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A cone angle condition on strong convergence

of hyperbolic 3-cone-manifolds

MicHIHIKO FUJII

BH EEZ (R#;KX-EESAR)

§0. Introduction.

By a hyperbolic 3-cone-manifold, we will mean an orientable riemannian 3-manifold C of
constant sectional curvature —1 with cone-type singularity along simple closed geodesics ..
To each component of the singularity ¥, is associated a cone angle. Kojima showed in [4]
that for any values of cone angles, a non-singular part C' — ¥ carries a complete hyperbolic
structure Cpypmp of finite volume, and moreover that if the cone angles of C all are at most
, then there is an angle decreasing continuous family of deformations of C' to the complete
hyperbolic 3-manifold Ceomp homeomorphic to C — 3. The complete hyperbolic 3-manifold
Ceomp has torus cusps at the parts which correspond to the singularity ¥ of C, and Ceomp
can be regarded as a hyperbolic 3-cone-manifold with cone angles all equal to zero.

Kojima proved the latter claim by using two machineries, the local rigidity by Hodgson-
Kerckhoff [3] and the pointed Hausdorff-Gromov topology [2]. These machineries are funda-
mental when cone angles are < 27. In particular, the local rigidity implies the practicability
of deformations of a hyperbolic 3-cone-manifold with arbitrary small changes in the cone
angles, in the case where the initial cone angles all are at most 2. Then, if the cone angles
of C all are at most 7, one obtains deformations of C' with decreasing the cone angles with
arbitrary small amount. In [4], for extending such a small deformation globally, he analyzed
phenomena which occur in the two cases, that is, in the case where tubular neighborhoods
of the singularity ¥ in the deformations are uniformly thick, and in the case where they
collapse. For this analysis, he established three relative constants for hyperbolic 3-cone-
manifolds which control the local geometry of cone-manifolds away from the singularity.
Lemma 3.1.1 of [4] gives one of them, and is a key lemma to derive the other constants and

also to analyze the phenomena above.
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In this paper, we will show that the assumption “< 7” in Lemma 3.1.1 [4] about the
cone angles can be improved to “< 27”7 (see Lemma 2), by using fundamental properties on
Dirichlet domains of 3-cone-manifolds (see Lemma 1). Then, without changing the proof
performed in the sections 3 and 5 of [4], it can be seen that, for each sequence {Ci}2,
consisting of deformations of C so that tubular neighborhoods of ¥ in deformations C; (i €
N) are uniformly thick, if the cone angles of C; (i € N) all are less than 2, then there
is a subsequence {C;, };-, which converges strongly to a hyperbolic 3-cone-manifold C,

homeomorphic to C' (see Theorem).

§1. Dirichlet polyhedra and a relative constant for hyperbolic 3-cone-manifolds.

Assume that the singular set ¥ of any 3-cone-manifold C' considered in this paper forms

a link
r=Y'u...ux"

of n components. To each component ¥/ of ¥, associated is a cone angle @ € [0, 00).

If C is hyperbolic and ¥ # ¢, then N := C — ¥ has a non-singular but incomplete
hyperbolic structure and C inherits a metric induced from a riemannian metric on N. We
assume that C is complete with this metric. In particular, the metric completion of N is
identical to the metric space C'. We have a developing map of N from its universal covering
space N, ‘

Do : N — H5,
and a holonomy representation

pPc : 7T1(N) — PSLQ(C)

They are called a developing map and a holonomy representation of a cone-manifold C.
Let L be a number with L < —1. Let C[<L?o] be the set of pointed compact orientable 3-
cone-manifolds of constant sectional curvature K € [L, 0] so that the cone angles all are less
than 6. Let C? be a subset of C[?,)o] consisting of cone-manifolds with a particular curvature
constant K. 7
Now take a cone-manifold C € Cg*™ and a point z € C — £. Then define the following

subset of C,

P, :={y € C | y admits the unique shortest path to z},

and call it a Dirichlet fundamental domain of C about z.
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Lemma 1. The Dirichlet fundamental domain P, of C € C5*™ about x has the following
properties.

(1) P, is isometrically realized as an interior of a star-shaped geodesic polyhedron in the
simply connected 3-dimensional space Hi of constant curvature K. The closure is star-
shaped geodesic polyhedron. We call this embedded compactified polyhedron a Dirichlet poly-
hedron of C' about z, and denote it again by P,.

(2) Let y be a singular point, then there are two boundary faces of P, both of which include
y and whose dihedral angle equals to the cone angle at y. Moreover, the bisecting surface of

these two faces contains x.
Proof. See Cooper-Hodgson-Kerckhoff [1]. O

If £ ¢ C — %, the injectivity radius of C' at x is to be the injectivity radius of C' — ¥ at =.
Denote it by inj,C. The key lemma in this paper is the following:

Lemma 2. Given positive numbers D, I, R > 0, and a curvature bound L < —1, there
is a constant U := U(D,I,R,L) > 0 so that if C € C[fa, z € C with d(z,X) > D and
inj,C > I, then

inij >U
for any y € C with d(y,%) > D and d(y,z) < R.

Proof. Suppose that there is not such a uniform bound U. Then, for some numbers
D,,R > 0 and L < —1, there exists a sequence of cone-manifolds {C;}32, C C% and
points z;, y; € C; such that

(1) d(xiazi) Z Dad(y’i,zi) Z Da

(ii) inj,Ci > 1,

(i) d(y;,x;) < R and
(iv) inj, Ci < 1/i.

Take a Dirichlet polyhedron P,, of C; about y; in Hg,, where K; is a curvature of C;.
There are points p;, ¢; on 0P,,, which are identified in C; and attain the shortest distance
to y; from OP,,. The union of these shortest paths p;7;,¢;7; forms a homotopically nontrivial
shortest loop [; in C; based at y;.

If ¢ is large enough, p; and g; are on the interior of the faces of P, respectively. Then
by (i), (iv), and the properties of P,, described in Lemma 1, it can been seen that P, is

bounded by the extensions of the two faces.
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Let ¢;(< ) be the angle between the segments p;7; and G7; at y;. If ¢; — 7 as i — o0,
then vol(Br41(Ci,y:)) — 0 by (iv). This is a contradiction since Bi(Ci,z;) C Bry1(Ci, ;)
by (iii) and vol(B;(C;,;)) > 0 by (ii). Thus there is a number ¢ so that ¢; < ¢ < =.
Therefore the loop [; bends at y; with angle uniformly away from 7.

Let us lift /; to a geodesic segment s; in H, , based at 1; so that pi(= ¢;) is its middle
point. Let p; be a holonomy representation of C;; p; : m(C; — 2;) — PSLy(C). Then the
action of p;(l;) on Hg, is either parabolic, loxodromic or elliptic. In any cases, the orbit of
si by the action of a group generated by p;(l;) forms a piecewise geodesic which bends with
angle uniformly away from 7, and the length of s; goes to 0 when i — oo.

If there is a subsequence {k} C {i} so that px(l¢) all are parabolic, then the orbit of s
goes to the ideal boundary of Hg,. This a contradiction, since the bending angle of the
orbit of s; should approaches 7 as k — oo in the case where the orbit of s;, goes to co and
the length of s; goes to 0 as k — oo. ,

If p;(l;) is loxodromic, the orbit of s; squeezes onto the axis of p;(;) since the length of s;
approaches 0 when ¢ — oo. In particular, the axis of p;(l;) becomes close to y; when i — oo.

If there is a subsequence {k} C {4} so that p(l;) all are loxodromic, the length of pg ()
goes to 0 when k — oo. If k is large enough, there is a very short simple closed geodesic
in Cy near yz. Then choose a new reference point z; on this simple closed geodesic, take
the Dirichlet polyhedron P, about 2, consider two hypersurfaces of Hg, which bounds P,,
and perform the same argument as before. This gives a contradiction.

Therefore p;(1;) all but finitely many exceptions are elliptic. Take a subsequence {j} C {}
so that p;(l;) all are elliptic. The orbit of s; rounds around a geodesic which is an extension
of a lift of a component of ;. Since the length of s; goes 0 when ¢ — 0o, y; approaches the

geodesic. This contradicts (i). O

§2. Strong convergence of hyperbolic 3-cone-manifolds.

Let C be a compact orientable hyperbolic 3-cone-manifold with singularity ¥. The singular

set ¥ has been assumed to form a link
Y=3lu...ux"

of n components. Let 7 be the maximal tube about X, that is, a union of open tubular

neighborhoods 77’s which has the following properties,

(a) each component 77 is an equidistant tubular neighborhood to the j-th component 7
of X,
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(b) among ones having the property (a), the set of radii arranged in order of magnitude

from the smallest one is maximal in lexicographical order.

Let us demote by 877 an abstract boundary of 77. The actual boundary 07 of 7 in C
is a union of isometrically embedded tori with a finite number of contact points. The first
contact point on 97 is the point which admits two shortest paths to ¥ from 07" The finest
point on A7 is the point on &7 which attains the minimum among {inj,(C)|z € 0T }.

A deformation of a hyperbolic 3-cone-manifold C' is a hyperbolic 3-cone-manifold C, to-
gether with a reference homeomorphism &, : (C,Z) — (C,, Xa)-

Now take a sequence {C;};o, of compact orientable hyperbolic 3-cone-manifolds with the

following properties,
(1) each C; is a deformation of C' with a reference homeomorphism §; : C — C;,

(2) ol <2nforalll < j<nandanyié€ N, where o is a cone angle along the component
¥,

(3) {a}22, converges to a number 37 € [0,27] forall 1 < j < n.

Theorem. Let {C;};2, be a sequence of compact orientable hyperbolic 3-cone-manifolds
as above. Suppose that there is a constant Dy > 0 such that Dy < radius 7? for any
1< j<n and anyi € N. Then there is a subsequence {C;,},._; which converges strongly
to a hyperbolic 3-cone-manifold C, homeomorphic to C, where the notion “converge strongly”
is defined as follows; the sequence {C;, }o_, converges geometrically to the cone-manifold
C, homeomorphic to C and a sequence {pim};’; of their holonomy representations converges
algebraically to the holonomy representation p, of C, with respect to the identification by
Ein-

Remark. The property (2) induces the following one,
(4) there is a constant V.4, such that vol(C;) < Vinae-

Remark. By the argument on geometric convergence due to Gromov [2], it can be shown

that the following property is satisfied,

(5) the sequence {(C;,c;)};2, has a subsequence {(Cj,, ¢y, )},—; Which converges geometri-

cally to a complete metric space.

Proof. Take a subsequence {iz} C {i} which satisfies the properties (1),...,(5). By
choosing a further subsequence, we may assume that the sequence {Ci }i, satisfies the

following properties also,
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(6) c;, lies on a component 97;¢ with a constant reference number c, and
(7) fi, lies on a component on a component 87;,{ with a constant reference number f.

Then the sequence {c;, }r.; has the same property as in Kojima [4,section 4], except for
the condition on the range of the cone angles.

By following the arguments described in section 3 and section 5 of [4], we can verify that
Corollary 5.1.4 of [4] holds with replacing the cone angle condition “af < 7” with “af < 27",
if Lemma 3.1.1 of [4] holds with the cone angle condition “< 27”. Lemma, 2 is exactly such
a version of Lemma 3.1.1 of [4]. Then Corollary 5.1.4 of [4] with the cone angle condition
“a{ < 27" holds. This is what we need. O
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