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1 Introduction

We consider a class of differential equations with a parameter and show
the existence of solutions of infra-exponential type by using the Cauchy-
Kowalewski theorem with a parameter.

As application, we study solvability of some class of differential equations
in the sheaf of 2-analytic functions, that is, microfunctions with holomorphic
parameters. We also give a characterization of solutions of a class of differ-
ential equations. In particular we treat transversally elliptic operators and
other related operators, which are difficult to study in the former theory of
second microlocal analysis.

Let V and X be the following regular involutive and Lagrangian subman-
ifolds of v/—1T*R"™ respectively:

V= {(:1:,\/———1§~d:n) € VoIT*R™ & = - = €ns :o},
= {(5,V=I¢  da) € VIT'R 6 =+ = ur = 20 = 0},

where /—1T*R™ = /—1T*R™ \ R*. So, we set z = (z/,z,) with 2’ =
(T1,...,Tn1) and & = (£,&,) with &' = (&1,...,&n-1). Let P be a differential
operator with analytic coefficients defined near a point 0 € R™. Assume P is
transversally elliptic in a neighborhood of p, = (0, v—1dz,) € X, that is, P
satisfies the property:

lo(P) (&, V=1&/I€D] ~ (] + 1€1/1E])'



for some non-negative integer [ in a neighborhood of p,. Here o(P) denotes
the principal symbol of P. Grigis-Schapira-Sjostrand [3] has given a theorem
on the propagation of analytic singularities for this operator P along the
bicharacteristic leaf of V passing through p,.

On the other hand, assume P satisfies the property:

|o(P) (@, V=1&/IE)] ~ (Jzal* + €'1/1€])

for some non-negative integers k and [ in a neighborhood of p, € . We have
proved in [2] unique solvability in the sheaf CN% of small 2-microfunctions for
this operator P. This result was obtained by using our elementary con-
struction of C~‘2, and the estimate of the support of solution complexes with
coefficients in C%. In this case, the structure of solutions of Pu = f in the
sheaf Cps of Sato microfunctions is reduced to that in the sheaf A}, of 2-
analytic functions. Therefore our result implies the above theorem due to
Grigis-Schapira-Sjostrand [3] because any section of A}, has the property of
the uniqueness of analytic continuation along the bicharacteristic leaves of
V. Moreover, we showed solvability in A% and in Cps of a class of differential
equations of the first order with Lagrangian characteristics. Refer to [2].

In connection with these operators, we introduce a new class of differential
operators with analytic coefficients defined near 0 € R™:

P(z, Dy, z,Dy,) = Z ao(2) DS (2, Dy, )",
; lel<m
where |a] = oy + -+ + ap, D¥ = D ... D2, and D; = D,; = 9/0z; for
a=(o,a,) = (01,...,0,) € N*. One makes the hypothesis a(,...0,m)(0) #
0. Then we will get result of a characterization of the kernel of the operator
P: A, — AL at p, = (0,/—1dz,) € Z. Furthermore, one makes the
hypothesis a(m.,..0)(0) # 0. We will prove solvability of Pu = f in A at
po € X on some suitable condition of f € AZ%.

2 The Cauchy-Kowalewski theorem with a
large parameter

We consider the following differential operator:

P(Za)‘)Dz) = ZAij(z’ Dz)’

J=0



where A € (1,00) is a parameter and the P;’s are holomorphic differential
operators of order m — j defined on a neighborhood D of 0 € C™:

Pj(zaDZ): Z a,g(z)D;’.

la|<m—j
One makes the hypothesis:

a?nyOWWO)(O) 7é Oa‘
a’zg,O,...,O)(O) # 0.

Consider the following differential equation:

(2.1)

P(z, A, D,)U(z, ) = F(z,\), - (2.2)

where F(z,)) is a holomorphic function on D for each fixed A. Assume
F(z, X) possesses infra-exponential growth order as A — oo, that is, for any
€ > 0 there exists C; > 0 such that we have:

|F(z,\)| < Cee.

Theorem 2.1. There exist a neighborhood D' of 0 € C™ and a solution
U(z,\) of (2.2) which is holomorphic in D' for each fized A and possesses
infra-exponential growth order.

We give a sketch of the proof of this theorem. First, we may assume that
a,.. 0)(#) = 1 from the hypothesis (2.1). By the differential equation (2.2)
one has formally:

00 m—1 k
U(z,\) =2 (- D NTTP(z, Dz)) F(z,\),
k=0 =0

J
but in general this infinite sum is divergent. So we introduce another modified

function instead of U. Let A be a sufficiently large constant. We set Wy =
(1,00) and Wy = {\ € (1,00); A > Ak} for k € N\ {0}. Then we define:

Ui(%2) =A™ xw, (M) (— i N ™Pi(2, D,)) F(z,)\) (2.3)

for (z,A) € D x (1,00), where xw, is the characteristic function of Wj:

oy {1 EAET
Wl =00 i A € W



We find immediately that the function U is well-defined, since the sum in
(2.3) is locally finite on D x (1,00). The function Ui(2,A) is holomorphic
in D for each fixed A € (1,00). We can claim that U; is the function of
infra-exponential type as A — oo in a sufficiently small neighborhood D; of
0 € C" by Cauchy’s inequalities.

Lemma 2.2. For any positive € there exists a positive constant M, such that
one has

U1 (2, \)] € M.e®> for z€ Dy, Xe(1,00).

Needless to say, the function U; is not a solution of (2.2), but it gives
sufficient approximation of solutions of (2.2) in the following sense. By its
construction, we have on Dy X (1, 00):

P(z, )\,Dz)Ul(_z, \) = F(z,\) — Fy(z, ),

where we set:

Fo(z,A) = Z XWi_\Wi (A) <_ Z_: )‘j_ij(z) Dz)) F(2,\). (2.4)

Here the error Fy(z,)) is also a holomorphic function in D; for each fixed
X € (1,00), since the sum in (2.4) is locally finite on D; x (1,00). Then one
can claim that Fj is exponentially decreasing as A — oo.

Lemma 2.3. There exist positive constants 01 and My such that one has
|Fo(z, \)] < Mye™®*  for z€ Dy, Xe(l,00).

Next, we show the existence of exponentially decreasing solutions of the
differential equation '

P(z,\, D,)Up(z,\) = Fo(z,A)

by using the classical Cauchy-Kowalewski theorem with a parameter. One
sets U = U + U;. At that time we find immediately that U is a solution of
infra-exponential type of (2.2).

Set;:

Q, = {2 € C™ 21|+ || + - + |2a| <7},
Qrr={z€C"Llz|+ |22 + -+ 2| < r}



for r > 0, L > 1. For a sufliciently small r > 0, the differential operator
P(z,\, D,) is defined on a neighborhood of Q, and Fy(z,\) € O(£,) for
each fixed A € (1,00). ,

By the condition (2.1), we may assume from the beginning that

a(()m,O,..‘,o)(z) = 1.

Consider the Cauchy problem:

{P(z, X, DUy = Fy (2.5)

DiUy=0 whenz =0,j<m.

Proposition 2.4. There exists L > 1 such that the Cauchy problem (2.5)
has a unique solution Uy € O(S2L,) for any A. Moreover, there exist ri > 0,
My > 0, 5 > 0 such that for any z € Qr,,,, any A, we have

Uo(z, A)| < Moe™**. (2.6)

Proof. We make use of the majorant series of the solution Up(z, A) for each
fixed \. The estimation (2.6) follows from Lemma 2.3. O

Remark 2.5. In the situation of Proposition 2.4, we can choose the con-
stant L independent of the parameter A because the principal symbol of
P(z, A, D,) does not depend on A. So the domain {2z, in which the solution
is holomorphic does not shrink as A — oo.

From Lemma 2.2 and Proposition 2.4, we find that the solution U(z, \) =
Uo(2,A) + Ui(z, A) possesses infra-exponential growth order as A — oo in a
neighborhood of 0 € C™. This completes the proof of Theorem 2.1.

Remark 2.6. Our construction of the solution U has made it possible to get

‘the results in Theorem 2.1. If we consider (2.2) and the Cauchy boundary
conditions directly, we cannot find a solution of infra-exponential type. For
this reason one has reduced F' to Fy which is exponentially decreasing, and
considered the Cauchy problem (2.5).

3 Solvability in the sheaf of microfunctions
with holomorphic parameters

As application, we give the theorem of solvability and a characterization of
solutions of some class of differential equations in the sheaf of 2-analytic



functions, that is, microfunctions with holomorphic parameters. In the in-
troduction, we have seen the propagation of analytic singularities for each
operator along the bicharacteristic leaves of the regular involutive subman-
ifold. However, they are not sufficient to get results of solvability for these
operators.

First, let M be an open neighborhood of 0 in R™ with coordinates z =
(z1,...,2Z,), X a complex neighborhood of M in C™ with coordinates z =
(21,...,2),and Y = {2 € X; 2z, = 0}. Let V and X be the following regular
involutive and Lagrangian submanifolds of T}, X respectively:

V= {(o,V=IE dn) € Ty Xi 61 = o = £y = 0,
Z={(@,V=Ig - dn) € Ty Xi6 = = o1 = 30 = 0],

where T3, X = T, X \ M. So, we put © = (', 3,) with ' = (z1,...,Zn_1),
z=(2,2,) with 2/ = (21,...,2n-1), & = (&,&,) with & = (&1,...,&,-1), and
a=(d,a,) with o = (aq,...,0m-1).

Let p, = (0,v/—1dz,) € X. In connection with the transversally elliptic
operator, we consider the following differential operator of order m with
analytic coeflicients defined on M:

P(2, Do, 0 Da,) = Y  aa(2)Dg (2D, )" (3.1)
jal<m

The operator P is not partially elliptic along V' provided that a(,. om)(0) #
0. Hence one cannot apply Bony-Schapira’s theory to this operator. See
Bony-Schapira [1]. '
Now recall that A% = Cy|ly = H'(un(Ox))|v and that
%/’Po = Hé(OX)O
~ ImO(D}~" x U,)/O(D}). (3.2) |

r>0

Here we have set the closed subset Z C X, the open polydisc D¥ C CF and
the open subset U, C C respectively by:

Z ={z¢€ X;lmz, <0},
DF={2e€Ck|z|<ri=1,...,k}
U, = {2n € C;|z,] <7, Imz, >0}

for k < n and r > 0. Then any germ f(z) € A%, is obtained as boundary
value of a holomorphic function:

f(z) = bpp-1,4. (F(2)), (3:3)



where F'(2) € O(D* ! x U,) for some r > 0.
Recall, moreover, the sheaf C§§| « of microfunctions on Y defined by:

C¥1x = H'(uy(Ox)). The stalk of C§, at p, € £ is also written:

CYyxpe = imH7 (Ox)o

r>0

~ limO(D™ x V,)/0(D}).

r>0

Here we have set the closed subset Z, C X and the open subset V., c C
respectively by:

Zr ={z € X;Imz, < —r|Rez,|},
Vi = {2, € C;|2zn| <7, Imz, > —7|Rez,|}.

It is clear by the definitions that there exists the exact sequence on J
concerning these sheaves:

0 — Cyxlz — Abls.
Now one makes the hypothesis:

a(,....0m)(0) # 0. | (3.4)

Then we can obtain the following result on a characterization of the kernel
of the operator P: A% — A% at p..

Theorem 3.1. Assume (3.4) for the differential operator (3.1). If Pu =0
foru € A}, then u € CF .- |

Proof. One introduces the new local coordinates
w = log 2y, —§7r < arg zp < oLk

We continue analytically a defining function of a 2-analytic function by means
of the Cauchy-Kowalewski theorem. O

Now one makes the hypothesis:
(3.5)

One can obtain the following theorem on the solvability for the operator
P: A} — A% at p.. |



Theorem 3.2. Assume (3.5) for the differential operator (3.1). We assume,
furthermore, a germ f € A%, represented by (3.3) satisfies the following
growth condition. There exist positive constants p < 1, C such that

|F(2)| < C|Imz,|™, z€ D} ' xU.
Then we can find a solution u € A%, of Pu= f.

In order to show the existence of solutions in Theorem 3.2, we will make
the following steps. First, we turn holomorphic functions into the form of
integral representation which is easy to deal with by means of Fourier trans-
formation. Secondly, regarding the variable of integration as a parameter,
we solve the differential equation with the parameter. Then we get a real
solution by superposing a solution with respect to the parameter. At this
time, we have to find a infra-exponential solution with the parameter. For
that purpose, we make use of the theorem in the preceding section.

Set U® = P'\ {2, € C;|2,] <r,Imz, <0}. Note that the open set
(D1 x U®)U DP ¢ C* ! x P! is a Stein manifold. Therefore one can find
functions Fo, € O(D?~! x U®) and Fy € O(D}) such that F' = Fo — Fo in
D! x U, and Fi(2',00) = 0 by the solvability of the first Cousin problem.
Then one obtains: :

f(z) = bD,’?“ler(F(Z)) = bD?‘ler(FOO(z))
by the isomorphisms in (3.2). In this way it is enough to consider Fi, €
O(DP~1 x U®) which satisfies Foo(2,00) = 0 instead of F'.
Next, choose the system of local coordinates (z',w) = (z1,...,2n-1,W)
with '
w=logz, 0<argz,<m,

and set w = u + v/—1v. We choose a C®-function ¢: R — R such that
0 < (v) <1forve€R, Pw)=0forv<d, and Pp(v) =1 forv =7 — 0,
where 8, > 0 is a small constant. Using this function, we define:

i
G\ ) = (Bl € W(0)) = 3 Fonl €100
for 0 < v < m. We can consider G(#',w) as a C*®-function on D?~' x C by
setting G(2/,w) =0 for Imw € R\ (0, 7).
Lemma 3.3. Let ¢ be a positive constant with 0 < p < ¢ < 1, and set
o(u) = —2qu. Then G(2',w) € L*(D}~! x C, p) by shrinking D=L that is,
one has

/ G, w)2e#® dV (2, w) < oo,
DR IxC

where the symbol dV (2, w) is the standard Euclidean volume form on C™.



By existence theorems for the 0 operator due to Hormander [4] and
Lemma 3.3, there is a solution H(2',w) € L*(D}~! x C,loc) of the equa-
tion OH = G dw such that

/ HP%e™ (14 |(, w)?) 2 dV < / GP2e= av.

DrIxC DF~1xC

In fact, H € L*(DP~! x C, ®), where ®(2',w) := ¢(u) + 2log(1 + |(2/, w)|?).
Set:

V={weC0<Imw< 7},
Vi ={w € C;Imw > 0},
Vo ={weC;Imw < 7},

and

F+(Z,, U))

Foo(#,€")(1 = % (v)) + H(Z, w),
F_(2,w) 2,

Foo(2', ) (v) = H(Z, w).

We find immediately that F. € O(D?! x V) and that

Il

Fo(?,e") = Fy (2, w) + F_(#,w) for (¢,w)e Dr*'xV.
We study values of the holomorphic functions Fy as |w| — oo. Let

Vis={w e C;Imw > §},
Vos={weC;Imw < 7 — ¢}

for 6 > 0, and set 1, =1/2 > 0.

Proposition 3.4. For any small positive & there exists a positive constant
Cs such that one has

|FL(2',w)| < Cs |w2e""“’| (3.6)
for (2, w) € D1 x Vs with |w| > 1.
Proof. First, one has

c (D1 x Vissa, ®),

F+iD?_1 T

xVis/2

F_lD?—IXV_a/z € LZ(D:}_I X V_5/2,(I)).



10

Choose any point (2., w,) € D! x Vis. Since FL is holomorphic on
D1 x V., we have

1
vol(B((2., w,),6/2)) B((2h,wo),8/2)

where B((z),w,),8/2) = {(#',w); |(¢', w) — (25, wo)| < §/2} CC DP~' x Vis/a.
Then we have the inequalities:

Fi(2,w)dV (7, w),

Fi(z:ﬂ wO) =

le:(Z;, wO)l
< Fi|?e” dV>
VOI(B((Z{), 'U)o), 6/2)) </J;((zg,wo),6/2) | :t|

X </ 0 ) o )y 2 )

/2.

1
< e
- VOl(B((z[’),’(1)0),(5/2))1/2 “Fi|Dr "% Vis/2

sup e
® B((24,wo),8/2)

From these inequalities and the fact that e?/? = e™™(1 + | (2, w)|?), we can
get the required inequality (3.6). O

Now, we define the following holomorphic functions on D*~! x V,:

F—F(zl’ U)) = equ+(z',w),

F_(Z,w)=e ™F_(2,m —w).

Corollary 3.5. For any small positive § there exists a positive constant Cj
such that one has

iﬁi(z',w)‘ < Cs [uw?| (3.7)
for (2 ,w) € D1 x Vs with |w| > 1.

This corollary shows that the holomorphic function F, is slowly increasing
with respect to w. Therefore, the boundary value

boptev, (Fal2w))

represents a slowly increasing Fourier hyperfunction with respect to the vari-
able w. Refer to Kaneko [5] for the notion of Fourier hyperfunctions. We
introduce the Fourier transformation of bpn-1,y, (Fi) with respect to w in
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the following way. First we decompose Fy by using x;(w) = /(1 + €¥),
x2(w) = 1/(1 4+ e*) into the form of:

Fy(Z,w) = x1(w)F (2, w) + xo(w) Fx (2, w).

Then we define
G, = [ e, w) du (3.8)
) Imw=v

for an arbitrary fixed v with 0 <v < wand j =1, 2. Set { = ¢+ +/—1n and
define the open subsets:

W ={¢eC—1<Im¢<1}\[0,+00),
W, ={eC;0<Im¢ <1},
W_={¢eC;-1<Im( <0}

The integral transform (3.8) is independent of the choice of Imw = v in
the path of integration as long as 0 < v < m. We have, moreover, Gy €
O(Dr=1 x W_), Gyp € O(D}H x W). | |

Then we can introduce the Fourier transformation:
]:bD;“lxw (F+) = bDI?I"IxW_ (G+1) + bDﬁl‘le+(G+2>a

FbD:}_le+ (FL) - bDyr‘Ll_lXW_. (G_l) + bD;r‘tl—le_"(G_z).

Using the holomorphic functions G ;, one defines

Gio(#,¢)  on DMt x Wy

Culse= {——Gﬂw,o on D~ x W_.

Note that the function Fy is holomorphic not only on D*~! x V but also
on D' x V,, and that F, satisfies the growth condition (3.7) in Corol-
lary 3.5. In this special situation we can claim the following proposition on
the holomorphic function G4..

Proposition 3.6. The holomorphic function G+(2',() can be extended to a
function in O(DI x W).

Proof. We make use of the following function:

Hip(#,¢) on DM x W,

Hy (Z,¢) =
£(7,¢) {"Hil(zl,g) on D}t x W_,
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where one sets

Hyj(7,¢) = / ™" x; () Fe (2, w) (w + )™ du

Imw=v

for an arbitrary fixed v with 0 < v < 7. We find immediately that Hy; €
O(Drt x W_), Hyy € O(DP' x W) and that Hy; are independent of the
choice of v as long as 0 < v < 7. Note that there is the relation between G+
and Hy on Dt x (W, UW_):

(DC + 1)4H:t(z” C) = G:t(z,a C) (39)

The holomorphic functions Hy; have finite boundary values at any point
of D=1 x R: ' '

Hi,(2,€) = w_liar?_»g Hyi(7,Q),
! — . /
Hio(2,€) W.}lar?—-»g Hiy (7, Q).

For each fixed £ € R, Hy;(7,€) is holomorphic on DP~!. Furthermore, the
functions —H.; and Hy, have the same boundary values at (2/,€) € D' xR
with £ < 0. We have indeed on D~! x R

Hyi(2,8) + Hyy(2,6) = e / e E (2, w)(w+i) " du.  (3.10)

Imw=v

Since the function £y (2',w)(w 4 4)~* in (3.10) is holomorphic not only on
D! x V but also on D x V, we can choose an arbitrary v in the path of
integration as long as v > 0. By using the estimation in Corollary 3.5, there
exists a positive constant C such that we have the inequalities for v > 1:

eVt / e ML (2, w)(w + i) du
Imw=v

< e”&/ Iﬁi(z’,u+iv)(u+iv+z’)'4l du

—00

o0
< 6”5/ Clu + iv|*|u + iv + 4| ~* du
—00

< Ce¥ -1 d
< Ce _001+u2 U.

Therefore one obtains

Hﬂ:l(zl)g) + Hﬂ:?(zlag) =0 for f < 0)



Im(

1

-

,,//// > Re(
/ / e

\
\

Figure 1: The path v

since v is arbitrary as long as v > 0 in the preceding inequalities. Thus
the function Hy is holomorphic on D" x (W, U W_) and extended to a
continuous function on D~" x W. Then we find that Hy is holomorphic on
Dfl_l x W. We find, furthermore, that G4 can be extended to a holomorphic
function on the domain D' x W through the relation (3.9). O

Note values of the holomorphic function G+ as Re( — +oo. We find
easily that G possesses infra-exponential growth order as Re( — oo and
decreases exponentially as Re( — —oco. We have constructed the holomor-
phic function Gy from Fy by using the Fourier transformation. Now we
shall restore G4 to the original holomorphic function F, by using Fourier’s
inversion formula.

Proposition 3.7. For (2/,w) € D! x V, one has

n ! 1 iw /
Fi(Z,w) = —2——/6 ‘Gi(,¢)d¢,
v

™

where ~y 1s the infinite path in Figure 1.

13
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Proof. By the inverse transformation, we have

N e I CHOL S

for any point (2/,w) € D"t x V.
Therefore by (3.11):
Fo(Z,w) = x1(w)Fe (2, w) + x2(w) Fe (2, w)
1 , ‘ 1 .
=—— e G1(Z,¢) dé + ——/ ™Gy (2,¢) dE.
Im {=n2

2 Im ¢=n; | 27

We can deform the path of integration into -y, since the integration as Re{ —
—o0o can be neglected by the exponential decay of the integrand. Then we can
get the required integral representation of the holomorphic function F,. O

By Proposition 3.7 and the definition of F,, we reach a conclusion of the
following representation through the variable z,, in the first situation.

Corollary 3.8. One has Fo(2) = Fy (2, log z,) + F_(2',log 2,,) with

1 .
P2 log ) = - [ ()76, (2,00, |
i | (3.12)
F(log ) = o= [ €067 ()66 (2, ) dg

v
for 2’ € D,’}l”l, 0<argz, <.

Now, regarding the variable of integration as a parameter, we construct
a solution with infra-exponential growth order. By Corollary 3.8, our differ-
ential equation is turned into:

Pu,(z) = bfolerl(F (#,1og 2,)),
Pu_(z) = bpp=1xu,, (F_(2',log z,,))

at po = (0,/—1dz,) € X with the integral representation (3.12). It suffices
to consider the differential equation on the complex domain D~' x U,,

P(2, Dy, 2, D, )UL(2) = Fy(2',log 2y,).

In order to study the existence of Uy(z ), we consider the differential
equations with a parameter ¢ on D'~ V'x U,

P(z, Dy, 2D, ) UL (2,¢) = (22) 1G4 (2, €),
P(z, Dy, 2, D, )U_(2,¢) = e (2,) 749G _ (2, ¢).
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Here the parameter { ranges through the path -.
Note that these equations are equivalent to:

P(ZaDz’)anzn + ZC - q)(ji(z,() = G:l:(z/,()a

where we set

Us(2,€) = (20) 10, (2,0),

U_(2,¢) = e“707(2,)HU_(2,().

Note, moreover, that the differential operator P(z, D,/ 2,D,, +i( — q) is
written as:

P(2, Dy, 20 D;, £ — q) = Y (£¢) P(2,D,),
7=0

where the P;’s are holomorphic differential operators of order m — j defined
on D}

Pi(z,D;)= ) di(2)D;.

lo| <m—j

By Theorem 2.1, we can find a solution U’i(z, ¢) of infra-exponential type
with respect to ¢ on the path . Therefore one has a solution

1

V() = 5 [ Vslz, O k.

This completes the proof of Theorem 3.2.
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