Continuation of Holomorphic Functions from Subvarieties to Pseudoconvex Domains

長崎大学教育学部 安達謙三 (KENZŌ ADACHI)

1. Introduction

Let D be a bounded pseudoconvex domain in \mathbb{C}^n and V a subvariety of D. In the present paper, we give some recent results concerning holomorphic extensions from V to D in some function spaces. In 1965, Hörmander obtained L^2 estimates for the $\bar{\partial}$ problem in bounded pseudoconvex domains in \mathbb{C}^n . In 1970, Henkin, Grauert-Lieb and Lieb obtained the uniform estimates for the $\bar{\partial}$ problem in strictly pseudoconvex domains in \mathbb{C}^n with smooth boundary. Corresponding to these results, extension problems were studied by two different methods. The one is the extension using the integral formula in the case where D is a bounded pseudoconvex domain with a support function (for example, bounded strictly pseudoconvex domains or bounded convex domains with smooth boundary). The other is the L^2 extension using the Hilbert space theory in the case where D is a general bounded pseudoconvex domain. The main purpose of the present paper is to introduce Berndtsson's another proof of the L^2 extension theorem of Ohsawa-Takegoshi in bounded pseudoconvex domains.

2. Some recent results

Definition. Let D be an open set in \mathbb{C}^n and $\varphi \in C^{\infty}(D)$ a real function. We denote by $L^2(D,\varphi)$ the space of square-integrable functions in D with respect to the measure $e^{-\varphi}d\mu$, where $d\mu$ is the Lebesgue measure in \mathbb{C}^n . We denote by $L^2_{(p,q)}(D,\varphi)$ the space of (p,q)-forms with coefficients in $L^2(D,\varphi)$,

$$f = \sum_{|I|=p, |J|=q}^{\prime} f_{I,J} dz^{I} \wedge d\bar{z}^{J},$$

where \sum' means that the summation is performed only over strictly increasing multi-indices. We set

$$|f|^2 = \sum_{I,J}' |f_{I,J}|^2, \quad ||f|| = \left(\int_D |f|^2 e^{-\varphi} d\mu\right)^{\frac{1}{2}}.$$

For $f, g \in L^2_{(p,q)}(D,\varphi)$ with $f = \sum_{I,J}' f_{I,J} dz^I \wedge d\bar{z}^J$, $g = \sum_{I,J}' g_{I,J} dz^I \wedge d\bar{z}^J$, we define the inner product in $L^2_{(p,q)}(D,\varphi)$ by

$$(f,g) = \sum_{I,J}' \int_D f_{I,J} \overline{g_{I,J}} e^{-\varphi} d\mu.$$

Then $L^2_{(p,q)}(D,\varphi)$ is a Hilbert space with this inner product.

Theorem 1.(Hörmander[14]) Let D be a bounded pseudoconvex open set in \mathbb{C}^n , let δ be the diameter of D, and let ψ be a plurisubharmonic function in D. For every $f \in L^2_{p,q}(D,\varphi)$, q > 0, with $\bar{\partial} f = 0$, one can then find $u \in L^2_{(p,q-1)}(D,\varphi)$ such that $\bar{\partial} u = f$ and

$$q \int_D |u|^2 e^{-\varphi} dV \le e\delta^2 \int_D |f|^2 e^{-\varphi} dV$$

Theorem 2.(Henkin[10], Ramirez[17]) Let D be a bounded strictly pseudoconvex domain in \mathbb{C}^n with smooth boundary. Then there exist a pseudoconvex domain $\tilde{D} \supset \overline{D}$ and functions $K(\zeta, z)$ and $\Phi(\zeta, z)$ defined for $\zeta \in \partial D$ and $z \in \tilde{D}$ such that

- (1) $K(\zeta, z)$ and $\Phi(\zeta, z)$ are holomorphic in $z \in \tilde{D}$ and continuous in $\zeta \in \partial D$
- (2) For every $\zeta \in \partial D$ the function $\Phi(\zeta, z)$ vanishes on the closure \overline{D} only at the point $z = \zeta$.
- (3) For any holomorphic function f in D that is continuous on \overline{D} and any $z \in D$, the integral formula

$$f(z) = \int_{\partial D} f(\zeta) \frac{K(\zeta, z)}{\Phi(\zeta, z)^n} d\sigma(\zeta)$$

holds, where $d\sigma$ is the (2n-1) dimensional Lebesgue measure on ∂D .

Definition. Let f(x) be a function on D. Then we define

$$|f|_0 = \sup_{x \in D} |f(x)|.$$

Let f be a (0,q)-form with the coefficients f_{i_1,\cdots,i_q} . Then we define

$$|f|_0 = \max_{i_1,\dots,i_q} |f_{i_1,\dots,i_q}|_0.$$

Theorem 3.(Henkin[11], Grauert-Lieb[8], Lieb[15]) Let D be a bounded strictly pseudo-convex domain in \mathbb{C}^n with smooth boundary. Then there exists a constant K such that if f is a $\bar{\partial}$ closed $C^{\infty}(0,q+1)$ -form on D, then there exists a $C^{\infty}(0,q)$ -form u on D with

$$\bar{\partial}u = f$$
 and $|u|_0 \le K|f|_0$.

Let D be a strictly pseudoconvex domain in \mathbb{C}^n with smooth boundary and let \tilde{M} be a submanifold in a neighborhood \tilde{D} of \overline{D} which meets ∂D transversally. We set $M = \tilde{M} \cap D$. Let Ω be a domain in some complex manifold. We denote by $H^{\infty}(\Omega)$ the space of all bounded holomorphic functions in Ω . We also denote by $A^{\infty}(\Omega)$ the space of all holomorphic functions in Ω that are C^{∞} on $\overline{\Omega}$. In this setting, we have theorem 4 and 5.

Theorem 4.(Henkin[12]) There exists a linear extension operator $E: H^{\infty}(M) \to H^{\infty}(D)$. Moreover, Ef is continuous on \overline{D} if f is continuous on \overline{M} .

Theorem 5.(Adachi[1], Elgueta[7]) There exists a linear extension operator $E: A^{\infty}(M) \to A^{\infty}(D)$.

Remark. Amar[4] proved theorem 5 when D is pseudoconvex. Henkin-Leiterer[13] proved theorem 4 without assuming the transversality.

Let D be a bounded pseudoconvex domain in \mathbb{C}^n with smooth boundary. Let $\gamma: \partial D \times D \to \mathbb{C}^n$ be a smooth mapping such that

$$(\zeta - z, \gamma) = \sum_{j=1}^{n} (\zeta_j - z_j) \gamma_j(\zeta, z) \neq 0$$
 on $\partial D \times D$.

Let $h_1, \dots, h_m(m < n)$ be holomorphic functions in a neighborhood \tilde{D} of \overline{D} . Define

$$\tilde{V} = \{ z \in \tilde{D} | h_1(z) = \dots = h_m(z) = 0 \}, \quad V = \tilde{V} \cap D.$$

We say V intersects ∂D transversally if

$$d\rho \wedge \partial h_1 \wedge \cdots \wedge \partial h_m \neq 0$$
 on ∂V .

In the above setting, we have the following:

Theorem 6.(Stout[19], Hatziafratis[9]) There is a smooth form $K_V(\zeta, z)$ on $\partial V \times \overline{V}$ which is of type (0,0) in z and (n-m-1, n-m) in ζ such that if f is holomorphic in V and continuous on \overline{V} , then for $z \in V$

(1)
$$f(z) = \int_{\zeta \in \partial V} f(\zeta) \frac{K_V(\zeta, z)}{(\zeta - z, \gamma(\zeta, z))^{n-m}}.$$

Moreover, $K_V(\zeta, z)$ is holomorphic in $z \in D$ provided that $\gamma(\zeta, z)$ is holomorphic in $z \in D$.

Let D be a bounded convex domain with a defining function ρ . Then we can choose

$$\gamma_i(\zeta, z) = \frac{\partial \rho}{\partial \zeta_i}(\zeta).$$

Let E(f)(z) be the right hand side of (1). Then we have

Theorem 7.(Adachi-Cho[3]) Let D be a bounded convex domain in \mathbb{C}^n with real analytic boundary and let V be a one dimensional subvariety of D defined above. Then we have

- (1) Let $1 \leq p < \infty$. If $f \in H^p(V)$, then $E(f) \in H^p(D)$.
- (2) Suppose that V has no singular points and $1 \le p < \infty$. If $f \in \mathcal{O}(V) \cap L^p(V)$, then $E(f) \in \mathcal{O}(D) \cap L^p(D)$,

where $\mathcal{O}(V)(resp.\ \mathcal{O}(D))$ denotes the space of all holomorphic functions in $V(resp.\ D)$.

A bounded domain $\Omega \subset \mathbb{C}^n$ is an analytic polyhedron with defining functions ϕ_i if

$$\Omega = \{ z \in \mathbf{C}^n | |\phi_j(z)| < 1, j = 1, \dots, N \},$$

where the defining functions ϕ_j are holomorphic in some neighborhood $\tilde{\Omega}$ of $\overline{\Omega}$. We set $\sigma_I = \{z \in \overline{\Omega} | |\phi_j(z)| = 1, j \in I\}$. We say that Ω is non-degenerate if $\partial \phi_{i_1} \wedge \cdots \wedge \partial \phi_{i_k} \neq 0$ on σ_I for every multiindex $I = \{i_1, \dots, i_k\}$ such that $|I| = k \leq n$. We say that Ω is strongly non-degenerate if $\partial \phi_{i_1} \wedge \cdots \wedge \partial \phi_{i_k} \neq 0$ on σ_I for all multiindices I. Let \tilde{V} be a regular subvariety of $\tilde{\Omega}$ of codimension m given by

$$\tilde{V} = \{ z \in \tilde{\Omega} | h_1(z) = \dots = h_m(z) = 0 \},$$

where $h_j \in \mathcal{O}(\tilde{\Omega})$, and $\partial h_1 \wedge \cdots \wedge h_m \neq 0$ on \tilde{V} . We set $V = \tilde{V} \cap \Omega$. We impose the transversal assumption that

$$\partial h_1 \wedge \cdots \wedge \partial h_m \wedge \partial \phi_{i_1} \wedge \cdots \wedge \partial \phi_{i_k} \neq 0$$
 on $\overline{V} \cap \sigma_I$,

for every multiindex I such that $|I| = k \le n-m$. For a strongly non-degenerate polyhedron Ω we can define the Hardy spaces

$$H^p(\Omega) = \left\{ f \in \mathcal{O}(\Omega) | \sup_{\varepsilon > 0} \|f\|_{L^p(\sigma_{\varepsilon})} < \infty \right\}.$$

In the above setting, we have by applying the integral formula obtained by Berndtsson[5]:

 ${\bf Theorem~8.} ({\rm Adachi\text{-}Andersson\text{-}Cho[3]})$

(1) Let Ω be a non-degenerate analytic polyhedron. For each $f \in \mathcal{O}(V) \cap L^p(V), 1 \leq p < \infty$, there exists $F \in \mathcal{O}(\Omega) \cap L^p(\Omega)$ such that F(z) = f(z) for $z \in V$ and $||F||_{L^p(\Omega)} \leq C||f||_{L^p(V)}$.

(2) Let Ω be a strongly non-degeneate analytic polyhedron. Then for all $f \in H^p(V)$, $1 , there exists <math>F \in H^p(\Omega)$ such that F(z) = f(z) for $z \in V$ and $||F||_{H^p(\Omega)} \leq c||f||_{H^p(V)}$.

3. Outline of the proof of the theorem of Ohsawa-Takegoshi due to Berndtsson

In this section, we shall prove the extension theorem of Ohsawa-Takegoshi by following the Berndtsson's proof[6]. Using L^2 space techniques, Ohsawa and Takegoshi obtained the following:

Theorem 9.(Ohsawa-Takegoshi[16]) Let D be a bounded pseudoconvex domain in C^n . We set $H = \{z \in \mathbf{C}^n | z_1 = 0\}$. Then there exists a constant C which depends only on the diameter of D such that, for any plurisubharmonic function φ on D, and for any holomorphic function f on $H \cap D$, there exists a holomorphic function F in D such that

$$F|_{H\cap D} = f$$
, $\int_D |F|^2 e^{-\varphi} d\mu \le C \int_{H\cap D} |f|^2 e^{-\varphi} d\mu_1$,

where $d\mu$ and $d\mu_1$ are Lebesgue measures in \mathbb{C}^n and \mathbb{C}^{n-1} , respectively.

Lemma 1.(Hörmander[14]) Let D be a bounded open set in \mathbb{C}^n with smooth boundary ∂D and let ρ be a smooth defining function for D. For $f = \sum_{J}' f_J d\bar{z}^J \in C^1_{(0,q)}(\overline{D})$ and $u = \sum_{K}' u_K d\bar{z}^K \in C^1_{(0,q-1)}(\overline{D})$, the following equality is valid

$$(\bar{\partial}u,f) = -\int_{D} \sum_{K}' \sum_{j=1}^{n} u_{K} \overline{\delta_{j}} f_{jK} e^{-\varphi} d\mu + \int_{\partial D} \sum_{K}' u_{K} \sum_{j=1}^{n} f_{jK} \frac{\partial \rho}{\partial z_{j}} e^{-\varphi} \frac{dS}{|\partial \rho|}.$$

Definition. For $u \in C^1(D)$, define

$$\delta_j u = e^{\varphi} \frac{\partial}{\partial z_j} (u e^{-\varphi}) = \frac{\partial u}{\partial z_j} - \frac{\partial \varphi}{\partial z_j} u, \quad \partial_k u = \frac{\partial u}{\partial z_k} \quad \bar{\partial}_k u = \frac{\partial u}{\partial \bar{z}_k}.$$

For $C^1(0,q)$ -form $f = \sum_{|J|=q}^{\prime} f_J d\bar{z}^J$, define $\bar{\partial}^* f = -\sum_K^{\prime} \sum_{j=1}^n \delta_j f_{jK} d\bar{z}^K$. We define

$$f \in \operatorname{Def}(\bar{\partial}^*) \iff \sum_{j=1}^n f_{jK} \frac{\partial \rho}{\partial z_j} = 0 \quad \text{on} \quad \partial D \quad \text{for all} \quad K.$$

We say f satisfies the boundary condition if $f \in \text{Def}(\bar{\partial}^*)$. When f satisfies the boundary condition, we have from lemma 1

$$(\bar{\partial}u, f) = (u, \bar{\partial}^*f).$$

Lemma 2.(Hörmander[14]) Let $\alpha = \sum_{|J|=q}' \alpha_J d\bar{z}^J$ be a smooth (0,q)-form in \overline{D} and $\alpha \in \text{Def}(\bar{\partial}^*)$. For $\varphi \in C^{\infty}(\overline{D})$ we have

$$\begin{split} \|\bar{\partial}^*\alpha\| + \|\bar{\partial}\alpha\|^2 &= \sum_{K}' \sum_{j,k=1}^n \int_D \alpha_{jK} \overline{\alpha_{kK}} \frac{\partial^2 \varphi}{\partial z_j \partial \bar{z}_k} e^{-\varphi} d\mu + \sum_{J}' \sum_{j=1}^n \int_D \left| \frac{\partial \alpha_{J}}{\partial \bar{z}_j} \right|^2 e^{-\varphi} d\mu \\ &+ \sum_{K}' \sum_{j,k=1}^n \int_{\partial D} \alpha_{jK} \overline{\alpha_{kK}} \frac{\partial^2 \rho}{\partial z_j \partial \bar{z}_k} e^{-\varphi} \frac{dS}{|\partial \rho|}. \end{split}$$

We assume that φ is a smooth function in \overline{D} from lemma 3 to lemma 7. Thus $f \in L^2(D,\varphi)$ means $f \in L^2(D)$. We omit the proof of lemma 3, since the detailed proof of lemma 3 is given in [6].

Lemma 3. Let w be a real valued smooth function in \overline{D} . $\alpha = \sum_{j=1}^{n} \alpha_j d\overline{z}_j$ is a smooth (0,1)-form in \overline{D} satisfying the boundary condition. Then we have

$$\begin{split} &\int_{D} w \sum_{j,k=1}^{n} \varphi_{j\bar{k}} \alpha_{j} \overline{\alpha_{k}} e^{-\varphi} d\mu - \int_{D} w_{j\bar{k}} \alpha_{j} \overline{\alpha_{k}} e^{-\varphi} d\mu \\ &+ \int_{D} w |\bar{\partial}^{*} \alpha|^{2} e^{-\varphi} d\mu + \int_{D} w \sum_{j,k=1}^{n} \left| \frac{\partial \alpha_{k}}{\partial \bar{z}_{j}} \right|^{2} e^{-\varphi} d\mu + \int_{\partial D} w \sum_{j,k=1}^{n} \rho_{j\bar{k}} \alpha_{j} \overline{\alpha_{k}} e^{-\varphi} \frac{dS}{|\partial \rho|} \\ &= 2 \operatorname{Re} \int_{D} w \bar{\partial} \bar{\partial}^{*} \alpha \cdot \bar{\alpha} e^{-\varphi} d\mu + \int_{D} w |\bar{\partial} \alpha|^{2} e^{-\varphi} d\mu. \end{split}$$

Definition. Let $\psi \in C^{\infty}(\overline{D})$ and $\alpha = \sum_{j=1}^{n} \alpha_{j} d\bar{z}_{j} \in C^{\infty}_{(0,1)}(\overline{D})$. We define the inner product of $g = \psi \bar{\partial} \left(\frac{1}{z_{1}}\right)$ and α by

$$< g, \alpha > = \sum_{j=1}^{n} < \psi \frac{\partial}{\partial \bar{z}_{j}} \left(\frac{1}{z_{1}} \right), \alpha_{j} > = \lim_{\varepsilon \to 0} \int_{D} \psi(z) \frac{\partial}{\partial \bar{z}_{1}} \left(\frac{\bar{z}_{1}}{|z_{1}|^{2} + \varepsilon} \right) \overline{\alpha_{1}(z)} e^{-\varphi(z)} d\mu(z).$$

Moreover, if we define

$$h_{\varepsilon}(z) = \psi(z)\bar{\partial}\left(\frac{\overline{z_1}}{|z_1|^2 + \varepsilon}\right),$$

then we obtain

(2)
$$\langle g, \alpha \rangle = \lim_{\varepsilon \to 0} (h_{\varepsilon}, \alpha).$$

In view of lemma 6, the right hand side of (2) exists. For $u \in L^1(D)$ and a (0,1)-form α in D with compact support, we define

$$<\bar{\partial}u,\alpha>=(u,\bar{\partial}^*\alpha).$$

Then we have the following:

Lemma 4. Let D be a bounded strictly pseudoconvex domain in \mathbb{C}^n with smooth boundary. Let f be a holomorphic function in \overline{D} and $g = f \bar{\partial} \left(\frac{1}{z_1}\right)$. Let $u \in L^1(D)$. If the equality

 $\langle g, \alpha \rangle = \int_{D} u \overline{\bar{\partial}^* \alpha} e^{-\varphi} d\mu$

holds for any $\bar{\partial}$ closed $\alpha \in C^{\infty}_{(0,1)}(\overline{D})$ which satisfies the boundary condition, then $g = \bar{\partial}u$ in the sense of distribution.

Proof. Let α be a $C^{\infty}(0,1)$ -form in D with compact support. We define

$$\operatorname{Def}(\bar{\partial}) = \{ g \in L^2_{(0,q)}(D,\varphi) | \bar{\partial}g \in L^2_{(0,q+1)}(D,\varphi) \}.$$

For Laplace-Beltrami operator $\Box = \bar{\partial}\bar{\partial}^* + \bar{\partial}^*\bar{\partial}: L^2_{(0,1)}(D,\varphi) \to L^2_{(0,1)}(D,\varphi)$, define

$$\mathrm{Def}(\Box) = \{\alpha \in L^2_{(0,1)}(D,\varphi) | \alpha \in \mathrm{Def}(\bar{\partial}), \bar{\partial}\alpha \in \mathrm{Def}(\bar{\partial}^*), \alpha \in \mathrm{Def}(\bar{\partial}^*), \bar{\partial}^*\alpha \in \mathrm{Def}(\bar{\partial})\},$$

$$\mathcal{H} = \{ \alpha \in \text{Def}(\square) | \square \alpha = 0 \}.$$

Then \mathcal{H} is a closed subspace of the Hilbert space $L^2_{(0,1)}(D,\varphi)$. Let $H:L^2_{(0,1)}(D,\varphi)\to\mathcal{H}$ be the orthogonal projection. From the theory of the $\bar{\partial}$ Neumann problem, there exists Neumann operator $\mathcal{N}:L^2_{(0,1)}(D,\varphi)\to\mathrm{Def}(\Box)$ such that

$$\alpha = \bar{\partial}\bar{\partial}^* \mathcal{N}\alpha + \bar{\partial}^* \bar{\partial} \mathcal{N}\alpha + H\alpha.$$

For $\beta \in \mathcal{H}$, we have

$$0 = (\Box \beta, \beta) = (\bar{\partial} \bar{\partial}^* \beta, \beta) + (\bar{\partial}^* \bar{\partial} \beta, \beta) = \|\bar{\partial}^* \beta\|^2 + \|\bar{\partial} \beta\|^2.$$

Hence we obtain $\bar{\partial}\beta = \bar{\partial}^*\beta = 0$. From lemma 2, it holds that

$$0 = \|\bar{\partial}\beta\|^2 + \|\bar{\partial}^*\beta\|^2 \geq \sum_{j,k=1}^n \|\frac{\partial\beta_j}{\partial\bar{z}_k}\|^2 + \int_{\partial D} \sum_{j,k=1}^n \frac{\partial^2\rho}{\partial z_i \partial\bar{z}_k} \beta_j \bar{\beta}_k \frac{dS}{|\partial\rho|}$$
$$\geq \sum_{j,k=1}^n \|\frac{\partial\beta_j}{\partial\bar{z}_k}\|^2 + c \int_{\partial D} |\beta|^2 \frac{dS}{|\partial\rho|}.$$

Thus β_j is holomorphic in D and 0 in ∂D so that $\beta = 0$. Therefore $\mathcal{H} = 0$. We set

$$\alpha_1 = \bar{\partial}\bar{\partial}^* \mathcal{N}\alpha, \quad \alpha_2 = \bar{\partial}^* \bar{\partial} \mathcal{N}\alpha.$$

Since Neumann operator maps smooth (0,1)-forms to smooth (0,1)-forms in the strictly pseudoconvex domain D, α_1 and α_2 are both smooth (0,1)-forms in \overline{D} . Obviously, $\bar{\partial}\alpha_1 = 0$. If $\bar{\partial}\beta = 0$, then by lemma 1 $(\beta, \alpha_2) = (\bar{\partial}\beta, \bar{\partial}\mathcal{N}\alpha) = 0$. Hence $\alpha_2 \perp \text{Ker}(\bar{\partial})$. On the other hand, from lemma 1, for any smooth function β on \overline{D} , we have

$$0 = (\bar{\partial}\beta, \alpha_2) = (\beta, \bar{\partial}^*\alpha_2) + \int_{\partial D} \beta \overline{\alpha_2 \cdot \partial \rho} e^{-\varphi} \frac{dS}{|\partial \rho|}.$$

Thus $\bar{\partial}^* \alpha_2 = 0$. Therefore α_2 satisfies the boundary condition. Hence, α_1 satisfies the boundary condition. If we set

$$h_{\varepsilon}(z) = f(z)\bar{\partial}\left(\frac{\overline{z_1}}{|z_1|^2 + \varepsilon}\right),$$

then we have

$$\langle g, \alpha_2 \rangle = \lim_{\varepsilon \to 0} (h_{\varepsilon}, \alpha_2) = 0.$$

Thus we have

$$< g, \alpha > = < g, \alpha_1 > = \int_D u \overline{\bar{\partial}^* \alpha_1} e^{-\varphi} d\mu = \int_D u \overline{\bar{\partial}^* \alpha} e^{-\varphi} d\mu = (u, \bar{\partial}^* \alpha) = < \bar{\partial} u, \alpha >,$$

which means $g = \bar{\partial}u$.

Lemma 5. Let g be the same as in lemma 4. Let λ be a non-negative real valued function in D with the property that $\frac{1}{\lambda}$ is integrable. If the inequality

$$|< g, \alpha >|^2 \leq C \int_D |\bar{\partial}^* \alpha|^2 \frac{e^{-\varphi}}{\lambda} d\mu$$

holds for any $\bar{\partial}$ closed $\alpha \in C^{\infty}_{(0,1)}(\overline{D})$ which satisfies the boundary condition, then there exists $u \in L^1(D,\varphi)$ such that

$$\bar{\partial}u = g, \quad \int_D |u|^2 \lambda e^{-\varphi} d\mu \le C.$$

Proof. Let $C_b^{\infty}(\overline{D})$ be the space of all $\bar{\partial}$ closed $C^{\infty}(0,1)$ -forms in \overline{D} which satisfies the boundary condition. We set

$$F = \{\bar{\partial}^* \alpha | \alpha \in C_b^{\infty}(\overline{D})\}, \quad \varphi_1 = \frac{e^{-\varphi}}{\lambda}.$$

Then, F is a vector subspace of $L^2(D, \varphi_1)$. For $w \in F$, there exists $\alpha \in C_b^{\infty}(\overline{D})$ such that $w = \bar{\partial}^* \alpha$. We define

$$\Phi(w) = < g, \alpha > .$$

Then $\Phi(w)$ is independent of the choice of α . Also, we have

$$|\Phi(w)|^2 \le C||w||_{\varphi_1}^2, \quad ||\Phi|| \le \sqrt{C}.$$

Thus Φ is a bounded anti-linear operator on F. From the Hahn-Banach theorem, Φ is extended to a bounded anti-linear operator on $L^2(D,\varphi_1)$. From the Riesz representation theorem, there exists $v \in L^2(D,\varphi_1)$ such that

$$\Phi(w) = (v, w)_{\varphi_1}, \quad ||v||_{\varphi_1} = ||\Phi|| \le \sqrt{C}.$$

Therefore we have

$$\langle g, \alpha \rangle = \Phi(w) = (v, w)_{\varphi_1} = \int_D v \overline{\bar{\partial}^* \alpha} \frac{e^{-\varphi}}{\lambda}, \quad \int_D |v|^2 \frac{e^{-\varphi}}{\lambda} d\mu = ||v||_{\varphi_1}^2 \leq C.$$

If we set $u = \frac{v}{\lambda}$, then

$$\int_{D} |u|^{2} \lambda e^{-\varphi} d\mu \le C, \quad \langle g, \alpha \rangle = \int_{D} u \overline{\bar{\partial}^{*} \alpha} e^{-\varphi} d\mu.$$

On the other hand, we have

$$\int_{D} |u| e^{-\varphi} d\mu \le \int_{D} \frac{|v|^{2}}{\lambda} e^{-\varphi} d\mu \int_{D} \frac{e^{-\varphi}}{\lambda} d\mu \le C \int_{D} \frac{e^{-\varphi}}{\lambda} d\mu < \infty.$$

Thus, $u \in L^1(D, \varphi)$. From lemma 4, we obtain $\bar{\partial}u = g$.

Lemma 6. For $\varphi \in C^{\infty}(\overline{D})$, it holds that

$$\lim_{\varepsilon \to 0} \int_{D} \frac{\varepsilon}{(|z_{1}|^{2} + \varepsilon)^{2}} \varphi(z) d\mu(z) = \pi \int_{\{z_{1} = 0\} \cap D} \varphi(z) d\mu_{1}(z),$$

where $d\mu$ and $d\mu_1$ are Lebesgue measures in \mathbb{C}^n and \mathbb{C}^{n-1} , respectively.

Lemma 7. Let D be a bounded strictly pseudoconvex domain in \mathbb{C}^n with smooth boundary and $D \subset \{z | |z_1| \leq 1\}$. Let φ be a smooth plurisubharmonic function in \overline{D} and let α be a $\bar{\partial}$ closed smooth (0,1)-form in \overline{D} which satisfies the boundary condition. Then, for $0 < \delta < 1$, we have

$$\int_{\{z_1=0\}\cap D} |\alpha_1|^2 e^{-\varphi} d\mu_1 \leq \frac{2}{\pi} \left(1 + \frac{1}{\delta^2}\right) \int_D \frac{|\bar{\partial}^* \alpha|^2}{|z_1|^{2\delta}} e^{-\varphi} d\mu.$$

Proof. For $0 < \delta < 1$, we set

$$w^{\delta} = 1 - |z_1|^{2\delta} = 1 - (z_1\bar{z}_1)^{\delta}.$$

From lemma 3, we have

$$\begin{split} &\int_{D} w^{\delta} \sum_{j,k=1}^{n} \varphi_{j\bar{k}} \alpha_{j} \overline{\alpha_{k}} e^{-\varphi} d\mu + \delta^{2} \int_{D} |z_{1}|^{2\delta-2} |\alpha_{1}|^{2} e^{-\varphi} d\mu + \int_{D} w^{\delta} |\bar{\partial}^{*} \alpha|^{2} e^{-\varphi} d\mu \\ &+ \int_{D} w^{\delta} \sum_{j,k=1}^{n} \left| \frac{\partial \alpha_{j}}{\partial \bar{z}_{k}} \right|^{2} e^{-\varphi} d\mu + \int_{\partial D} w^{\delta} \sum_{j,k=1}^{n} \rho_{jk} \alpha_{j} \overline{\alpha_{k}} e^{-\varphi} \frac{dS}{|\partial \rho|} \\ &= 2 \operatorname{Re} \int_{D} w^{\delta} \bar{\partial} \bar{\partial}^{*} \alpha \cdot \bar{\alpha} e^{-\varphi} d\mu. \end{split}$$

Hence we have

$$\begin{split} &\delta^2 \int_D |z_1|^{2\delta - 2} |\alpha_1|^2 e^{-\varphi} d\mu + \int_D w^\delta |\partial^* \alpha|^2 e^{-\varphi} d\mu \leq 2 \mathrm{Re} \int_D w^\delta \bar{\partial} \bar{\partial}^* \alpha \cdot \bar{\alpha} e^{-\varphi} d\mu \\ &= 2 \mathrm{Re} (\bar{\partial}^* \alpha, \bar{\partial}^* (w^\delta \alpha)) = 2 \mathrm{Re} (\bar{\partial}^* \alpha, w^\delta \bar{\partial}^* \alpha - \sum_{j=1}^n \frac{\partial w^\delta}{\partial z_j} \alpha_j) \\ &= 2 \int_D w^\delta |\bar{\partial}^* \alpha|^2 e^{-\varphi} d\mu - 2 \mathrm{Re} \int_D \bar{\partial}^* \alpha \frac{\bar{\partial} w^\delta}{\bar{\partial} z_1} \alpha_1 e^{-\varphi} d\mu \\ &\leq 2 \int_D w^\delta |\bar{\partial}^* \alpha|^2 e^{-\varphi} d\mu + 2 \int_D |\bar{\partial}^* \alpha|^2 |z_1|^{2\delta - 1} |\alpha_1| e^{-\varphi} d\mu \\ &\leq 2 \int_D w^\delta |\bar{\partial}^* \alpha|^2 e^{-\varphi} d\mu + 2 \int_D |\bar{\partial}^* \alpha|^2 |z_1|^{2\delta} e^{-\varphi} d\mu + \frac{1}{2} \int_D \delta^2 |\alpha_1|^2 |z_1|^{2\delta - 2} e^{-\varphi} d\mu. \end{split}$$

Thus we have

$$\begin{split} \frac{1}{2} \delta^2 \int_D |z_1|^{2\delta - 2} |\alpha_1|^2 e^{-\varphi} d\mu &\leq \int_D (1 - |z_1|^{2\delta}) |\bar{\partial}^* \alpha|^2 e^{-\varphi} d\mu + 2 \int_D |\bar{\partial}^* \alpha|^2 |z_1|^{2\delta} e^{-\varphi} d\mu \\ &= \int_D |\bar{\partial}^* \alpha|^2 e^{-\varphi} d\mu + \int_D |\bar{\partial}^* \alpha|^2 |z_1|^{2\delta} e^{-\varphi} d\mu \leq 2 \int_D |\bar{\partial}^* \alpha|^2 e^{-\varphi} d\mu. \end{split}$$

Therefore, for $0 < \delta < 1$, we obtain

(3)
$$\delta^{2} \int_{D} |z_{1}|^{2\delta-2} |\alpha_{1}|^{2} e^{-\varphi} d\mu \leq 4 \int_{D} |\bar{\partial}^{*} \alpha|^{2} e^{-\varphi} d\mu.$$

On the other hand, we set

$$w_{\varepsilon} = \frac{1}{\pi} \log \frac{1}{|z_1|^2 + \varepsilon}, \quad w = \frac{1}{\pi} \log \frac{1}{|z_1|^2}.$$

We apply lemma 3 to w_{ε} and let $\varepsilon \to 0$, then by lemma 6

$$\int_{\{z_1=0\}\cap D} |\alpha_1|^2 e^{-\varphi} d\mu_1 + \int_D w|\bar{\partial}^*\alpha|^2 e^{-\varphi} d\mu \leq 2 \operatorname{Re} \int_D w\bar{\partial}\bar{\partial}^*\alpha \cdot \bar{\alpha} e^{-\varphi} d\mu.$$

By the same calculation as the first part and applying (3) to $0 < \delta < 1$, we have

$$\begin{split} & \int_{\{z_1=0\}\cap D} |\alpha_1|^2 e^{-\varphi} d\mu_1 \leq \frac{1}{\pi} \int_D \log \frac{1}{|z_1|^2} |\bar{\partial}^* \alpha|^2 e^{-\varphi} d\mu + \frac{2}{\pi} \int_D |\bar{\partial}^* \alpha| \frac{|\alpha_1|}{|z_1|} e^{-\varphi} d\mu \\ & \leq \frac{1}{\pi} \int_D \log \frac{1}{|z_1|^2} |\bar{\partial}^* \alpha|^2 e^{-\varphi} d\mu + \frac{2}{\pi} \int_D \frac{|\bar{\partial}^* \alpha|^2}{|z_1|^{2\delta}} e^{-\varphi} d\mu + \frac{1}{2\pi} \int_D |z_1|^{2\delta - 2} |\alpha_1|^2 e^{-\varphi} d\mu \\ & \leq \frac{1}{\pi} \int_D \log \frac{1}{|z_1|^2} |\bar{\partial}^* \alpha|^2 e^{-\varphi} d\mu + \frac{2}{\pi} \int_D \frac{|\bar{\partial}^* \alpha|^2}{|z_1|^{2\delta}} e^{-\varphi} d\mu + \frac{2}{\pi\delta^2} \int_D |\bar{\partial}^* \alpha|^2 e^{-\varphi} d\mu \\ & \leq \frac{1}{\pi\delta^2} \int_D \log \frac{1}{|z_1|^{2\delta}} |\bar{\partial}^* \alpha|^2 e^{-\varphi} d\mu + \frac{2}{\pi} \int_D \frac{|\bar{\partial}^* \alpha|^2}{|z_1|^{2\delta}} e^{-\varphi} d\mu + \frac{2}{\pi\delta^2} \int_D |\bar{\partial}^* \alpha|^2 e^{-\varphi} d\mu. \end{split}$$

Using the fact that $x\left(\log\frac{1}{x}+2\right) \le 2$ for $0 < x \le 1$, we have

$$\int_{\{z_1=0\}\cap D} |\alpha_1|^2 e^{-\varphi} d\mu_1 \le \frac{2}{\pi} \int_D \frac{|\bar{\partial}^* \alpha|^2}{|z_1|^{2\delta}} e^{-\varphi} d\mu + \frac{1}{\pi \delta^2} \int_D \frac{2|\bar{\partial}^* \alpha|^2}{|z_1|^{2\delta}} e^{-\varphi} d\mu
= \frac{2}{\pi} \left(1 + \frac{1}{\delta^2} \right) \int_D \frac{|\bar{\partial}^* \alpha|^2}{|z_1|^{2\delta}} e^{-\varphi} d\mu,$$

which completes the proof.

Lemma 8. Let D be a pseudoconvex domain in \mathbb{C}^n and $X = \{z \in D | z_1 = 0\}$. Let f be a holomorphic function in X. If H is locally integrable in D and satisfies $\bar{\partial}H = f\bar{\partial}\left(\frac{1}{z_1}\right)$, then there exists a holomorphic function \tilde{H} in D such that $\tilde{H}(z) = z_1H(z)$ a.e. and $\tilde{H}(z) = f(z)$ for $z \in X$.

Proof. There exists a neighborhood ω of X in D such that f can be extended to be holomorphic in ω . Let $\chi \in C^{\infty}(D)$ be a function such that $\chi = 1$ in a neighborhood of X in ω , supp $(\chi) \subset \omega$ and $0 \le \chi \le 1$ in D. We set

$$\omega = \frac{f\bar{\partial}\chi}{z_1}.$$

Then ω satisfies that $\omega \in C^{\infty}_{(0,1)}(D), \bar{\partial}\omega = 0$. Define

$$G = \frac{\chi f}{z_1} - H,$$

then G is locally integrable. Since we have

$$\bar{\partial}G = \bar{\partial}(\chi f)\frac{1}{z_1} + \chi f\bar{\partial}\left(\frac{1}{z_1}\right) - \bar{\partial}H = f\bar{\partial}\chi\frac{1}{z_1} + \chi f\bar{\partial}\left(\frac{1}{z_1}\right) - \bar{\partial}H = \bar{\partial}\chi\frac{f}{z_1} = \omega,$$

there exists a smooth function \tilde{G} in D such that $\tilde{G} = G$ a.e.. We set

$$\chi(z)f(z) - z_1\tilde{G}(z) = \tilde{H}(z),$$

then we have $z_1H(z)=\tilde{H}(z)$ a.e. and $\tilde{H}(z)=f(z)$ for $z\in X$. Moreover we have

$$\bar{\partial} \tilde{H}(z) = (\bar{\partial} \chi(z)) f(z) - z_1 \bar{\partial} \tilde{G}(z) = (\bar{\partial} \chi(z)) f(z) - z_1 \omega(z) = 0.$$

Hence $\tilde{H}(z)$ is holomorphic in D.

Lemma 9. Let D be an open set in \mathbb{C}^n and let $K \subset D$ be a compact set. Then there exists a constant C such that for any holomorphic function f in D and any neighborhood ω of K

$$\sup_{K} |f| \le C ||f||_{L^1(\omega)}.$$

Lemma 10. Let $\{u_k\}$ be a sequence of holomorphic functions in D which are uniformly bounded on any compact subset of D. Then there exists a subsequence $\{u_{k_j}\}$ of $\{u_k\}$ such that $\{u_{k_j}\}$ converges uniformly on any compact subset of D to a holomorphic function in D.

Theorem 10.(Berndtsson[6]) Let D be a bounded pseudoconvex domain in C^n and let φ be a plurisubharmonic function in D. We set $X = \{z \in D | z_1 = 0\}$. Suppose that

 $D \subset \{z \in \mathbf{C}^n | |z_1| \leq A\}$. If f is holomorphic in X, then there exists a holomorphic function F in D such that

$$F|_X = f, \quad \int_D |F|^2 e^{-\varphi} d\mu \le 4A^2 \pi \int_X |f|^2 e^{-\varphi} d\mu_1,$$

where $d\mu$ and $d\mu_1$ are Lebesgue measures in \mathbb{C}^n and \mathbb{C}^{n-1} , respectively.

Proof. Without loss of generality, we may assume that A=1. There exists an increasing sequence of bounded strictly pseudoconvex domains in \mathbb{C}^n with smooth boundary such that $\overline{D_n} \subset\subset D$ and $\bigcup_{n=1}^{\infty} D_n = D$. Let $\{\varphi_n\}$ be a sequence of C^{∞} plurisubharmonic functions in $\overline{D_n}$ such that $\varphi_n \downarrow \varphi$. We set $g = f\bar{\partial}\left(\frac{1}{z_1}\right)$. Let α be a $\bar{\partial}$ closed (0,1)-form which satisfies the boundary condition on ∂D_n . From lemma 7, we have

$$|\langle g, \alpha \rangle_{\varphi_{n}}|^{2} = \left| \lim_{\varepsilon \to 0} \int_{D_{n}} f \frac{\varepsilon}{(|z_{1}|^{2} + \varepsilon)^{2}} \overline{\alpha_{1}} e^{-\varphi_{n}} d\mu \right|^{2} = \left| \int_{\{z_{1} = 0\} \cap D_{n}} \pi f \overline{\alpha_{1}} e^{-\varphi_{n}} d\mu_{1} \right|^{2}$$

$$\leq \pi^{2} \int_{\{z_{1} = 0\} \cap D_{n}} |f|^{2} e^{-\varphi_{n}} d\mu_{1} \int_{\{z_{1} = 0\} \cap D_{n}} |\alpha_{1}|^{2} e^{-\varphi_{n}} d\mu_{1}$$

$$\leq 2\pi \left(1 + \frac{1}{\delta^{2}} \right) \int_{\{z_{1} = 0\} \cap D_{n}} |f|^{2} e^{-\varphi_{n}} d\mu_{1} \int_{D_{n}} \frac{|\bar{\partial}^{*} \alpha|^{2}}{|z_{1}|^{2\delta}} e^{-\varphi_{n}} d\mu.$$

From lemma 5, there exist integrable functions u_{δ}^n in D_n such that

$$\bar{\partial} u_{\delta}^{n} = g, \quad \int_{D_{n}} |u_{\delta}^{n}|^{2} |z_{1}|^{2\delta} e^{-\varphi_{n}} d\mu \leq 2\pi \left(1 + \frac{1}{\delta^{2}}\right) \int_{\{z_{1} = 0\} \cap D_{n}} |f|^{2} e^{-\varphi_{n}} d\mu_{1}.$$

We set $F_{\delta}^{n} = u_{\delta}^{n} z_{1}$. Then, from lemma 8, F_{δ}^{n} are holomorphic in D_{n} and satisfy $F_{\delta}^{n}|_{\{z_{1}=0\}\cap D_{n}} = f|_{\{z_{1}=0\}\cap D_{n}}$. Suppose that

$$\int_X |f|^2 e^{-\varphi} d\mu_1 = C < \infty,$$

then it holds that

$$\int_{D_n} |F_{\delta}^n|^2 e^{-\varphi_n} d\mu = \int_{D_n} |u_{\delta}^n|^2 |z_1|^2 e^{-\varphi_n} d\mu \le \int_{D_n} |u_{\delta}^n|^2 |z_1|^{2\delta} e^{-\varphi_n} d\mu
\le 2\pi \left(1 + \frac{1}{\delta^2}\right) \int_{\{z_1 = 0\} \cap D_n} |f|^2 e^{-\varphi_n} d\mu_1 \le 2\pi \left(1 + \frac{1}{\delta^2}\right) C.$$

Therefore, for some fixed n, there exists a constant C_1 such that

$$\int_{D_n} |F_{\delta}^n|^2 d\mu \le C_1.$$

From lemma 9,10, there exists a sequence $\{\delta_j\}$ with $\delta_j \to 1$ such that $F_{\delta_j}^n$ converges uniformly on any compact subset of D_n to F^n . Then F^n are holomorphic in D_n and satisfy $F^n|_{\{z_1=0\}\cap D_n}=f|_{\{z_1=0\}\cap D_n}$. Moreover, we have

$$\int_{D_n} |F^n|^2 e^{-\varphi_n} d\mu \le 4\pi C.$$

Let K be a compact subset of D. There exists a natural number N such that $K \subset D_n$, $(n \ge N)$. If we set

$$M_n = \min_{\overline{D_n}} e^{-\varphi_n},$$

then, for $n \geq N$, there exist a constant C_2 such that

$$4\pi C \ge \int_{D_n} |F^n|^2 e^{-\varphi_n} d\mu \ge M_N \int_{D_N} |F^n|^2 d\mu \ge C_2 \sup_K |F^n|^2.$$

Thus $\{F^n\}$ are uniformly bounded on any compact subset of D. Then we can find a subsequence $\{F^{k_n}\}$ of $\{F^n\}$ which converges uniformly on any compact subset of D. We set $\lim_{n\to\infty} F^{k_n} = F$. Then F is holomorphic in D and satisfies $F|_X = f$. For any compact subset K of D, we have

$$\int_K |F|^2 e^{-\varphi} d\mu = \lim_{n \to \infty} \int_K |F^{k_n}|^2 e^{-\varphi_{k_n}} d\mu \le 4\pi C,$$

which completes the proof.

Remark. Siu[18] also obtained another proof of the theorem of Ohsawa-Takegoshi in which the constant $C = \frac{64}{9}\pi A^2 \left(1 + \frac{1}{4\epsilon}\right)^{1/2}$ provided $D \subset \{z||z| \leq A\}$.

References

- [1] K. Adachi, Continuation of A^{∞} functions from submanifolds to strictly pseudoconvex domains, J. Math. Soc. Japan, **32**(1980), 331-341.
- [2] K. Adachi, M. Andersson and H.R. Cho, L^p and H^p extensions of holomorphic functions from subvarieties of analytic polyhedra, Pacific J. Math., 189(1999), 201-210.
- [3] K. Adachi and H.R. Cho, H^p and L^p extensions of holomorphic functions from subvarieties to certain convex domains, Math. J. Toyama Univ., 20(1997), 1-13
- [4] E. Amar, Cohomologie complexe et applications, J. London Math. Soc., 29(1984), 127-140.

- [5] B. Berndtsson, A formula for interpolation and division in \mathbb{C}^n , Math. Ann., **263**(1983), 399-418.
- [6] B. Berndtsson, The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman, Ann. Inst. Fourier, 46(1996), 1083-1094.
- [7] M. Elgueta, Extensions to strictly pseudoconvex domains of functions holomorphic in a submanifold in general position and C[∞] up to the boundary, Ill. J. Math.. **24**(1980), 1-17.
- [8] H. Grauert and I. Lieb, Das Ramirezsche Integral und die Lösung der Gleichung $\bar{\partial} f = \alpha$ im Bereich der beschränkten Formen, Rice Univ. Studies, **56**(1970), 29-50.
- [9] T. Hatziafratis, Integral representation formulas on analytic varieties, Pacific J. Math., 123(1986), 71-91.
- [10] G.M. Henkin, Integral representation of functions holomorphic in strictly ppseudoconvex domains and some applications, Math. USSR Sb., 7(1969), 597-616.
- [11] G.M. Henkin, Integral representation of functions in strongly pseudoconvex domains and applications to the $\bar{\partial}$ -problem, Math. USSR Sb., 11(1970), 273-281.
- [12] G.M. Henkin, Continuation of bounded holomorphic functions from submanifolds in general position in a strictly pseudoconvex domain, Math. USSR Izv., 6(1972), 536-563.
- [13] G.M. Henkin and J. Leiterer, *Theory of functions on complex manifolds*, Birkhäuser, 1984.
- [14] L. Hörmander, L^2 estimates and existence theorems for the $\bar{\partial}$ -operator, Acta Math., 113(1965), 89-152.
- [15] I. Lieb, Die Cauchy-Riemannschen Differentialgleichungen auf streng pseudokonvexen Gebieten, Math. Ann., 190(1970), 6-44.
- [16] T. Ohsawa and K. Takegoshi, On the extension of L^2 holomorphic functions, Math. Z., **195**(1987), 197-204.
- [17] E. Ramirez, Ein Divisions problem und Randintegraldarstellungen in der Komplexen Analysis, Math. Ann., 184(1970), 265-275.
- [18] Y.T. Siu, The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, Proc. 3rd Int. RIMSJ., Geometric Complex Analysis, World Sci., 1996, 577-592.
- [19] E.L. Stout, An integral formula for holomorphic functions on strictly pseudoconvex hypersurfaces, Duke Math. J., 42(1975), 347-356.