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Fredholm determinant of complex Ruelle operator,
Ruelle’s dynamical zeta-function,
and forward/backward Collet-Eckmann condition
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0. Introduction

In this note, we formulate a complex analytic version of the Ruelle’s
transfer operator applied to a kind of generalized functions related to a
complex dynamical system on the Riemann sphere. The Fredholm deter-
minant of this operator factorizes into several factors. One of these factors
is a cémplex version of Ruelle’s dynamical (-function. We define what we
call an n-function derived from this factorization. The condition for this
n-function to have poles or zeros leads us to a condition concerning the
recurrence of the critical points. Such a condition is formulated and called
the forward/backward Collet-Eckmann condition.

1. Prehyperfunctions supported on the Julia set

In this section, we formulate the notion of prehyperfunctions defined in
a neighborhood of the Julia set. Complexified version of Ruelle’s transfer
operator for these functions will be formulated in the next section. Let
R : C = C be a rational mapping of the Riemann sphere to itself. We
assume that the infinity is an attractive (or superattractive) fixed point of
R. In the case of attractive fixed point, we assume R is of the form

R(z) =0z + 0(1),

near the infinity with |0| > 1. The eigenvalue of the infinity is o=!. Let
F = F(R) denote the Fatou set of R, and let J = J(R) denote the Julia
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set of R. We denote by C = C(R) the set of critical points of R and by
P = P(R) the set of postcritical points, i.e., the closure of the set of the
forward iterated images of the critical points. Let C; = CNJ, Cr =CNJ,
Pr=PNF, and P; = PN J. We assume that F and J are connected
and Pr is compact. Further, we assume that all the critical points are non-
degenerate, and the forward orbit of each critical point does not contain
other critical points.

Let O(J) denote the space of functions g : J — C which can be ex-
tended to a neighborhood of J and holomorphic in the neighborhood of J.
The topology is defined as follows : a sequence of functions {g,} in O(J)
converges to some function g in O(J) if there exists a neighborhood of
J such that {g,} are extendable to this neighborhood and the sequence
converges to g, uniformly in this neighborhood.

Let O(F) denote the space of holomorphic functions f : F — C with
the topology of local uniform convergence. We denote by Oy(F') the set of
holomorphic functions f € O(F) satisfying f(co) = 0.

The space of prehyperfunctions H(J) supported on J is defined by a
direct sum :

H(J) = O(J) ® Oy(F).
This space is a Fréchet space. '
For ¢ € H(J), let ¢ = @5 ® pF with p; € O(J) and ¢r € Oy(F).

DEFINITION 1.1 An open neighborhood U of J with a smooth bound-
ary I' = OU is said to be adapted to ¢, if ¢; can be extended holomorphi-
cally to U, UN(CrU Pp) =0, R"Y(U) C U, and R~}(T") is homologous to
CinU\ J. -

For each ¢; € O(J), there exists an adapted neighborhood of ;. Let
U be a neighborhood of J adapted to some p; € O(J). Let O(U) denote
the space of holomorphic functions on U. Let H(U) = O(U) @ Oy(F). For

¢ € H(U), the decomposition ¢ = p; ® pr is given by

wr(z) = 1, o (7) dr, for z €U,
2 T — 2

and .
wp(z) = . o(7) dr, for z € F,
2mi I T — T




where the intagration path v; C U \ J turns once aroud the Julia set J
in the counterclockwise direction passing near the boudary of U so that z
belongs to the inside of the integration path, and the integration path yr C
U \ J turns once around the Julia set J in the clockwise direction passing
near the Julia set J so that z belongs to the outside of the integration
path. The integration path depends on z and 2. But this defines functions
s € O(U) and pr € Oy(F). Moreover, we have ¢ = @7+ @ in U \ J.
Here, ¢; + ¢ means the usual sum of functions, and we don’t distinguish
the prehyperfunction and the function defined by ¢ in U \ J. Note that
the decomposition is unique, since a function belonging to O(U) N Oy(F)
is holomorphic on the Riemann shere and vanishes at the infinity, hence it
is identically zero.

2. Complex version of Ruelle’s transfer operator

In this section, we define the complexified version of Ruelle’s transfer
operator (with weight functon (R/(2))?) for the prehyperfunctions. Take an
open and simply connected neighborfood Uy of J, with a smooth boundary
Ty = 90Uy, such that R™1(Uy) C Uy, UyN FN(PUC) = P, and that R-(I)
is homologous to I" in Uy \ J.

DEFINITION 2.1 Complex Ruelle operator L : H(U) — H(U) is defined
by

(Lp)(z) = ye;(z)%’ e HU), zel.

'This operator can be rewritten in an “integral operator form” as follows.

1 (1)
27 /7J+’YF R'(7)(R(7) — )

(Ly)(z) = dr,

where the integration path v; and yr are taken as in the previous sec-
tion. For each x € U, this formula defines the value (Ly)(z) by choosing
the integration path vy; running sufficiently near the boudary AU, and by
choosing the integration path yr running sufficiently near J. Note that if
we fix the integraton path, then this formula defines the value of (L¢)(z)
for only in some subset of U \ J. This fact can be verified immediately by
applying the residue formula.
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Also, note that the obtained function Ly can be extended to a prehy-
perfunction in a larger domain V, if R™1(V) C U. Hence, if U C V and
R™Y(V) C U, then L defines a complex linear mapping

L:HU) - H(V),

which is compatible with the natural inclusion H(V') C H(U). Here, V' \ J
may contain critical points of R. ,
The space of prehyperfunctions H(U) has a natural decomposition H(U) =

O(U) @ Op(F). This natural decomposition induces a natural decomposi-
tion of the complex Ruelle operator L : O(U) @ Oy(F) = O(U) & Oy(F)

as ,
I = Ly Ljr
Lry Lpr |

These components are given by the “integral operator form”, or in an
explicit form as follows.

LJJZO(U) ——)O(U),

1 @s(1)

(Lasps)(z) = I /w R'(T)(}JB(T) - x)dT
~ ©(y) wi(c) z
- yelg;l(m) B2 ceZcJ R(OR@) =) #© o el

LJF . OU(F) — O(U)a
! er(T)
(Lirpr)(z) = 5 /w R’(T)(E(T) - "’)dT
_ Z ' (pF(C) QDFEOO(F)7 x e U.

oG R'(Q)(R(c) — @)’
Lpy: O(U) — OO(F),

(Lrsor)(a) = - 21(7)

o /W RORE) =)

- - LRy @O0 ek

Lpp: Oo(F) — Oo(F),

1 @r(T)

271 /vp R'(7)(R(T) — z) ar

(Lrror)(z) =
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er(y) ¢r(c)
= 2 + > ,
yER"(x) (Rl(y))2 ceCr RII(C)(R(C) - LB)
For a prehyperfunction ¢ € H(U) with ¢ = ¢; ® ¢p, we have the
following :

wr € Op(F), =z€F.

(Lp)(x) = (Lysps+ Lirpr) ® (Lrspy + Lrror).

By taking neighborhoods Uy, k = 0,1,2,--- of the Julia set J by U =
R7*(U), we see that

H(Up) C H(Uy) C - CH(Us) C--- C H(J)

and

H(T) = k@gH(Uk).

The complex Ruelle operators L : H(Uy) — H(Uy) commute with the
natural inclusions H(Uy) C H(Uk+1) and define a complex linear operator
L:H(J) = H(J). In fact, L(H(Uxs1)) C H(Ux). Note that when we
look for its eigen values and eigen functions, we have to consider invariant
subspaces. We shall consider the space of holomorphic functions O(F'\ P).
We denote by Oy(C \ Pr) the space of entire meromorphic functions with
all poles in the postcritical set P. The complex Ruelle operator operates
on the space of prehyperfunctions Ho(C \ Pr) = Oo(C \ Pr) & Oy(F).

3. Dual spaces and adjoint Ruelle operator

In this section, we define the dual operator of the complex Ruelle oper-
ator L : H(J) — H(J) defiined in the previous section. The topology of

O(J) is understood as the uniform convergence in some neighborhood of
J. ‘

DEFINITION 3.1 A complex linear functional ® : O(J) — C is said
to be holomorphic if the value ®[g,] depends holomorphically upon p for
holomorphic family of functions g,,.

DEFINITION 3.2 The dual spdce O*(J) is the space of continuous,
complex linear, and holomorphic functionals & : O(J) — C.

DEFINITION 3.3 Function x(2) = ?%"C is called the unit pole at (. For
each ¢ € F, x; € O(J), and for each ¢ € J, x; € Oy(F).
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Unit pole x. is also called the Cauchy kernel when it is used as a kernel
of an integral operator. As is well known in the theory of hyperfunctions,
the holomorphic functional defined by the Cauchy kernel x, behaves as the
Dirac’s delta function,

1

f(¢) = 5 ’YFXC(T)f(T)dT, for fe Oy(F),(€eF
and )
9(¢) = 5o g(T)g(T)dT, for g€ O(J),( e U.

Holomorphic linear functlonals can be represented by holomorphic func-
tions as described in the following proposition.

PROPOSITION 3.4 For each ® € O*(J), there exists an f € Oy(F),
such that

g]—2 /f 7)dr, for g€ O(J),
where the integration path g is taken as in the previous section.

PROOF Let x¢(2) = 7}5 be the unit pole at ¢. For each ¢ € F, x¢ €
O(J). Hence x¢ is a holomorphic family of functions in O(J). Therefore,
by setting f({) = ®[x¢], f : F — C is a holomorphic function. By the
continuity of the functional ®, we see that lim¢ o f({) = 0, hence f €
Oy(F). For g € O(J), take a neighborhoood U of J adapted to g. Then
for z € U, by Cauchy’s integration formula, we have

9 = 5= [ x(Qe(Q)d

2m1

Hence, we can compute the value ®[g| as follows.

3lg) = ¥l-— [ x(Q9(€)dd] = o[ [ o(Oxc()dc]
- /7 o0l = | 9O F(Q)

271 271

== / O f(Qde.
The last eqality holds since g and f are holomorphic in U \ J.

Note that such a function f € Oy(F) is unique since

F(O) =5 [ fxe(r)dr=alx], for (E€F



This proves the following proposition.
PROPOSITION 3.5 The dual space O*(J) is isomorphic to Oy(F).
Next, as for the dual space Oj(F) of Oy(F), we have the following.

PROPOSITION 3.6 For each ¥ € Of(F), there exist a germ of holo-
morphic function g € O(J) and a neighborhood U of J adapted to g, such

that
1

V(] = o[ a(n)f(r)dr, for f e OF).

21

PROOF Define a function g € O(J) by

9(z) = VY[x,], for ze€J

As ¥ is holomorphic and J is a perfect set, g(z) defines a germ of holo-
morphic function on J. This function ¥|x,] extends holomorphically to an
adapted neighbourhood of J. For f € Oy(F) and z € F,

1) = = [ x(QF(Qdc.

27t Ir

Hence, .
WA =V [ Q5] =W [ FOxe()c]

= [ FOUIddC = = [ f(OalC)de
sz F(Qg(¢)d¢

PROPOSITION 3.7 The dual space Oj(F) is isomorphic to O(J).

Isomorphisms in Propositions 3.4 and 3.6 are called Cauchy transfor-
mations, since they are defined by the Chauchy kernel x((z).

DEFINITION 3.8 The pairings (f,g)r and (g, f); are defined for g €
O(J) and f € Oy(F) b

(fa g>F

5% [ f@g(rydr

(9,11 = 5 [ 9(r)f(r)dr

27

and

91
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For ¢ = 0 ;®pr € H(J) and ¢ = ¢/ @YF €Oy(F)® O(J)= O*(J)DOy(F)
= H*(J), the pairing (¢, ¢) is defined by

(¢7Q0> - (¢J7¢J>F+<¢F790F)J-

Usually, the integration paths yr anf v; depend upon the choice of the
adapted neighborhood U of J. However, when we fix the adapted neigh-
borhood U, we shall also consider the integrations along these integration
paths. We shall abuse this notation to represent such integrals, especially,
when we consider kernels of integral operators. In such a case, since the
integration path is fixed, the abuse of notation will not cause an ambiguity.
Using the notations above for pairings of prehyperhunctions, we can refor-
mulate the complex Ruelle operator as follows. Let K (1) = 7?1'(7—)(_1%(7):55
denote the kernel of the complex Ruelle operator L. As rational functions
can be decomposed into partial fractions, we have the following proposi-
tion.

PROPOSITION 3.9 For each z € F'\ P, K, can be decomposed into
partial fractions :

_ Xy Xz(R(c))xe
K= B EBOETZ B

We decompose the kernel K, into three parts.

L _ Xy
K= B, RGP

J _ Xz (R(c))Xe
K= X R@

F X:v(R(C))Xc
Ko= 2 TR

We see that K] € Oy(F) and KI € O(J). In the following, we shall
assume ¢ € U\ J or ¢ € R(U \ J), as z represents the variable of the
image function of the Ruelle operator. The singularities y € R™}(z) of KL
are redarded to be in the appropriate adapted neighborhood, so that they
belong to the annulus between ; and yr. The components of L can be
rewritten as follows.

(Lyses)(z) = (KF + K], 1),
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(Lirpr)(z) = (KF + KF, pp); = —(KY, or)F,
(Lrsps) (@) = (K] + K], o) r = —(K7, ©J) s
(Lrrer)(z) = (KL + KE, or)p.

The image Ly, of the unit pole at ¢ € C \ C can be computed directly
as follows.

PROPOSITION 3.10

XR() X¢(€)XRr()
Ly, = ZXEQ AQTIXR(e)
“ = ROTR m

PrROOF If ¢ € F\ Cp, then x; € O(J). For z € U, we regard that z
and its backward image are included in the annulus domain between the
two integration paths v; and yz. The resudue formula is applied to the
outside domain of the integration path instead of the inside domain. Or
equivalently, we use the fact that for rational functions, the sum of residues
of all poles in the Riemann sphere vanishes.

1 dr
(Lasxe)(z) = 2mi Jvr R'(1)(R(T) — 2)(7 — C)
1 1

T RORO-2) &, QRO = 2)c =0

_ Xr(z) x¢(€)Xr(e) (2)
- R/(C) +c§p R"-(C) )

1 dr
Lrd@) = 55 L woED 00

_ 1 _ x¢(€)xre) ()
T T ERORO-D6=0 ~ 2 B
Similarly, if ¢ € J \ Cj, then x, € Oy(F), and

1 dr

(Lorxd(e) = 32/, R(T)(R(r) —2)(r - ()
_ 1 _ x¢(e) xR ()
T A FORO-IC-0 2 Bl
(Lrrxc)(z) = . dr

2mi Y R/(7)(R(7) — z) (7 - ¢)
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B -1 5 1
- R(O(R(C) —2)  cec, R'()(B(c) = z)(c = ()
_ xr(®) X¢ ()X ()
RO T RO
This completes the proof since L = Lyj+ Lpyjon O(J) and L = Lyp+ LpF
on Oo(F)

Let L* : H*(J) — H*(J) denote the dual operator of the complex Ruelle
operator L : H(J) — H(J). And let L£*: Oy(F) & O(J) = Oy(F) & O(J)
denote its representation via the Cauchy transformation. We call this

operator £* the adjoint Ruelle operator. The dual space of H(J) will be
denoted by H*(J), and we abuse this notation to denote the “adjoint”
space Oy(F) @ O(J), too. The components of £L* with respect to the
natural decomposition will be denoted as
L = ( *FF E}J )
Lyp Ly

The explicit formula for the adjoint Ruelle operator can be computed di-
rectly as follows.

PROPOSITION 3.11 For ¢ = ¢’ @ ¥ with ¢/ € Oy(F) ~ O*(J), and
Y' € O(J) = O5(F),

. ¥’ (R(2)) ¥’ (R(c)) ¥F(R(c))
(L*P)(2) = (—,“‘— Y o Xe(2) D i Xe(2
RO 5 R Ot mg P
¥’ (R(c)) PF(R(2)) PF (R(c)) )
D D i Xe(2) + T o Xc\?)] -
(2, R e s g e
And in U \ J, where ¢ defines a holomorphic function,
vy _ YOR
LYY = 7
ProOOF The proof is straightforward by direct computations applying
the residue theorem. Let v/ € Oy(F) ~ O*(J), and compute L*¢’ as
follows.
First, let us compute the component L%/ € Oy(F). For z € F,
Xz € O(J). Hence,

(Lrr¥")(2) = (@7, Lix)r = (7, éff((;)) +c€ZCp %)
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_ P/(R(2)) ()P (R(e) _ ¢/(R(2)  ¥'(R(0) 3
- TR{) Zg R"(c) ~ TR(2) Z(; R(¢) Xe(2):

The component Ly’ € O(J) is computed as follows. For z € J, x, €
Oo(F). Hence, |

(C5p”) () = @ Lopxa)s = (97, 3 XX,
ceCF R (C)

= 3 X _ 5 YUEE)
= B e = % T )

Similarly, components L} ;4f € Oy(F) and L% ,4F € O(J) are computed
as follows. For z € F, x, € O(J). Hence,

(Lo = WF Lesxr = @F, ¥ XOXre,

cec, R'(c)
B X:(¢) | F _ YI(R(e)
= L w@ Xl = 2 Ty )

Finally, for z € J, x, € O(F), and

(C38)E) = W Lepxeds = (07 J0d 4 3 XiopRG),

_ P(R(2)) x:()¥F(R(e)) _ ¢'(R(z) ¥F(R(0)) s
= TRE ET Rl RG) iz R

4. Trace of Complex Ruelle operator

Let Uy be a neighborhood of J adapted to some prehyperfunction ¢ €
H(Up). Complex Ruelle operator L : H(Uy) — H(Up) is defined by

LRE) = % e eeHT), selh\J

The image prehyperfunction Ly € H(Uyp) can be extended holomorphically
to a prehyperfunction defined in a larger domain U_; \ J with

U_ = {Z eC \ Pr [ R_l(z) C Uo}

By defining U_j inductively for k = 1,2, - - -, We have a sequence of spaces
of prehyperfunctions : |

H(C\ Pr) C--- CH(U-1) CH(Up) C H(Uy) C --- C H(J]),
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and
'H(C \ PF) = ﬂ,?;OH(U_k).

Hence, if the complex Ruelle operator L has an eigen prehyperfunction
@ € H(J), then it must be in H(C \ Pr). This subspace H(C \ Pp) is
mapped into itself by L. In the following, we regard L as a complex linear
operator

L:H(C\ Pr) — H(C\ Pr).

In the following, we denote the m-times composition of the rarinal func-
tion R by R,,, for m = 0,1,2,---, as we shall use derivatives of R,,. In
order to emphasize the iterated inverse of maps, we use usual notation
R™™, too. We can compute the iterates L™ of the complex Ruelle operator
as follows.

PROPOSITION 4.1

vy ey 1 (1) -
(7)) yGRZm(m) (Rn(v))? 2m [”HF R () (Bom(7) = m)d |

Note that the preimages of the integration paths are homologous in
F'\ Pr to the initial integration path v; and vp.

Let Fix(R.,) denote the set of fixed points of R,,, and let C(R,;,) denote
the set of critical points of R,,. The components of L™ with respect to the
natural decomposition H(C\ Pr) = O(C\ Pr) ®Oy(F) will be denoted as

m m °
Lrj Lgr
We assume that the infinity is an attractive fixed point of R and R takes

the form R(z) = 6z + - - - near the infinity. For the case where the infinity
is a superattractive fixed point, set ¢ = oo in the following propositions.

PROPOSITION 4.2 The traces of L™, LS"}), and L%mp), m=1,2,--- are
given by
trace[L™] = 0,
m) 1 1 1

trace[LUY] = - + > ,
77 0™ =1 seFix@m)nJ Ry, () yeC(Rym)NJ R (y)(Rm(y) — 9)




97

-1 1 1
t L(m) — — |

PROOF The proof is straightforward by a direct computation using
the resudue formula.

1 dr

Lm = b _ .
trace[L™] 2w Jtr R (T)(Rm(7) — 7) ’
my _ L dr
traCe[LJ'] ] - 2T [)’J R;n (T)(Rm(’r) — T),

] 1

= +
ety Bn@ @@ 1) oy B @) (Bn(y) = 9)

1 1 1

- Y ey + ¥

reFix(Rp)nd Bin(2) =1 serid@a)ng Bm(®) yecimmns Bmy) (Rm(y) —y)

As 1
Z R (z)—1
z€Fix(R,)NJ “'m

is a sum of resudues of rational function mlTT_——T—, by taking the residue at
the infinity into considerations, we obtain the formula of the proposition.
Similarly, as the integrand function is meromorphic in FUoo, and F' is the
basin of attraction of the attractive fixed point, we have

dr

- 1
racell¥F) = o e ) ) =)
1 1
= R ) ) " sectione Ba@ Fnle) ~ 1)
-1 1 1

cm—1 o yE€C(Rm)NF R;;l(y)(Rm(y) - y)

5. Fredholm determinant and Ruelle’s dynamical {-function

The Fredholm determinant D()) of linear operator L is defined formally
by
0 /\m
D()\) = det(I — L) = exp (—Z —trace[Lm]).
m=1
As we computed in the preceeding section, we have trace[L™] = 0 for
m =1,2,---. Hence D(\) = 1 holds for all X € C.
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DEFINITION 5.1

Dj(A) = exp (— > /\—trace[L(J"})]) :

m=1 T
and
= A (m)
Dp(\) = exp|— Y. —trace[Lpp]] .

m=1 M

As trace[L™] =trace[LS'3)]+trace[L$?g], m=1,2,--, we have

D(A) = Dy(A\)Dr(A) = 1.
Let

szl)(/\) = exp (— i A > ———L—)

m=1 M cRin(Rmng Fom(Z) — 1

DP()) = exp (— io: all > -1 ),

m=1 M zeFix(R.)NJ R, (z)

O(n) = exp|- 3> 2" 1
Dj (’\) - p( m§=:1 m yec(%m)ru R%(y)(Rm(y) o y))

denote the factors of Dj(A), and let

DY) = exp (— Dl )

me1 mo™m™—1

o "1
DPO) = e (- £ 20,
oo \™M 1
PPN = expl-3 &= %
r () m=1 M yec(Rmnr Bmy)(Bm(y) —v)

denote the factors of Dr()).

PROPOSITION 5.2  The factor DSI)(A) converges for |A| < |o| and
extends holomorphically to an entire function
o0 A

DM = 1= 25
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And the factor Dg)()\) converges for |A| < |o| and extends analytically to
an entire meromorphic function
1 k

D(l) A = — = o
() DP() DG

—3

).

PROOF By a straightforward calculation, we obtain the following. We
assumed that |o| > 1. For |A| < |o|, we have

DM = exp(—iﬁ . ) - exp(—§ /\mi—},—;)

—1mom—1
m=1

The last expression of D(Jl)(/\) in an infinite product form shows that it
extends holomorphically to an entire function. The rest of the proof is
easy. This factor of the Fredholm determinant is same as the Fredholm
Determinant of the transfer operator L) : H(J) — #H(J) defined by

) — ply) _ 1 o) .
(Layp)(z) = yeRZ_:l(x) R ~ oni [”MF R(T)'—a;d-" »

The complex version of Ruelle’s dynamical {-function is defined as fol-
lows.

DEFINITION 5.3 Complex dynamical (-function for the Julia set J is
defined by
GA) = exp(i 2y ———1—)
m=1 M geFix(Rn)NJ R (z)
and complex dynamical {-function for the Fatou set F is defined by

) = x5 f—”—i—) -

m=1 T o™

o
o—\

As is easily seen, we have

DPM) = ¢
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d
an )

Cr(N)

For a periodic point = of R, let p(z) denote its prime period, let (z) =

DR =

{z1,22, -+, Ty} denote its cycle, and let p(z) denote the eigenvalue of
the cycle. For each prime cycle (z) of R, we define the (-function ((;())
of the prime cycle (z) by

- (22"

The complex dynamical {-function has an “Euler decomposition”
(A = (H)C(x)()\),

where (z) ranges over all the prime cycles in J.

LEMMA 5.4 Let s > 0 and ¢t > 1 be integers. If ¢ € C(R) and
y € R™*(c), then |

Ri1s(y) = R'(0)Ri_1(R(c))(Ri(y))"

This lemma shows that the second derivatve of a point in the backward
image can be described as a product of three terms. The proof is straight-
forward and left to the reader. In order to decompose the terms DE,3)()\)
and Dg})(/\), we define n-functions as follows. |

DEFINITION 5.5 For each critical point ¢ € C(R), the n-function n.(\)
for ¢ is defined by

1 1

The - function of dynamical system R is defined by

nA) = I 7).

ceC(R)

As critical points of R, are in the backward image of the critical points,
we have

o \m 1
n(\) = exp (— el T (Bon(y) — w) |

25 T (R(O) yenoe B @) (R0~ 9)

) |
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Clearly, we have

DN = O 7,
ceC(R)NJ

DY = I ),
ceC(R)NF

and
3
DPMNDP () = n(\).
Putting all together, we obtain the following proposition.

PROPOSITION 5.6 Ruelle’s dynamical {-function can be expressed in

terms of n-function. If the infinity is an attractive fixed point of R with
eigenvalue ¢!, then
. \ 1
GO = (1-2)—==.
(A) =) ey
If the infinity is a superattactive fixed point of R, then

1

G(A) = 70"

6. Dynamical n-function and critical recurrence rate

Our expression of dynamical n-function gives some information about
the zeros or poles of the dynamical {-function.

DEFINITION 6.1 Positive number 8 is called a critical recurrence rate
if there exists a positive number «, such that

1
| R Rnl) =)

| <af™, for m=1,2,---.

DEFINITION 6.2  Rational function R : € — C is said to satisfy
the forward/backward Collet-Eckmann condition if there exists a positive
critical recurrence rate.

Clearly, we have the following theorem.

THEOREM 6.2 If R satisfies the forward/backward Collet-Eckmann
condition with a critical recurrence rate 8 > 0, then n()) is holomorphic
for [A| < 8~!. And consequently, {;(A)/(1 —2) extends holomorphically to
the disk |A\| < 67, and does not vanish there.
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