map $\psi_{Q}$ and we get the following lemma.
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Lemma 4.9 Suppose $R(\eta)$ lands at $Q\in Per_{1}(1)$ . Then $\psi_{Q}(w+[\eta])=\psi_{Q}(w)+[\tau(Q)]$ . Especially it
follows $\tau(Q)=\eta$ .

proof. Since $\psi_{Q}$ is conformal, we have only to show the relation on the equator $\mathrm{R}/\mathrm{Z}$ . The above
discussion implies that the difference of the images by $\zeta_{Q}0\phi_{Q,+}^{-1}$ of the two points on the real axis
of the repelling Fatou coordinate with difference $\tau(Q)$ is always $\eta$ . Hence we have $\psi_{Q}(w+[\eta])=$

$\psi_{Q}(w)+[\tau(Q)]$ on the equator. Then $\psi_{Q}$ gives a real analytic conjugacy of the two rotations with
rotation numbers $[\tau(Q)]$ and $[\eta]$ on the equator. Hence $[\tau(Q)]=[\eta]$ . By Lemma 5.3, this implies
$\tau(Q)=\eta$ . This completes the proof. $\square$

Now we are in a position to prove the main theorem. Suppose $\eta$ is irrational and $R(\eta)$ lands at
some $Q\in Per_{1}(1)$ . By Lemma 4.9, $\psi_{Q}$ satisfies $\psi_{Q}(w+[\eta])=\psi_{Q}(w)+[\tau(Q)]$ . Then, for any $n\in \mathrm{Z}$ ,
we have $\psi_{Q}(w+[n\eta])=\psi_{Q}(w)+[n\tau(Q)]$ . Note that, if $\eta$ is irrational, the $\mathrm{s}\mathrm{e}\mathrm{t}\{[n\eta];n\in \mathrm{Z}\}$ is dense in
$\mathrm{R}/\mathrm{Z}$ . Then $A(Q)$ must also be a flat annulus. This implies that $J(Q)$ is a real analytic curve, which
is a contradiction. In fact, the immediate basin of $\beta_{Q}$ contains, locally at $\beta_{Q}$ , a sector region with an
angle $3\pi/2$ . Then $J(Q)=\partial B_{Q}$ cannot be smooth at $\beta_{Q}$ , consequently at all its preimages densely
distributed on $J(Q)$ . This completes the proof of the main theorem.

In case of rational $\eta$ , Lemma 4.9 still holds and we have

Lemma 4.10 Suppose $\eta=p/q\not\in \mathrm{Z}$ is mtional and $R(\eta)$ lands at some $Q\in Per_{1}(1)$ . Then $\tau(Q)=\eta$

and the ima.qe of $J(Q)$ in the repellin.$q$ Fatou coordinate is invariant under the translation $w\mapsto w+1/q$ .

Since $\mathrm{Q}$ is dense in $\mathrm{R}$, we have

Lemma 4.11 There enists a dense subset $E$ of $\mathrm{Q}$ such that, if $\eta\in E$ then $R(\eta)$ does not land at any
point on $Per_{1}(1)$ .

We conjecture that, for any $\eta\in \mathrm{R}-\mathrm{Z},$ $R(\eta)$ does not land at any point on Per1 (1).

5 The third quadrant

The same argument works also in the third quadrant. So we only state the results and omit the details.
There, our family is written by

$P(z)=P_{A,B}(z)=z^{3}-3Az-\sqrt{-B}i$ ; $A,$ $B<0$ ,

which is affinely equivalent to the family of real polynomials :

$p(z)=pA,B(z)=-z^{3}-3Az-\sqrt{-B}$ .

The connectedness locus $C_{3}^{R}$ is bounded by two real algebraic curves :

$Per_{2}(1)$ $=$ $\{B=4(A-2/3)^{3};-1/36\leq A\leq 0\}$ ,
$Preper_{(1)2}$ $=$ $\{B=-(\sqrt{-A}(2A+1)+1)^{2};-1\leq A\leq-1/36\}$.

We consider the stretching rays in the region $D’=\{B<4(A-2/3)^{3}\}$ . For $q\in Per_{2}(1),$ $q$ has a
parabolic 2-cycle $\{\beta_{q}, \beta_{q}’\}$ with multiplier 1. Here $\beta_{q},$ $\beta_{q}’$ are the landing points of the external rays of
angles $0,1/2$ respectively. In other words, they are the maximum and minimum real 2-periodic points
respectively. Both critical $\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{s}\pm\sqrt{-A}$ of $q$ are contained in the immediate basin $B_{q}$ of $\beta_{q}$ . Let $\phi_{q,\pm}$

be the Fatou coordinates of $q\in Per_{2}(1)$ at $\beta_{q}$ normalized by $\phi_{q,\pm}(c\pm)=0$ for some real constants
$C\pm\in \mathrm{R}\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\theta$ ing $c_{+}<\beta_{q}<C_{-}$ for any $q\in Per_{2}(1)$ . $\phi_{q,\pm}\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}6^{r}\phi_{q,\pm}(q^{2}(z))=\phi_{q,\pm}(z)+1$ in their
petals. We define the Fatou vector $\tau(q)=\phi_{q,-}(-\sqrt{-A})-\phi_{q,-}(\sqrt{-A})$ of $q$ in the same way.
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Lemma 5.1 The Fatou vector.gives a real analytic pammetrization of $Per_{2}(1)$ .

Put $g_{k}(A)=q(-\sqrt{-A})-q^{2k+1}(\sqrt{-A})$ for $k\geq 1$ . Then we have

Lemma 5.2 $g_{k}$ is monotone increasin.q on $Per_{2}(1)$ .

Hence $g_{k}$ has a unique zero $A_{k}$ in $(-1/36,0)$ and the sequence $\{A_{k}\}$ is monotonely decreasing and
converging $\mathrm{t}\mathrm{o}-1/36$ . Furthermore, there is a real algebraic curves

$R(k)$ : $p(-\sqrt{-A})-p^{2k+1}(\sqrt{-A})=0$ .

through the point $(A_{k}, B_{k})$ . It is easy to see that $R(k)$ is a stretching ray landing at $(A_{k}, B_{k})$ . We
also define the B\"ottcher vector $\eta(p)$ of $p$ in the shift locus by

$\eta(p)=\frac{\log h_{p}(-\sqrt{-A})-\log h_{p}(\sqrt{-A})}{2\log 3}$ .

Note that we consider the orbit of $p^{2}$ of degree 9 and that $h_{p^{2}}=h_{\mathrm{p}}$ . Then we have

Lemma 5.3 The stretchin.$q$ my $R(k)$ with $k=1,2,3,$ $\ldots$ lands at a map $q\in Per_{2}(1)$ rnith $\tau(q)=k$ .
Conversely, at a map $q\in Per_{2}(1)$ with $\tau(q)=1,2,3,$ $\ldots$ the stretching my $R(\eta)$ with $\eta=\tau(q)$ lands.
$R(k)$ is expressed by $p(-\sqrt{A})-p^{2k+1}(\sqrt{-A})=0$ .

Theorem 5.1 Suppose $\eta$ is irmtional. Then the stretchin.$q$ my $R(\eta)$ does not land at any point on
$Per_{2}(1)$ . $Consequenu_{y}$, its accumulation set $I(\eta)\dot{u}$ a non-trinial arc on $Per_{2}(1)$ .

Lemma 5.4 There exists a dense subset $E’$ of $\mathrm{Q}$ such that, if $\eta\in E’$ then $R(\eta)$ does not land at any
point on $Per_{2}(1)$ .
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