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Abstract
A function t* (0 < a < 1) is operator monotone on 0 < t < oo. This
is well-known as Lowner- Heinz inequality. We will seek operator monotone
functions which are defined implicitly. This investigation seems to be new, and
we will actually find a family of operator mohotone functions which includes
t* (0 < a < 1). Moreover, by constructing one-parameter families of operator
monotone functions, we will get many operator inequalities; especially, we will

extend the Furuta inequality and the exponential inequality by Ando.

1. Introduction

Throughout this paper, A and B stand for bounded selfadjoint operators
on a Hilbert space, and sp(X) for the spectrum of an operator X. A real
valued function f(t) is called an operator monotone function on (0, 00) if, for
A, B with sp(A), sp(B) C (0,00)

A>B implies f(A)> f(B).
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Clearly a composite function of operator monotone functions is operator mono-
tone too, provided it is well defined. A holomorphic function which maps the
open upper half plane I, into itself is called a Pick function. By Léwner
theorem [13}, f(t) is an operator monotone function on [0,00) if and only if
f(t) has an analytic continuation f(2) to II, U (0,00) so that f(z) is a Pick
function; therefore f(t) is analytically extended to C\(—o0,0] by reflection.
Thus if f(t) > 0 and g(t) > 0 are operator monotone, then so is f(t)*g(t)*
for 0 < p,A <1, p+ A< 1. Since an operator monotone function f(t) on

(0,00) is increasing, if f(t) is bounded from below, f(t) can be continuously
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extended to the closed interval [0, 00). In this case, for A, B with their spectra -

in [0,00) A > B implies f(A) > f(B). Such a function f(t) is said to be opera-
tor monotone on [0, 00); that is, a function f(t) is called an operator monotone
Junction on [0,00) if f(t) is continuous at ¢ = 0 and operator monotone on
(0,00). It is well-known that t*(0 < @ < 1), log(1 +¢t) and 5 (A > 0) are
operator monotone on [0, o), though operator monotone functions which have

been known so far are not so many (see [4]). Thus,
A>B>0 implies A*>B* for 0<a<1, Q)

which is called a Lowner- Heinz inequality [12,13]. But A > B > 0 does
not generally imply A? > B?; actually we have shown that if A,B > 0 and
(A+tB")? > A? forevery t >0 and n=1,2,.-- , then AB = BA [16].

Refer [1,3,5,9,11,14] for the details about operator monotone functions.

Chan-Kwong [4] had posed a conjecture:
Does A>B>0 imply (BA?’B)Y?> B%?
Furuta [7,8] affirmatively solved it as follows:

A>B>0 implies { (B"/2ApBr/2)1/q > (B"/zBPBT/2)1/q’

where 7,p > 0 and ¢ > 1 with (1 + r)g > p + r. This is called a Furuta
inequality. In this inequality, the case of p < 1 is the deformation of Lowner-
Heinz inequality; further, the case of (1 + r)g > p + r follows from the case of
(147)q = p+r by Léwner-Heinz inequality again: so the essentially important

(Ar/2ApAr/2)1/q Z (Ar/2BpAr/2)1/q’ (2)
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part of Furuta inequality is the case of p > 1 and (1+7)q = p+r. The second
inequality follows from the first one by taking the inverse. Tanahashi [15]
showed that the exponential condition (1 + 7)q > p + r is the best condition
for (2). Related to this inequality, Ando [2] showed that for ¢t > 0

et/2BtAct/2B)1/2 > otB

A > B implies
{ etA > (et/ZAetBet/zA)lﬂ’

which was improved, by making use of this inequality itself and (2), by Fujii,
Kamei [6] as follows:
forp>0,7r>s82>0

(e5BePAesB)7Hs > B

A> B impli . 3
2 implies { oA > (e5AerBeiA) 7. (3)

It is evident that the essentially important part of this inequality is the case of

s = r. Recently, by making use of only (2), we [18] got a simple proof of (3).

Now we give a simple example that motivated us for investigating operator

monotone functions which are defined implicitly:

A,B>0and A2> B? implies (A+1)?> (B +1)?

because A > B follows from A% > B2. But we can easily construct 2 x 2
matrices A, B such that (A + 1) > (B + 1)?, but A2¥B?; for example,

A=(2 1)’ B:(I_O )
13 0 1.4

The above results mean that ¢(t) = (t/2+1)2 is operator monotone on [0, 00),
but 1(t) = (¢1/2—1)2 is not on [1,00). We may say that ¢ and ¢ are implicitly
defined by ¢(t?) = (¢t + 1)® (¢t > 0) and ((t + 1)?) =% (¢t > 0).

One of the aims of this paper is to seek operator monotone functions which
are defined implicitly; this investigation seems to be new, and we will actually
find a family of operator monotone functions which includes t* (0 < @ < 1):
this means that we can get not merely an extension of (1) but also another
proof of (1). The other is to extend simultaneously (2) and (3), by making use

of a one-parameter family of operator monotone functions.



2. The construction of new operator monotone functions

Let us define a non-negative increasing function u(t) on [—a,, 00) by

u) =[] t+a) (@m<am<-<a, 1<m,0<) (4)
i=1 ’

Theorem 2.1. Let us consider a function s = u(t), where u(t) is defined by

(4). Then the inverse function u=1(s) is operator monotone on [0, 00).

Proof. Since u~'(s) is continuous on [0,00), we have to show that u~'(s)
is operator monotone on (0,00). We may assume that a; = 0; for, setting
v(t) = u(t—a,) we have u~1(s) = v~!(s) —a;; hence the operator monotonicity
of u!(s) follows from that of v=!(s). Set D = C\(—o00,0], and restrict the

argument as —7 < argz < 7 for z € D. For v > 0 define a single valued

holomorphic function z” on D by
27 = exp~y(log|z] + i arg 2),

which is the principal branch of analytic function exp(«ylog z). We also define
a holomorphic function u(z) on D by

u(z):H(z+ai)”‘, 0=a<ay<- <a

which is an extension of u(t). Since

u'(2) = {H (2 + a; 7‘}(2 2 +a,

it is necessary and sufficient for v/(2) = 0 in D that E 1 EJE} = 0. Since
v; > 0 and a; > 0, the roots of E 1 z+; = 0 are all in (—o00,0). Therefore,
4/(z) does not vanish in D. Let us consider the function w = u(z) as a mapping
from the z-plane to the w-plane. We denote D in the 2-plane by D, and D
in the w-plane by D,,. Take a tp > 0 and set sp = u(tp). Since (o) # 0,
by the inverse mapping theorem, there is a univalent holomorphic function
go(w) from a disk A(so) with the center sp onto an open set includiﬁg to such

that u(go(w)) = w for w € A(sp). We show that for an arbitrary point wp in
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D,, and for an-arbitrary path C in D,, from s¢ to wp, the function element
(90, A(s0)) admits an-analytic continuation (g;, A({:))o<i<n along C satisfying
the following:

u(gi(w)) =w for we A(G).
For ¢ € C let us denote the subpath of C from sp to ¢ by C¢, and let E be

a set of point ¢ in C such that (go,A(sp)) admits an analytic continuation

{g,-(w) is univalent from A(¢) into D,,
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satisfying x along C,. Since FE includes sp and is a relatively open subset of |

C, if F is closed in C, then wy € E. Thus we need to show the closedness of
E; actually we show that if C;/\{¢} is included in E, so is {. Take a sequence
{¢2} in Cc\{¢} which converges to (, and construct a family {(gn, A(¢n))}

so that {(gi, A(())}1<icn is the analytic continuation of (go, A(so)) along Ce,, |

satisfying x ; C¢\{¢} may be covered by finite numbers of A((;), but even in
this case we can construct infinite numbers of A(¢;) given above. If an infinite
numbers of the radii of disks A(¢y) are larger than a positive constant, then
¢ is in some A((,) and hence in E. Therefore, we assume that the sequence
of radii of A(¢,) converges to 0. The sequence of 2z, := gn((») is bounded in
D,, because the sequence of ¢, = u(gn(¢,)) is bounded. Hence it contains a
convergent subsequence {zy, }, whose limit we denote by zy. We prove that z
is in D, by the reduction to absurdity.

Assume that zp = 0, then from the definition of w(z), (s, = u(zn,) — 0; this
implies ¢ = 0, which contradicts C; C D,,: assume that argz,, T w, then,
because of 73 > 1 and a; = 0, limarg (,, = limargu(z,;,) > 7 ; this implies
that C, intersect (—o0,0), which contradicts C; C D,,: similarly assume that
arg z,, 4 —m, then C; intersect (—o00,0), which contradicts C; C D,,.
Therefore, zg is in D,. Thus u(2) is continuous at zg. Hence u(zp) = limu(z,,) =
lim ¢,, = ¢. Since u/(2p) # 0, by the inverse mapping theorem, there is a disk
A(¢) and a holomorphic function g¢ from A(¢) into D, such that w = u(g(w))
for w € A(¢). Since ¢, — ¢ and since the radii of disks A((,) diminish to
0, A(¢) 2 A(¢,) for n > N. Therefore ge(w) = gn(w) for n > N and for
w € A(¢,). This implies 2, — 2p; in fact, for n > N z, = g.(¢n) = 9¢(¢n)
which converges to g¢(¢) = 2o. |

Let us join (g¢, A(C)) to {(gi; A(¢i)) }h<icn- Then this new family is an ana-



lytic continuation of (go, 3p) satisfying x. Hence ¢ € E. Thus we have shown
that an analytic element (go, so) has an analytic continuation satisfying x along
every path in D,. By the monodromy theorem, this analytic continuation is
a single valued holomorphic function. We denote it by g(w). Then g(w) is a

holomorphic function from D,, into D, such that
u(g(w)) =w (weD,) and g(s)=u"'(s) (0<s < o0).

We finally show that g(w) is a Pick function. We denote the open lower
half plane by II_. Set I' = Y7 | ~. Since g(w) is continuous, there is a

neighbourhood W of sy so that
gW)CV:={z:—n/T <argz < w/T},
because V is an open set including ty = g(so). Here we note that
w(VNIL) CIL, w(VNIL)CIL, and u((0,00)) = (0,00).

In fact, take 2 € (V NIL,) ; since 0 = ay < a; for i > 1, (z + a;)) € VNI,
and hence 0 < arg([]f, (2 + a:)") < =, which means that w(V NIL) C I;

similarly we can see the rest. From these inclusions of sets, it follows that
gWnILy) CILy -

in fact, take an arbitrary w € WNIL,, then g(w) € V; assume g(w) ¢ I, then
by the above argument, we have w = u(g(w)) & I1; this is a contradiction.

From u((0, 00)) = (0, 00) and u(g(w)) = w for w € D, it follows that g(II,) N
(0,00) = @. This and the connectedness of g(II,) in D,, by taking account of
0 # g(WnIl,) C I, show that g(IT,) C IL,. Hence g is a Pick function. [J

For 0 < a < 1, a function u(t) = tV/* satisfies (4). Hence the above theorem
says u™'(s) = s* is operator monotone on [0,00): this means (1).
In the above proof we used the condition 4; > 1. To see that we can not make

this condition weak as ), r; > 1, we give

Counter example. Set u(t) = t'/%(t + 1). Then /(t) = 1t-1/2(3t + 1)
and u”(t) = $t73/2(3t — 1). Therefore

21



u'(t) <0 (0<t<1/3) hence (u7')"(s)>0 (0<s<4/27).

Since an operator monotone function is concave, this implies that u=!(s) is not

operator monotone on [0, 00).

From now on we describe only result and we omit the detail for the length
limit.
Theorem 2.2. Define a function v(t) by

l
o(t) = [JE+0)Y (E>-b), bi<br<---<b, 0<X.  (5)
j=1

Then, for u(t) represented as (4), if the following conditions

ax S bl) (6)
Zb,« Aj < Eai« vi for every t€R _

are satisfied, a function ¢ defined on [0,00) by
d(u(t)) =v(t) (~a1<t), thatis, ¢(s)=v(u'(s)) (0<s)
i3 an operator monotone function on [0, 00).

3. The further construction of operator monotone functions

This section is continued from the preceding section. We start with a simple

lemma.

Lemma 3.1. Let f, (n=1,2,...) be strictly increasing continuous func-
tions on [a,00) (a € R) with fy(a) = 0, fo(00) = 00, and let fr(t) < fas1(t) for

t € [a,00). If fa(t) converges pointwise to a strictly increasing continuous func-

tion f(t), then f7(s) converges uniformly to f~1(s) on every bounded closed-

interval [0,b] (0 < b < 00). Furthermore, if a sequence {hn} of continuous
Junctions on [0,00) satisfies hn(t) < hpy1(t) and converges to a continuous
function h(t), then h,(f71(s)) converges uniformly to h(f=1(s)) on [0,b] as
well.

Theorem 3.2. Let u(t),v(t) be functions defined by (4),(5). Suppose that
condition (6) is satisfied. Then, if 0 < 8 < a, a function ¢ on [0,00) defined
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by
P(u(t)e™) = v(t)e” (—a; <t < o0)

is operator monotone on [0,0c0).

By the above theorem we can easily construct a one-parameter family of

operator monotone functions.

Corollary 3.3. Let u(t), v(t) be functions given by (4),(5). Suppose that
condition (6) is satisfied and that 0 < < a, 0 < c < 1. Then, for eachr > 0
a function ¢.(s) on [0,00) defined by

¢,(u(t)v(t)'e(“+ﬁ')t) = (v(t)e’)H" (—a; <t< 00)

18 operator monotone.

It is not difficult to derive the next corollary from Lemma 3.1 and Theorem
3.2.

Corollary 3.4. Suppose that two infinite products

o0

a(t) = H (t+a)" (@ <aiy1,1<m, 0< )

i=1
and

17(t) = H(t + bj)'\j, (bj < bj+], 0< AJ)

are both convergent on —a; < t < oo. If condition (6) is satisfied and if
0< B < a, then a function ¢ defined by

p((t)e™) = o(t)e” (—ay <t < o00)

is operator monotone on [0,00). Moreover, if 0 < c < 1 andr > 0, then a
function ¢.(s) on [0,00) defined by

S, (@(t)5(2)e) = (3(t)e™)™" (—ar1 <t < o)

s operaltor monotone.



4. An essential ,.-inedual'ity and an extension of Furuta inequality

The aim of this section is to give an essential inequality which lead us to
extensions of (2) and (3), and to extend (2). To do it we need some tools
on operator inequality. Now we adopt the notion of the connection (or mean)
that was introduced by Kubo-Ando [10]: a connection ¢ corresponding to an

operator monotone function ¢(t) > 0 on [0, c0) is defined by
AoB = AV2$(A/2BA~1) A2

if A is invertible, and AcB = lim;,+9(A + t)oB if A is not invertible. In this
paper we need the following property:

A>C and B > D imply AcB > CoD.

From now on, we assume that a function means a continuous function, I, J
represent intervals (may be unbounded) in the real line, and J* the interior of

J. To make proofs simply in future, we give a remark.

Remark. Suppose that sp(A) C [a,b] C J, and that f is a function on an
interval J. Then for an arbitrary € > 0 there is an affine function p.(t) = ct +d
such that ¢ > 0, p(a) = a + €, p(b) = b — € and pc(t) converges uniformly ¢
on [a,b] as € = 0. Then we have

1/ (P:(A)) ~ f(A)| =0 (e—0), and sp(p(A)) C la+€,b—¢l.

Therefore, to show something about f(A) under a condition sp(A) C J we will
often assume that sp(A) is in the interior of J.

Lemma 4.1. Let ¢(t) > 0 be an operator monotone function on [0,00).
Let k(t) be a non-negative and strictly increasing function on an interval I C
[0,00). Suppose |

p(k(t)t) =t* (tel).
Then

¢(Bl/2k(A)Bl/2) > BZ,

sp(A),sp(B) I, A2B = { A? 2 (AV?k(B)A'V?).
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Lemma 4.2. Let {¢, : r > 0} be a one-parameter family of non-negative
functions on [0,00), and J an arbitrary interval. Let f(t), h(t) be non-negative

strictly increasing functions on J. If, for a fized real numberc: 0 < c< 1, the

condition

B (ROI)) = [P (e dr>0) ™

18 satisfied, then
Perar(sgy () =87 (s = f(t)"*).

Theorem 4.3. Let {¢, : r > 0} be a one-parameter family of non-
negalive operator monotone functions on [0,00), and J an arbitrary interval.
Let f(t),h(t) be non-negative strictly increasing functions on J. If condition
(7) is satisfied for a fizxedc: 0 < c < 1, then

sp(A), sp(B) C J', } = { #(F(BY*h(A)f(BY"?) 2 f(B)™,

ctr r/2 r/2y. | (8)
f(A) = £(B) F(A)" > e (f(AY72h(B)f(A)/?):

Proof. We will only show the first inequality of (8). Since sp(A),sp(B) are
in the interior of J, f(A) and f(B) are invertible, because f(t) is strictly
increasing. We first show (8) in the case of 0 < r < 1. By making use of the

connection o corresponding to ¢,, we have

f(B)~¢.(f(B)sh(A)f(B)5)f(B)% = f(B)"oh(A)
2 f(A)"oh(A) = f(A) (A" = f(A)° = f(B)".

Thus (8) follows. We next assume (8) holds for all 7 : 0 < r < n. Take any

r:n <r<mn+1 and fix it. Because of 55¢ < n, we have

r-c

Bz=(f(B) T h(A)f(B)F) 2 f(B)F.

Here we simply denote the left hand side by H and the right hand side by
K; clearly H > K. Set I := {f(t)"s° : t € J}. Then I C [0,00) and
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sp(K) C I. To see sp(H) C I, take a,b in J such that a < A, B < b. Since |

h(a) < h(A) < h(b),

r—ec

Ma)f(a)F" < f(B) T H(A)S(B)F < h(b)f(5)7".




In conjunction with (7), this shows sp(H) C I. It follows from Lemma 4.2
that

(5972 =g f I
¢(s¢>%_£(s)) s* for s €
Thus we can apply Lemma 4.1 to get
1/24-1 (\NVKV?) > K2
B (K97 (H)K'?) 2 K,
which means

¢.(f(B)Eh(A)f(B)F) > f(B)™". =

Theorem 4.4. Let {¢, : 7 > 0} be a one-parameter family of non-
negative operator monotone functions on [0,00), and J an arbitrary interval.
Let f(t), h(t) be non-negative strictly increasing functions on J. If f(t) is op-
erator monotone, and if condition (7) is satisfied for a fized c: 0 < c < 1,
then

sp(A),sp(B) C J, } . { e(F(B)*h(A)f(B)?) = f(B)**", (9)

A>B FA)HT > ¢ (f(A)Y2R(B) f(A)7?).

We explain that the above theorem includes Furuta Inequality.
Let p > 1, and put

fit)=t, h(t)=t?F (0<t<o0).
Define a one-parameter family of operator monotone functions {¢, : > 0} by
6.(t) =t (0 <t < o0).

Then
o (R(E)F(8)7) =t = f(2)'*".

Thus (7) with ¢ = 1 and other required conditions in Theorem 4.4 is satisfied.

Therefore, from Theorem 4.4 it follows that

A>B>0 = (B2APB%)3 > Bitr,
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If (1 +7) > p+r, take X such that
1 \ 1 +lr.
q p+r
Then 0 < A < 1, hence by Léwner-Heinz inequality (1) we have

(Br/2ApBr/2)l/q > Bz%—
This is just the Furuta inequality.

Remark. In the above theorems, we assumed that condition (7) is satisfied
for all > 0. However, it is evident that if we assume that (7) is satisfied for
7 in an interval (0, @), then (8) and (9) hold for r € (0, @).

(8) and (9) are abstract inequalities, however we can get concrete inequali-
ties by using one-parameter families of non-negative operator monotone func-

tions on [0, 00) in Corollary 3.3.

Corollary 4.5. Under the condition of Corollary 3.3, suppose A, B > —a;.
Then

v(A)e™ 2 v(B)e”? = ¢,((v(B)e"®) u(A)e™ (v(B)e?P)"/?) > (v(B)ePB)H.

Corollary 4.6. Let u(t), v(t) be functions given by (4),(5). Let us assume’
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that a; < by and ) A\j < 1. For fized o, c: O<a 0 < ¢ L1, define a function

¢r(s) on [0,00) by
S (u(Eo(ty'e™) = ot (> 0)

Then
A2 B> —a; = ¢.(v(B)iu(A)e* v(B)5) > v(B)°+.

5. Extensions of exponential type operator inequality by Ando

Let us remember the inequality (3): for p >0, » > s> 0

A > B = (e?BePeiB)rir > B,



In this section we will pxterid this: We conisider (7) under the condition of ¢ = 0,
and denote the function by ¢, instead of ¢,. In addition to the conditions of

Theorem 4.3 we assume that log f(t) is operator monotone. Then we have

Theorem 5.1. Let f(t) and h(t) be non-negative strictly increasing func-
tions on an interval J, and let {p, : v > 0} be a one-parameter family of

non-negative operator monotone functions on [0,00) satisfying

Pr(BOION) = 1O (t€ J;r>0). o)

If log f(t) is a non-constant operator monotone function in the interior of J,
then

sp(4),sp(B) € J, } _ { er((BY*h(A){(BY'?) > 1(BY
A>B FAY 2 p(F(AY(B)F(A)™?).

Now we explain that this theorem is an extension of (3). For p,r > 0, put
or(8) = s/®+) for s > 0, f(t) = €t and h(t) = e for t € J := (—00,00).
Then (10) and all other conditions of Theorem 5.1 are satisfied. Thus A > B
implies

(11)

(egBepAe%B),_:,—r > erB.

By Lowner-Heinz theorem, we get (3).

Since ¢,(s) = s/®+?) (p,r > 0) is operator monotone on [0,00) and
satisfies @, (f(t)Pf(t)") = f(t)" for every function f(t), we can obtain

Corollary 5.2. Let 0 < f(t) be a strictly increasing function on an ‘interval
J, and let sp(A),sp(B) C J. If log f(t) is an operator monotone function in
the interior of J, then forr >0,p >0

> B { (F(B)f(AP1(B)?)

P > f(B)

FAY = (F(A)FF(BPf(A)7)7+.
Corollary 5.3. If a,p,r > 0, then

[(u(B)e*B)% (u(A)e4)? (u(B)e*P)5]7F 2 (u(B)e*®)",

A>B2> -a L 37
=5 d{ (u(A)e ) > [(u(A)e4)F (u(B)eB)? (u(A)e4)5]57.
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- By applying this inequality to u(t) = 1, we can get (3) again. We end this
paper with a slightly complicated inequality:

Corollary 5.4. Let u(t),v(t) be functions defined by (4),(5), and let a; <
by. For fized a, 3 > 0, define ¢,.(s) (r > 0) on [0,00) by

P (u(tY (O = oty Bt (2> —a)
Then, for each r > 0 ¢,(8) is operator monotone and

er((v(B)e”P)E (u(A)e*4) (u(B)e?P)%) > (v(B)ePY,

A —ay ' 5 3
2B2-a= { (W(A)PAY > o, ((v(A)eP4)E (u(B)eB) (v(A)e?4)%).
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