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Abstract

We provide the reader with various useful explicit upper bounds on
residues of Dedekind zeta functions of numbers fields and on absolute
values of values at s = 1 of L-series associated with primitive charac-
ters on ray class groups of number fields. To make it quite clear to
the reader how useful such bounds are when dealing with class number
problems for CM-fields, we deduce an upper bound on the root dis-
criminants of the normal CM-fields with (relative) class number one.
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1 Introduction

Lately, various class number problems and class groups problems for CM-
fields have been solved. These problems include the determinations of the
imaginary abelian number fields with class number one (see [CK], [Yam]),
relative class number one or class numbers equal to their genus class num-
bers; the determinations of the non quadratic imaginary cyclic fields of 2-
power degrees with cyclic ideal class groups of 2-power orders (see [Lou8]) or
with ideal class groups of exponents < 2 (see [Lou3]); the determination of
the normal CM-fields of relative class number one with dihedral or dicyclic
Galois groups (see [Lef], [LOO], [LO2], [Loul3]); the determination of the
non-abelian normal CM-fields of degrees 2n < 42 of class number one (see
[LLO], [LO1], [Lou7], see also’ [LP]); the determination. of the dihedral or
quaternion octic CM-fields withideal class groups cyclic of 2-power orders
(see [Lou6], [YK]) or of exponents < 2 (see [LO3], [LYK]).

For solving such problems, there are three obstacles to overcome.
First, one must be able to construct the fields he is going to deal with.
Usually this is done by using class field theory (e. g. [Lef], [LO2], [LPL]).
Second, one must be able to compute efficiently the relative class numbers
of the CM-fields he is going to deal with. This is done by computing approx-
imations of their relative class numbers by using the methods developped
by the author in [Loud], [Lou9], [Loull], [Loul4] and [Loul6].
Finally, one must obtain a reasonable upper bound on the absolute values
of the discriminants of the CM-fields of a given degree or of a given Galois
group with a given relative class number, class number or ideal class group.
Due to the deep results of [Sta], [Odl] and [Hof] one usually knows before
hand that there are only finitely many such CM-fields. However, these three
papers which aimed at proving finitness results are of little or no practical
use when it comes to explicit determinations for they yield huge bounds on
the roots discriminants of the CM-fields with small class numbers and small
degrees. In [Lou2], [Lou6], [Loul2] and [Loul5] we developped a wealth of
techniques for obtaining lower on relative class numbers of CM-fields, and
these lower bounds are particularly good for CM-fields of small degree.

The aim of our talk was to provide the audience with a uniform ap-
proach for proving these various useful explicit upper bounds on residues of
Dedekind zeta functions of numbers fields and on absolute values of values
at s = 1 of L-series associated with primitive characters on ray class groups
of number fields. Not only did we simplify our previous proofs, but we also
obtained new useful bounds (e.g. see (2), (3), (5), (9) and (11)).
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2 TUpper bounds for Res;—;((kx) and |L(1, x)|

To begin with, we set the notation required for understanding the statements
of the results given in this Section. Let L be number field of degree m =
r1 + 2r9. Let (g, denote its Dedekind zeta function. We set

Ay, = y/dp/4ram™, Tp(s) =T (s/2)I™(s), FL(s) = ALT'L(s)CL(s),

.1 1
AL = Resg=1(FL), b1 = Eﬁl KI—,FL e By, = prRess=1(CL)-

Notice that uq = (2+7v—log(4m))/2 = 0.023 - - - where v = 0.577 - - - denotes
Euler’s constant. During our lecture, we proved the following results.

Theorem 1 Let L be a number field of degree m > 1.
1. (See [Loul0, Th. 1] and [Loul5, Th. 1]). It holds

elo m-1
Ress=1(¢1,) < (2(?1”g dll‘)) . (1)

2. 1 <pB <1 and((B) =0 imply Rese—1(¢L,) < (1 — B)Br.
3. It holds

elogdr\™ '
s (1)
Therefore, 5 < B <1 and (L,(B) =0 imply
Res,-a(@1) < (1- ) (L) 3)

Theorem 2 Let L be a number field of degree m > 1. Let x be a primitive
character on some ray class group for L. Let f, denote the norm of the
finite part of the conductor of x.

1. (See [Lou15, Th. 2]). It holds
120,201 <2 (55 os(an i) @

< B <1 and L(B,x) =0 imply

(.OIM

e m+1
LI <40 -0) (i oatdnk)) - )
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Theorem 3 (See [Loul0, Th. 3] and [Lou12, Th. 1]). Let L be a given
number field. Let x be non-trivial primitive character x on a ray class group
for L which is unramified at all the infinite (real) places of L. Let fy denote
the norm of the finite part of the conductor of x. We have

1 ' 2By, in all cases,
|:L(1vX)l < §Ress=1(<L) log fx + {BL ffx=1orif fy 2> 2P, (6)

See also [Lou5] and [Loul5, Th. 7] for similar but less satisfactory results
when we chuck the assumption that y is unramified at all the infinite (real)
places of L. Since both the upper bounds on |L(1,x)| given in Theorem
3 and [Loul5, Th. 7] involve the invariant By, of L, it was reasonable to
determine in Theorem 1 a general upper bound on Bj,.

Theorem 4 (See [Loul0, Prop. 6] and [Loul2, Th. 5]). LetL be a real
quadratic field. We have the following improvement on (2):

By < %10g2 dy.. (7)

Theorem 5 Let x be an even primitive Dirichlet character modulo fy > 1.
1. (Use the second bound 'm (6) with L = Q). It holds |

IL(1, 30| < (o fy +2uQ)/2 < (log f +0.05)/2.  (8)

2. % < B <1 and L(B,x) =0 imply

1-—

L1, x)| £ b log? fx 9)

which improves upon (5).

Notice that for quadratic characters (9) follows from (3) and (7).

Corollary 6 Let L be a real abelian number field of degree m > 1. and
conductor fy,. Notice that dy, < fy, -1

1. We have the following improvement on (1):
1 m—1
Res;=1(¢L) < (-2-105 fL + uq) - (10)

2. £ <pB<1and(L(B)=0 imply

log fL, m=1

Res,ma(Cp) < (1~ )51E (Flog fu +mq) (1D

which improves upon (3).
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3 Lower bounds for relative class numbers

Let N be a CM-field of degree 2m. Let N* denote its maximal totally real
subfield (the degree of N* is therefore equal to m) and let Q € {1,2], wn
and hy denote its Hasse unit index, its number of complex roots of unity
and its relative class number, respectively. Then

A = QNwN dN Ress:l(CN) (12)
N (@2m)™ | dn+ Rese—1(Cn+)
Proposition 7 (See [Lou2, Proposition A]). Let N be a CM-field of degree

2m > 2. Then, % <1-(a/logdN) < s< 1 and (N(s) <0 imply

Rese=1((N) = en(1 - s)/e*/?

where ey = max(ely, €X;) with
N N'*N

2
ey =1 — (2rme®?™/ry)  and € = = exp (—27m N
N N 5

11\42"1 denotes the root number of N.

and where Ty = d

Notice that the residue at its simple pole s = 1 of any Dedekind zeta
function (N is positive (use the analytic class number formula for N, or
notice that from its definition we get {n(s) > 1 for s > 1). Therefore, we
have lims:; (N(s) = —oo and {N(1 — (a/logdy)) < 0 if ¢ does not have

any real zero in the range 1 — (a/logdn) < s < 1.

Proposition 8

1. If N is a normal CM-field which does not contain any imaginary
quadratic subfield, then either (N+ has a real zero in the range 1 —
1/logdn < s <1 or {N(s) <0 in this range 1 —1/logdn < s < 1.

2. If N is an imaginary abelian field which does not contain any imagi-
nary quadratic subfield, then either (+ has a real zero in the range
1-2/logdn < s <1 or(N(s) <0 in this range 1 —2/logdn < s < 1.

Theorem 9 (Compare with [Loul5, Th. 4]). Let N be a normal CM-field
of degree 2m > 2 which does not contain any imaginary quadratic subfield.
Setr = dll\fm (the root discriminant of N). It holds

ANWNVIN/AN+ S . \/5< VT )m

omy/e (Felogdn+)" logdy  2um \7elogr

m

N
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with Uy = (m — 1)(m/(m - 1))™.
In particular, hyy > 1 forr > 40000, and hy > 1 form > 10 andr 2 14000.

Proof. According to Point 1 of Proposition 8, there are two cases to
consider.

First, {N+ has no real zero in the range 1 — 1/logdy < s < 1. Then
(n(1— (1/log dy)) < 0 and using Proposition 7 with a = 1 we obtain

1
Res;=1(¢{N) = ENm.

Using (1) we obtain

Res;=1(¢N) elog dn+
Ry = o Ve (i 1)) tog iy (1)

Second, ¢+ has a real zero 8 in the range 1 — 1/logdn < s < 1. Then
¢n(B) = 0 < 0 and using Proposition 7 with a =1 we obtain

Res;=1(¢N) = en l\kﬂ-

Using (3) we obtain

Ress=1(¢N) elog dn+
ReSs—~1(CN+) 2 /\/—( ) - (14)

Since (14) is always greater than or equal to (13) (for it holds dn > a3+ ),
we conclude that (13) is valid in both cases. Using (12) and (13) we get the
desired first lower bound. e

Theorem 10 Let N be an abelian CM-field of degree 2m > 2 which does
not contain any imaginary quadratic subfield. Set r = dl/ m (the root dis-
criminant of N). It holds

eN@NUWNVIN/IN+ S SN ( VT )m

1 Z
e (Gf:ﬁ log d+ +27V#Q)m logdy  EYm wlogr + 0.146

hiy 2

with Um = (m — 1)(m/(m —1))™.
In particular, hyg > 1 for 2 10000, and hyg > 1 form > 10 and r > 1200.
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Proof. The proof of this Theorem 10 is similar to the proof of Theorem 9,
apart from the fact that Point 2 of Proposition 8 allows us to use Proposition
7 with a = 2 and that we use (10) and (11) (instead of using Point 1 of
Proposition 8, (1) and (3)). e

We refer the reader to [CK] for the solution of the relative class number
one problem for the imaginary abelian fields, solution based on refinements
of the lower bound given in Theorem 10.

The reader will easily check that our proofs and statements of Theorems
9 and 10 are still valid under the hypothesis that if N contains an imaginary
quadratic field k then (i (s) < 0 for 0 < s < 1. In particular, if we are only
interested in solving the relative class number one problem for N, then we
assume hy = 1 and we would like to use these lower bounds on relative
class numbers to obtain an upper bound on the root discriminant rp; of IN.
We use [Hor, Th. 1] (for the abelian case) or [Oka] (for the normal case)
to obtain hy = h =1, 2 or 4 for all the imaginary quadratic subfields k
of N. Now, according to [Arn] all the imaginary quadratic fields of class
numbers 1, 2 and 4 are known and it is only a matter of computation to
verify that we have (i (s) < 0 in the range 0 < s < 1 for all the imaginary
quadratic fields of class numbers 1, 2 or 4. Therefore, we are allowed to use
our lower bounds and we obtain that the root discriminant 7y of a normal
CM-field N (respectively, of an imaginary abelian field IN) of degree > 20
with relative class number one is less than or equal to 14000 (respectively,
less than or equal to 1200). It may be worth noticing that if N ranges over
the CM-fields of degree 2m going to infinity, then as we have rny > N+ and
as N7 is a totally real field of degree m, Odlyzko’s bounds on discriminants
yield liminf rry > 8me™? > 215 under the assumption of the generalized
Riemann hypothesis (see [Ser]).

Proposition 11 Let F be a real cyclic cubic field and K be a non-normal
CM-sextic field with mazimal totally real subfield . Let N denote the nor-
mal closure of K. Then, N is a CM-field of degree 24 with Galois group
Gal(IN/Q) isomorphic to the direct product Ay x Ca, NT is a normal sub-
field of N of degree 12 and Galois group Gal(N1/Q) isomorphic to As, the
compositum A = Fk which is the mazimal abelian subfield of N is an imagi-
nary sextic field and, finally, we have the following factorization of Dedekind
zeta functions:

(/SN = (Ca/Cr) (ke /Cr)° (15)
Moreover, d divides d}Z, hence [1 — (1/12logdk), 1[C [1 — (1/logdn), 1.
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Lemma 12 (See [LLO, Lemma 15]). The Dedekind zeta function of a num-
ber field M has at most two real zeros in the range 1 — (1/logdyg) < s < 1.

Theorem 13 Let K be a non-normal sextic CM-field with mazimal totally
real subfield a real cyclic cubic field ¥ of conductor fg. Set r = diéés (the
root discriminant of K) and rg = 1 — (6mel/2/r). We have

hg > €K Vdx/dp > __K ( VT )3.(16)

~ 12e!/2473 (log fr + 0. 05)2 logdg = 6el/2473 \ 3logr + 0.1

Therefore, hge > 1 implies r < 33000.

Proof. There are two cases to consider. First, assume that (g has a real
zero (B in [1 — (1/12log dk ), 1. In that case (k(B) = 0 < 0. Second, assume
that (g does not have any real zero in [1 — (1/12logdk), 1[. According to
(15) and Lemma 12, we conclude that (g does not have any real zero in
[1—(1/12logdk), 1] and that {N(1 — (1/12]logdk)) < 0. e

We refer the reader to [Bou] for the solution of the class number one prob-
lem for these non-normal sextic CM-fields, solution based on refinements of
the lower bound given in Theorem 13.
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