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Continuation of Holomorphic Functions from Subvarieties to
Pseudoconvex Domains

RIBKFHEFE LE#H= (KENzZO ADACHI)

1. Introduction

Let D be a bounded pseudoconvex domain in C™ and V a subvariety of D. In the
present paper, we give some recent results concerning holomorphic extensions from V' to D
in some function spaces. In 1965, Hormander obtained L? estimates for the d problem in
bounded pseudoconvex domains in C®. In 1970, Henkin, Grauert-Lieb and Lieb obtained
the uniform estimates for the 9 problem in strictly pseudoconvex domains in C" with
smooth boundary. Corresponding to these results, extension problems were studied by two
different methods. The one is the extension using the integral formula in the case where D
is a bounded pseudoconvex domain with a support function ( for example, bounded strictly
pseudoconvex domains or bounded convex domains with smooth boundary). The other is
the L? extension using the Hilbert space theory in the case where D is a general bounded
pseudoconvex domain. The main purpose of the present paper is to introduce Berndtsson’s
another proof of the L? extension theorem of Ohsawa-Takegoshi in bounded pseudoconvex
domains.

2. Some recent results

Definition. Let D be an open set in C” and ¢ € C*(D) a real function. We denote
by L%*(D, ) the space of square-integrable functions in D with respect to the measure
e ¢dp, where du is the Lebesgue measure in C". We denote by L%pyq)(D,p) the space of
(p, q)-forms with coefficients in L*(D, ¢),

f = Z/ fI,sz[/\dEJ,
[I1=p.|J{=q

where Y’ means that the summation is performed only over strictly increasing multi-indices.
We set

[fI? = ;IIfI,JrZ, £l = (/D 1f|2e‘“‘°du)% )
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For f,g € L(p q)(D @) with f = Z fradz' NdZ | g = Z gr.dz" Adz’ | we define the inner
17

product in Lf, (D, ¢) by
(f.9)=>" / fragrje”*dp.
rg 7P
Then L'(Zp’q)(D, ¢) is a Hilbert space with this inner product.
Theorem 1.(Hormander[14]) Let D be a bounded pseudoconvez open set in C™, let § be

the diameter of D, and let ¢ be a plurisubharmonic function in D. For every f € L2 (D5 0)
q >0, with Of =0, one can then find u € L (rg—1) (D, ) such that Ou=f and

3

q/ Jul?e™?dV < 652/ [f[Pe~PdV
JD /D

Theorem 2.(Henkin[10], Ramirez[17]) Let D be a bounded strictly pseudoconver domain
in C™ with smooth boundary. Then there exist a pseudoconver domain D> D and functions
K (¢, z) and ®(C, z) defined for ( € D and : € D such that

(1) K(C,z) and ®((, =) are holomorphic in = € D and continuous in ¢ €eoD

(2) For every ¢ € OD the function ®(¢ .z) vanishes on the closure D only at the point

P
T =

(3) For any holomorphic function f in D that is continuous on D and any z € D, the
wntegral formula
(¢, 2)

1) = [, FQO 550010

holds, where do is the (2n-1) dimensional Lebesque measure on 9D.

Definition. Let f(x) be a function on D. Then we define
£l = sup (2)].
Let f be a (0.q)-form with the coefficients f; .. . Then we define
|flo = I?ld‘,i l.fil,v..’,:q lo-

Theorem 3.(Henkin[11]. Grauert-Lieb[8], Lieb[15]) Let D be a bounded strictly pseudo-
convexr domain in. C™ with smooth boundary. Then there exists a constant K such that if
fis a0 closed C™(0,q+1)-form on D, then there exists a C*(0.q)-form u on D with

ou=f and lulop < K| flo.
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Let D be a strictly pseudoconvex domain in C” with smooth boundary and let M be a
submanifold in a neighborhood D of D which meets dD transversally. We set M = MND.
Let © be a domain in some complex manifold. We denote by H®(€2) the space of all
bounded holomorphic functions in 2. We also denote by A>(€2) the space of all holomorphic
functions in Q that are C* on €. In this setting, we have theorem 4 and 3.

Theorem 4.(Henkin[12]) There emists a linear extension operator E @ H*(M) —
H>(D). Moreover, Ef is continuous on D if f is continuous on M.

Theorem 5.(Adachi[1], Elgueta[7]) There cxists a lincar extension operator E 2 A™ (M) —
A%(D).

Remark. Amar[{] proved theorem 5 when D s pseudoconver. Henkin-Leiterer(13]
proved theorem J wnthout assuming the transversality.

Let D be a bounded pseudoconvex domain in C" with smooth boundary. Let 4 : 0D x
D — C" be a smooth mapping such that

T

(C—27)=3.(¢ = 2)%(C.2) #0 on D x D.

j=1
Let hy,« -+, hy(m < n) be holomorphic functions in a neighborhood D of D. Define
={z€Dhi(z)=-=hn(z)=0}), V=VnND.
We say V intersects 9D transversally if
dp NOhy N---ANOh,, #0 on 0OV.
In the above setting, we have the following:
Theorem 6.(Stout[19], Hatziafratis[9]) There is a smooth form Ky ((,z) on OV x V

whach is of type (0,0) in z and (n-m-1, n-m) in { such that if f is holomorphic in V and
continuous on V, then for - € V

.- B .
() 10 = [ IO

Moreover, Ky ((, z) 1s holomorphic in z € D provided that v(C, z) s holomorphic in z € D.

Let D be a bounded convex domain with a defining function p. Then we can choose

dp
(3(1 ( )

71(€» Z)



131

Let E(f)(z) be the right hand side of (1). Then we have

Theorem 7.(Adachi-Cho[3]) Let D be a bounded convexr domain in C™ with real analytic
boundary and let V' be a one dimensional subvariety of D defined above. Then we have

(1) Let 1< p < oo. If f € H*(V), then E(f) € H?(D).

(2) Suppose that V has no singular points and 1 < p < co. If f € O(V)NLP(V), then
E(f) € O(D)nL"(D).

where O(V) (resp. O(D)) denotes the space of all holomorphic functions in V (resp. D).

A bounded domain  C C" is an analytic polyhedron with defining functions ¢; if
Q= {Z € CnH(Z’)J(Z’)I < 1,J = 1’ .. .’]\T}’

where the defining functions ¢; are holomorphic in some neighborhood Q of 0. We set
o; =1{z € Q|p;(z)] = 1,5 € I'}. We say that (2 is non-degenerate if 0¢;, A---Ad¢;, # 0 on
oy for every multiindex I = {iy,-- -4} such that |I| = k£ < n. We say that ) is strongly
non-degenerate if d¢;, A --- A 0¢;, # 0 on oy for all multiindices I. Let V be a regular
subvariety of Q of codimension m given by

V={z€Qh(z)="=hn(z) =0},

where h; € O(Q), and dhy A -+~ A hy, # 0 on V. Weset V =V N We impose the
transversal assumption that :

Ohy N+ ANOhpy N0y N+ AND¢;, #0 on VNoy,

for every multiindex I such that [I| = k < n—m. For a strongly non-degenerate polyhedron
) we can define the Hardy spaces

H?(Q) = {f € O()|sup 1/ lzeor) < OO} :
In the above setting, we have by applying the integral formula obtained by Berndtsson[5}]:

Theorem 8.(Adachi-Andersson-Cho[3])

(1) Let Q be a non-degenerate analytic polyhedron. For each f € O(V) N LP(V),1 <
p < oo, there exists F € O(Q) N LP(Q) such that F(z) = f(z) for z € V and

[F||er ) < Cllfllevy-
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(2) Let Q be a strongly non-degeneate analytic polyhedron. Then for all f € HP(V),
1 < p < 0o, there exists F € HP(§)) such that F(z) = f(z) for z € V and ||F||{gr(a) <

c|| £l s (v)- -

3. Outline of the proof of the theorem of Ohsawa-Takegoshi
due to Berndtsson

In this section, we shall prove the extension theorem of Ohsawa-Takegoshi by following
the Berndtsson’s proof[6]. Using L? space techniques, Ohsawa and Takegoshi obtained the
following:

Theorem 9.(Ohsawa-Takegoshi[16]) Let D be a bounded pseudoconver domain in C™.
We set H = {z € C"|z; = 0}. Then there exists a constant C' which depends only on
the diameter of D such that, for any plurisubharmonic function ¢ on D, and for any
holomorphic function f on H N D, there exists a holomorphic function F in D such that

Flunp =1, [ IFPedu<C [ |fPedum,

where dp and dpy are Lebesque measures in C™ and C"™, respectively.

Lemma 1.(Hormander[14]) Let D be a bounded open set in C" with smooth boundary
0D and let p be a smooth defining function for D. For f = Zlf,] € qu (D) and
J

u= Z updz® ¢ C(Oq 1)( ), the following equality is valid

" dp ds
O fixe ?d T ——
(9. ) = /zz e vt [ Sy gl i
Definition. For v € C'(D), define
. 0 ou Oy ou  ~ du
] — ¥ Py = —_ . = Ot = .
dju=e sz(ue ) 5, aZju, O = e O 95

For C'(0,q)-form f = Z f;d,.J, define 0* f = Z Z(S fixdz". We define

|J]=¢ K j=1

_ n o
fEDef(G*)<=>ijKa—p:() on 8D forall K.
j=1 Zj
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We say f satisfies the boundary condition if f € Def(0*). When f satisfies the boundary
condition, we have from lemma 1

(Ou, f) = (u,0" f).

Lemma 2.(H6rmander[14]) Let a = ) 'aydz’ be a smooth (0,q)-form in D and o €
[/|=q
Def(3*). For ¢ € C=(D) we have

_ . dasl?
”8*(1”-}-“0(1”2 Z Z /Ozﬂ\a“\ _‘Pd,u—f—z Z/ a(k.] e~*dy
K jk=1 Zj
I (5‘ p ds
¥
3 g5 gy

We assume that o is a smooth function in D from lemma 3 to lemma 7. Thus f €
L*(D, ) means f € L*(D). We omit the proof of lemma 3, since the detailed proof of
lemma 3 is given in [6].

- n
Lemma 3. Let w be a real valued smooth function in D. a = Zajdfj is a smooth

i=1
(0,1)-form in D satisfying the boundary condition. Then we have

/ w Z PR ORe” d/l—/ wjpaage”Cdp

k=1

a | ds
+/ 0 af?e “’dp-{—/ (j u “‘pd/l-i-/ Z PiFQjO0e “’Té—[
~j

= 2Re / wd* o - dePdu + / w|oa)?e?dp.
Jp Jp

Definition. Let v € C*(D) and a = }: a;dz; € Cy, )(ﬁ). We define the inner product
Jj=l

=71
of g = 0 ( —

21

) and « by

9 (1 T RN D\ et
a (;) s & >= il—l)n() ./]) (//(,.;)051 (m) (11(4)6 d/L(.,)

7=1 ~j
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Moreover, if we define

T2

RO RY: Z1
h5(~>_lf‘("’)0(':l|2+5> i

then we obtalin

2 S — 3 oy
(2) <g.a> :[1_1)13(11:,(1).

In view of lemma 6, the right hand side of (2) exists. For v € L'(D) and a (0,1)-form « in
D with compact support, we define

< Qu,a >= (u, 0% ).

Then we have the following:

Lemma 4. Let D be a bounded strictly pseudoconvex domain in C" with smooth

= /1
boundary. Let f be a holomorphic function in D and g = f0 <—) Let v € L'(D). If the
<1
equality
<g,a >= / ud*ae”?dp
Jp

holds for any 0 closed o € C(Oof1 | (D)which satisfies the boundary condition, then g = u in
the sense of distribution.

Proof. Let a be a C*(0,1)-form in D with compact support. We define
Def(0) = {g € L}y (D, ¢)|09 € Liy 411 (D, )}
For Laplace-Beltrami operator 0 = 90" 4 9*0 : L'(ZO,U(D, @) — Lfm)(D, @), define
Def(0) = {a € Lf(zo’l)(D,np)]a/ € Def(9), Do € Def(0*),a € Def(9*), 0"« € Def(d)},

H = {« € Def(O)| Oa =0}

Then H is a closed subspace of the Hilbert space L%O,l)(D, @). Let H : L%Ovl)(D,gz') — H
be the orthogonal projection. From the theory of the 0 Neumann problem, there exists
Neumann operator N : L) (D, ) — Def(0) such that

a=00'Na+3"ONa+ Ha.
For 8 € 'H, we have

0= (33,p3) = (30"8,8) + (0"983,8) = ||0° 8| + 103>
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Hence we obtain 03 = 0*3 = 0. From lemma 2, it holds that
Bi 2

];1 “ ” /aD Z 32 8” L |6 l
3ﬁ

> ZH S+ fb%wm

Thus 3; is holomorphic in D and 0 in 0D so that 3 =0. Therefore H = 0. We set
oy = 00*Na, ay=0"0Na.

R

vV

Since Neumann operator maps smooth (0, 1)-forms to smooth (0, 1) -forms in the strictly

pseudoconvex domain D, o and ay are both smooth (0,1)-forms in D. Obviously, 0a; = 0.
If 3 = 0, then by lemma 1 (3,as) = (98,0Na) = 0. Hence oy LKer(9). On the other
hand, from lemma 1, for any smooth function 3 on D, we have

ds

0= ((jﬁ.,()’z) = (/3,5*0{2) “+ /81) /8(12 . 8pe—¢l5p_l_

Thus J*ay = 0. Therefore oy satisfies the boundary condition. Hence, a3 satisfies the
boundary condition. If we set

mw=fm5(%i—)

l21[* + ¢

then we have
< g,0p >= l%(hs,a2> =0.

Thus we have
< g,a>=<g,a; >= / ud*are” Pdu = / ud*ae tdp = (u,0"a) =< du,a >,
D D

which means g = Ou.
Lemma 5. Let ¢ be the same as in lemma 4. Let A be a non-negative real valued
1
function in D with the property that 3 is integrable. If the inequality
. = e ¥
|<ga>P<C [ 10aPdu
D A

holds for any O closed «a € C&il)(ﬁ) which satisfies the boundary condition, then there
exists u € L'(D, ¢) such that

ou =g, / [u|?Ae™?dp < C.
D
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Proof. Let Cy°(D) be the space of all § closed C'°°(0,1)-forms in D which satisfies the
boundary condition. We set
e ¥

F={0ala € C*(D)}, ¢ = —/\—

Then, F is a vector subspace of L?(D, ;). For w € F, there exists o € C°(D) such that
w = 0*a. We define
O(w) =< g,a>.

Then ®(w) is independent of the choice of a. Also, we have
[@(w)[* < Cllwll?,. llef < VC.

Thus ® is a bounded anti-linear operator on F. From the Hahn-Banach theorem, ® is
extended to a bounded anti-linear operator on L?(D, ;). From the Riesz representation
theorem, there exists v € L*(D, ¢,) such that

o(w) = (v,w)py. ol = [|2] < V.

Therefore we have

e_'{)

e ‘
< g,a>=0w) = (v,w),, = /D ?}a*a%—, /D v]? 3

dp = “l“fn < C.

v
If we set u = —, then

A

/ [ulde™¢du < C, < g,a >:/ u%e*‘pd/z.
D D
On the other hand, we have
/ lule™?dp </ we““”dy/ e—_%—?du < C/ iﬂ——&fd/t < 0.
D —Jp A Jp A - Jp A

Thus, u € L}(D, ¢). From lemma 4, we obtain du = g.

Lemma 6. For ¢ € C*(D), it holds that

l'/————a—-z z)=mn o(2)dug(2),
eg% b ('21'2-’-5)299( )dlu( ) 7_/{\21:0}01) Y( )d:ul( )

where dy and dy; are Lebesgue measures in C* and C™ !, respectively.
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Lemma 7. Let D be a bounded strictly pseudoconvex domain in C" with smooth
boundary and D C {z||z1| < 1}. Let ¢ be a smooth plurisubharmonic function in D and
let & be a d closed smooth (0,1)-form in D which satisfies the boundary condition. Then,
for 0 < 0 < 1, we have

]6’*&]2 .
—@ @
/{-1—4]} D Ia]| ¢ (];11 (1 52) /D [ ‘ du

Proof. For0<d <1, weset
w=1—5" =1- (7).

From lemma 3, we have

/ w’ Z ©iReage” d/j+52/ |21 22|y |2 (ly—l-/ u*°]0*<1|26 “dp
D

k=1
‘()Oz’j _ dS
+ —| e fdu+ 2T =
foot B[ v [ wome

= ?.R.e/ w?dd* o - ae~¥dp.
' Jp

Hence we have

52/ 121126—2|a1 2
JD S

e Pdu+ / w®|0"alPedp < QRe/ w’00 a - ae~¢dp
Jp D : :

= 2Re(0" v, 0" (w'ar)) = 2Re(0" v, w’ & v — > ((3)11’ ;)
=1 V%
o
= 2/ w?|0* e "*(1/1 - ‘>R(‘/ o a m( “dp
D

IA
S

/ w [0*(}'|Ze_"9d/1.+2/ ]('3*(11()[:1[2"”1](}'1[e""du
<2 / |9 a2 _"’(1;1+9/ 5% a2z [Be P du + = /o | [2]21 |- 2e~% dp.
Thus we have

59 / |21 |27 [Pe™dp < / (1= 21?0 afPedp + 2 / |0 al?|z1[*e™?dp
2 D JD : D SR

:/ ]5*(r|2(z_"’(1p+/ [0 a |z [P e vdu < 2/ |0*al?e™#dpu.
D /b JD
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Therefore, for 0 < § < 1, we obtain
(3) 52/ Izll'z's'?]al{?e;"”d/z < 4/ [0 al?e~*dp.
D Jp

On the other hand, we set

1 1 l 1
- '_.______._..1 0
N gl~l‘2

We apply lemma 3 to w. and let ¢ — 0, then by lemma 6
/ vy [Pe™?dpy + / w|d*al?e™?dp < 2Re / wdF* o - e~ Fdp.
{z1=0}nD JD JD

By the same calculation as the first part and applying (3) to 0 < d < 1. we have

i 2 _ la
[0*al*e?du + . / |0*a]|—(j~1—|e_‘°d/,t
TJD Jos|

|l [Pe?dp, < ~ P
|21

-/{21 =0}r\f)

d*al?
|a* e~ vdp + = [l |2L ‘“(l,u—i——*/l 7 2](11}2( dp

IZ

—/ log| |zl0*a|2 e dy+ — / o 120( “Pdp + 62/ |0*aPe ¥ dp

d*ar|?

/log I25[() affe™fdp + = / B e Pdp+ “0)/ |0*alte ¥ dp.

1 .
Using the fact that x (log —+ 2) <2for 0 <z <1, we have

2 1 . 9‘0*(”2
2e~¢dp, < = / 0l ey L | S
./{zlzﬂ}ﬂf) I(l/ I ¢ = IZO (M+ T['52 I':l{za

2 ]3*(1]2
-2(1+5) ), P ¢

e “du

which completes the proof.

Lemma 8. Let D be a pseudoconvex domain in C" and X = {z € D|z; = 0}. Let f be
1
a holomorphic function in X. If H is locally integrable in D and satisfies 9H = f0 ( )
2y

then there exists a holomorphic function H in D such that H(z) = z H(z) a.e. and
H() f(z) forz € X.
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Proof. There exists a neighborhood w of X in D such that f can be extended to be
holomorphic in w. Let y € C*°(D) be a function such that y =1 in a neighborhood of X

inw, supp(y) Cwand 0 < y <1in D. We set

then G is locally integrable. Since we have

1

0G = d(uf) - +xf3 () - OH = for +10 (L)-om=a

<1

there exists a smooth function G in D such that G = G a.e.. We set

X(2)f(2) = 21G(2) = H(z),

<1

W,

then we have z; H(z) = ﬁ(z) a.e. and H(z) = f(z) for z € X. Moreover we have

OH(2) = (x(2))f(2) = 210G (2) = (0x(2)) f(2) = 21w (2) = 0.

Hence H (z) is holomorphic in D.

Lemma 9. Let D be an open set in C" and let K’ C D be a compact set. Then there
exists a constant C' such that for any holomorphic function f in D and any neighborhood

wof I
sup | f| < C £l -

Lemma 10. Let {u;} be a sequence of holomorphic functions in D which are uniformly
bounded on any compact subset of D. Then there exists a subsequence {uy; } of {u;} such
that {uy; } converges uniformly on any compact subset of D to a holomorphic function in

D.

Theorem 10.(Berndtsson[6]) Let D be a bounded pseudoconvex domain in C" and
let ¢ be a plurisubharmonic function in D. We set X = {z € D|z; = 0}. Suppose that
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D C {z € C"||z;| < A}. If f is holomorphic in X, then there exists a holomorphic function
F in D such that

Flx=1, [ IFFe*dn < aatn [ |ffedp,

where dy and dy; are Lebesgue measures in C" and C"™!, respectively.

Proof. Without loss of generality, we may assume that 4 = 1. There exists an increasing
sequence of bounded strictly pseudoconvex domains in C™ with smooth boundary such that
D, cC D and OLj D, = D. Let {¢,} be a sequence of C* plurisubharmonic functions in

D,, such that ¢, | ¢. We set g = f0 ( ) Let a be a  closed (0,1)-form which satisfies

the boundary condmon on 0D,,. From lemma , we have

,
= lf mfare” " duy
{Z]:O}nDn

< n? /{ - |f|2e-wdul [+ oy, loa e
Z1= n 21 = n

O*al?
<2 / 20=%n d / | ~endy.
d ( 62) {zlzﬂ}ﬂ[)n lfl ¢ lll Dy ]’:] |26 ‘ p/

From lemma 5, there exist integrable functions «} in D,, such that

~ 2
- ATe ¥
B, e

|<g’a>‘Pu !2

1 .
duy =g, / Pendy < 2 (1 )/ 2™ dpy.
Us g D, IU(;I |Z I ¢ 1 m + 52 {:1=0}1D, lfl € H1

We set F 5 = ll5~1 Then, from lemma 8, F}* are holomorphic in D,, and satisfy F D izy=01ap, =
f |{z1=0}nD,- Suppose that

[ \ffeedu =€ < o,
X
then it holds that

[ AEpeean = [ gPlaledns [l

1 1
< 2 / 2p=®n <2 ( )
< 2 (L4 g5) [y WP <2 (14 5 ) €

Therefore, for some fixed n, there exists a constant C; such that

/D |F§[*du < C.
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From lemma 9,10, there exists a sequence {d;} with J; — 1 such that F 5, converges uni-
formly on any compact subset of D,, to,F". Then F" are holomorphic in D,, and satisfy
F'l(..=0yap. = fl{s1=03np, . Moreover, we have

/ |[F™2e %" dp < 4nC.

n

Let A’ be a compact subset of D. There exists a natural number N such that K C D, (n >
N). If we set
M, = mine™?",

n

then, for n > N, there exist a constant C', such that
dnC > / |F"Pe™mdu > My / [F"|2du > Cysup |F" ]2
R Dy, JDn K

Thus {F"} are uniformly bounded on any compact subset of D. Then we can find a
subsequence {F**} of {F"} which converges uniformly on any compact subset of D. We
set lim,,_,, F¥» = F. Then F is holomorphic in D and satisfies F |x = f. For any compact
subset K of D, we have

/ |F|?e™"dp = lim / ]F’”" [Pk dy < 4nC),
JK n—oo [p
which completes the proof.

Remark. Siu[18] also obtained another proof of the theorem of Ohsawa-Takegoshi in
L 1/2 i
which the constant C' = lr 42 (1 + %{) provided D C {z}|z] < A}.
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