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\S 0. Introduction.

By a hyperbolic 3-cone-manifold, we will mean an orientable riemannian 3-manifold $C$ of

constant sectional curvature-l with cone-type singularity along simple closed geodesics $\Sigma$ .

To each component of the singularity $\Sigma$ , is associated a cone angle. Kojima showed in [4]

that for any values of cone angles, a non-singular part $C-\Sigma$ carries a complete hyperbolic

structure $C_{comp}$ of finite volume, and moreover that if the cone angles of $C$ all are at most
$\pi$ , then there is an angle decreasing continuous family of deformations of $C$ to the complete

hyperbolic 3-manifold $C_{Comp}$ homeomorphic to $C-\Sigma$ . The complete hyperbolic 3-manifold
$C_{comp}$ has torus cusps at the parts which correspond to the singularity $\Sigma$ of $C$ , and $C_{comp}$

can be regarded as a hyperbolic 3-cone-manifold with cone angles all equal to zero.
Kojima proved the latter claim by using two machineries, the local rigidity by Hodgson-

Kerckhofl [3] and the pointed Hausdorff-Gromov topology [2]. These machineries are funda-

mental when cone angles are $\leq 2\pi$ . In particular, the local rigidity implies the practicability

of deformations of a hyperbolic 3-cone-manifold with arbitrary small changes in the cone
angles, in the case where the initial cone angles all are at most $2\pi$ . Then, if the cone angles

of $C$ all are at most $\pi$ , one obtains deformations of $C$ with decreasing the cone angles with

arbitrary small amount. In [4], for extending such a small deformation globally, he analyzed

phenomena which occur in the two cases, that is, in the case where tubular neighborhoods

of the singularity $\Sigma$ in the deformations are uniformly thick, and in the case where they

collapse. For this analysis, he established three relative constants for hyperbolic 3-cone-
manifolds which control the local geometry of cone-manifolds away from the singularity.

Lemma 3.1.1 of [4] gives one of them, and is a key lemma to derive the other constants and

also to analyze the phenomena above.
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In this paper, we will show that the assumption $”\leq\pi$” in Lemma 3.1.1 [4] about the
cone angles can be improved to $”<2\pi$” (see Lemma 2), by using fundamental properties on
Dirichlet domains of $3- \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{m}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{d}_{\mathrm{S}}$ (see Lemma 1). Then, without changing the proof
performed in the sections 3 and 5 of [4], it can be seen that, for each sequence $\{C_{i}\}^{\infty}i=1$

consisting of deformations of $C$ so that tubular neighborhoods of $\Sigma$ in deformations $C_{i}(i\in$

N) are uniformly thick, if the cone angles of $C_{i}(i\in \mathrm{N})$ all are less than $2\pi$ , then there
is a subsequence $\{C_{i_{k}}\}k\infty=1$ which converges strongly to a hyperbolic 3-cone-manifold $C_{*}$

homeomorphic to $C$ (see Theorem).

\S 1. Dirichlet polyhedra and a relative constant for hyperbolic $3-\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{m}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{d}_{\mathrm{S}}$ .

Assume that the singular set $\Sigma$ of any 3-cone-manifold $c$ considered in this paper forms
a link

$\Sigma=\Sigma^{1}\cup\ldots\cup\Sigma^{n}$

of $n$ components. To each component $\Sigma^{j}$ of $\Sigma$ , associated is a cone angle $\alpha^{j}\in[0, \infty)$ .
If $C$ is hyperbolic and $\Sigma\neq\phi$ , then $N:=C-\Sigma$ has a non-singular but incomplete

hyperbolic structure and $C$ inherits a metric induced from a riemannian metric on $N$ . We
assume that $C$ is complete with this metric. In particular, the metric completion of $N$ is
identical to the metric space $C$ . We have a developing map of $N$ from its universal covering
space $\tilde{N}$ ,

$D_{C}$ : $\overline{N}arrow \mathrm{H}^{3}$ ,

and a holonomy representation

$\rho_{C}$ : $\pi_{1}(N)arrow \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$ .

They are called a developing map and a holonomy representation of a cone-manifold $C$ .
Let $L$ be a number with $L\leq-1$ . Let $C_{[L,0]}^{<\theta}$ be the set of pointed compact orientable 3-

cone-manifolds of constant sectional curvature $K\in[L, 0]$ so that the cone angles all are less
than $\theta$ . Let $C_{K}^{<\theta}$ be a subset of $C_{[L,0]}^{<\theta}$ consisting of cone-manifolds with a particular curvature
constant $K$ .

Now take a cone-manifold $C\in C_{K}^{<2\pi}$ and a $\mathrm{p}\mathrm{o}\mathrm{i}_{\mathrm{I}1}\mathrm{t}x\in C-\Sigma$ . Then define the following
subset of $C$ ,

$P_{x}:=$ {$y\in C|y$ admits the unique shortest path to $x$ },

and call it a Dirichlet fundamental domain of $C$ about $x$ .
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Lemma 1. The Dirichlet fundamentd domain $P_{x}$ of $C\in C_{K}^{<2\pi}$ about $x$ has the following

properties.

(1) $P_{x}$ is isometricdly realized as an interior of a star-shaped geodesic polyhedron in the

simply connected 3-dimensional space $\mathrm{H}_{K}$ of constant curvature K. The closure is star-
shaped geodesic polyhedron. We call this embedded compactified polyhedron a Dirichlet poly-

hedron of $C$ about $x$ , and denote it again by $P_{x}$ .

(2) Let $y$ be a singular point, then there are two boundary faces of $P_{x}$ both of which include
$y$ and whose dihedral angle equals to the cone angle at $y$ . Moreover, the bisecting surface of
these two faces contains $x$ .

Proof. See $\mathrm{C}_{\mathrm{o}\mathrm{o}_{\mathrm{P}}}\mathrm{e}\mathrm{r}- \mathrm{H}\mathrm{o}\mathrm{d}\mathrm{g}_{\mathrm{S}}\mathrm{o}\mathrm{n}-\mathrm{K}\mathrm{e}\mathrm{r}\mathrm{c}\mathrm{k}\mathrm{h}\mathrm{o}\mathrm{f}\mathrm{f}[1]$ . $\square$

If $x\not\in C-\Sigma$ , the injectivity radius of $C$ at $x$ is to be the injectivity radius of $C-\Sigma$ at $x$ .

Denote it by $\mathrm{i}\mathrm{n}\mathrm{j}_{x}C$ . The key lemma in this paper is the following:

Lemma 2. Given positive numbers $D,$ $I,$ $R>0$ , and a curvature bound $L\leq-1$ , there

is a constant $U$ $:=U(D, I, R, L)>0$ so that if $C\in C_{[L}^{<2\pi},0$], $x\in C$ with $d(x, \Sigma)\geq D$ and
$\mathrm{i}\mathrm{n}\mathrm{j}_{x}C\geq I$ , then

$\mathrm{i}\mathrm{n}\mathrm{j}{}_{y}C\geq U$

for any $y\in C$ with $d(y, \Sigma)\geq D$ and $d(y, x)\leq R$ .

Proof. Suppose that there is not such a uniform bound $U$ . Then, for some numbers

$D,I,R>0$ and $L\leq-1$ , there exists a sequence of cone-manifolds $\{C_{i}\}^{\infty}i=1\subset C_{[L}^{<2\pi},0]$ and

points $x_{i},$ $y_{i}\in C_{i}$ such that

(i) $d(x_{i}, \Sigma_{i})\geq D,$ $d(y_{i}, \Sigma_{i})\geq D$ ,

(ii) $\mathrm{i}\mathrm{n}\mathrm{j}_{x_{i}}C_{i}\geq I$ ,

(iii) $d(y_{i}, x_{i})\leq R$ and

(iv) $\mathrm{i}\mathrm{n}\mathrm{j}_{y_{i}}C_{i}\leq 1/i$ .

Take a Dirichlet polyhedron $P_{y_{i}}$ of $C_{i}$ about $y_{i}$ in $\mathrm{H}_{K_{i}}$ , where $K_{i}$ is a curvature of $C_{i}$ .

There are points $p_{i},$ $q_{i}$ on $\partial P_{y_{i}}$ , which are identified in $C_{i}$ and attain the shortest distance

to $y_{i}$ from $\partial P_{y_{i}}$ . The union of these shortest paths $\overline{p_{i}y_{i}},\overline{q_{iyi}}$ forms a homotopically nontrivial

shortest loop $l_{i}$ in $C_{i}$ based at $y_{i}$ .

If $i$ is large enough, $p_{i}$ and $q_{i}$ are on the interior of the faces of $P_{y_{i}}$ respectively. Then

by (i), (iv), and the properties of $P_{yi}$ described in Lemma 1, it can been seen that $P_{yi}$ is

bounded by the extensions of the two faces.
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Let $\phi_{i}(\leq\pi)$ be the angle between the segments $\overline{p_{i}y_{i}}$ and $\overline{q_{i}yi}$ at $y_{i}$ . If $\phi_{i}arrow\pi$ as $iarrow\infty$ ,
then $\mathrm{v}\mathrm{o}\mathrm{l}(B_{R+}I(C_{i}, yi))arrow 0$ by (iv). This is a contradiction since $B_{I}(C_{ii}, x)\subset B_{R+I}(Ci,y_{i})$

by (iii) and $\mathrm{v}\mathrm{o}\mathrm{l}(B_{I}(c_{i}, X_{i}))>0$ by (ii). Thus there is a number $\phi$ so that $\phi_{i}\leq\phi<\pi$ .
Therefore the loop $l_{i}$ bends at $y_{i}$ with angle uniformly away from $\pi$ .

Let us lift $l_{i}$ to a geodesic segment $s_{i}$ in $\mathrm{H}_{K_{i}}$ , based at $y_{i}$ so that $p_{i}(=q_{i})$ is its middle
point. Let $\rho_{i}$ be a holonomy representation of $C_{i)}\rho_{i}$ : $\pi_{1}(C_{i^{-}}\Sigma_{i})arrow \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$ . Then the
action of $\rho_{i}(l_{i})$ on $\mathrm{H}_{K_{i}}$ is either parabolic, loxodromic or elliptic. In any cases, the orbit of
$s_{i}$ by the action of a group generated by $\rho_{i}(\iota_{i})$ forms a piecewise geodesic which bends with
angle uniformly away from $\pi$ , and the length of $s_{i}$ goes to $0$ when $iarrow\infty$ .

If there is a subsequence $\{k\}\subset\{i\}$ so that $\rho_{k}(\iota_{k})$ all are parabolic, then the orbit of $s_{k}$

goes to the ideal boundary of $\mathrm{H}_{K_{k}}$ . This a contradiction, since the bending angle of the
orbit of $s_{k}$ should approaches $\pi$ as $karrow\infty$ in the case where the orbit of $s_{k}$ goes to $\infty$ and
the length of $s_{k}$ goes to $0$ as $karrow\infty$ .

If $\rho_{i}(l_{i})$ is loxodromic, the orbit of $s_{i}$ squeezes onto the axis of $\rho_{i}(\iota_{i})$ since the length of $s_{i}$

approaches $0$ when $iarrow\infty$ . In particular, the axis of $\rho_{i}(\iota_{i})$ becomes close to $y_{i}$ when $iarrow\infty$ .
If there is a subsequence $\{k\}\subset\{i\}$ so that $\rho_{k}(l_{k})$ all are loxodromic, the length of $\rho_{k}(l_{k})$

goes to $0$ when $karrow\infty$ . If $k$ is large enough, there is a very short simple closed geodesic
in $C_{k}$ near $y_{k}$ . Then choose a new reference point $z_{k}$ on this simple closed geodesic, take
the Dirichlet polyhedron $P_{z_{k}}$ about $z_{k}$ , consider two hypersurfaces of $\mathrm{H}_{K_{i}}$ which bounds $P_{z_{k}}$

and perform the same argument as before. This gives a contradiction.
Therefore $\rho_{i}(\iota_{i})$ all but finitely many exceptions are elliptic. Take a subsequence $\{j\}\subset\{i\}$

so that $\rho_{j}(l_{j})$ all are elliptic. The orbit of $s_{j}$ rounds around a geodesic which is an extension
of a lift of a component of $\Sigma_{j}$ . Since the length of $s_{j}$ goes $0$ when $iarrow\infty,$ $y_{j}$ approaches the
geodesic. This contradicts (i). $\square$

\S 2. Strong convergence of hyperbolic $3-\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{e}-\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{d}_{\mathrm{S}}$.

Let $C$ be a compact orientable hyperbolic 3-cone-manifold with singularity $\Sigma$ . The singular
set $\Sigma$ has been assumed to form a link

$\Sigma=\Sigma^{1}\cup\ldots\cup\Sigma^{n}$

of $n$ components. Let $\mathcal{T}$ be the maximal tube about $\Sigma$ , that is, a union of open tubular
neighborhoods $T^{j}’ \mathrm{s}$ which has the following properties,

(a) each component $\mathcal{T}^{j}$ is an equidistant tubular neighborhood to the j-th component $\Sigma^{j}$

$\mathrm{o}\mathrm{f}\Sigma$ ,
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(b) among ones having the property (a), the set of radii arranged in order of magnitude

from the smallest one is maximal in lexicographical order.

Let us demote by $\partial \mathcal{T}^{j}$ an abstract boundary of $\mathcal{T}^{j}$ . The actual boundary $\partial T$ of $\mathcal{T}$ in $C$

is a union of isometrically embedded tori with a finite number of contact points. The first

contact point on $\partial \mathcal{T}$ is the point which admits two shortest paths to $\Sigma$ from $\partial \mathcal{T}$ . The finest

point on $\partial \mathcal{T}$ is the point on $\partial \mathcal{T}$ which attains the $\mathrm{m}\dot{\mathrm{u}}$lnimum among $\{\mathrm{i}\mathrm{n}\mathrm{j}_{x}(c)|x\in\partial \mathcal{T}\}$ .

A deformation of a hyperbolic 3-cone-manifold $C$ is a hyperbolic 3-cone-manifold $C_{a}$ to-

gether with a reference homeomorphism $\xi_{a}$ : $(C, \Sigma)arrow(C_{a}, \Sigma_{a})$ .

Now take a sequence $\{C_{i}\}^{\infty}i=1$ of compact orientable hyperbolic $3- \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{m}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{d}_{\mathrm{S}}$ with the

following properties,

(1) each $C_{i}$ is a deformation of $C$ with a reference homeomorphism $\xi_{i}$ : $Carrow C_{i}$ ,

(2)
$\alpha_{i}^{j}<\Sigma_{i}^{j},2\pi$

for all $1\leq j\leq n$ and any $i\in \mathrm{N}$ , where $d_{i}$ is a cone angle along the component

(3) $\{\alpha_{i}^{j}\}_{i=1}^{\infty}$ converges to a number $\beta^{j}\in[0,2\pi]$ for all $1\leq j\leq n$ .

Theorem. Let $\{C_{i}\}^{\infty}i=1$ be a sequence of compact orientable hyperbolic $\mathit{3}- Cone-manifo\iota ds$

as above. Suppose that there is a constant $D_{1}>0$ such that $D_{1}\leq$ radius $\mathcal{T}_{i}^{j}$ for any

$1\leq j\leq n$ and any $i\in \mathrm{N}$ . Then there is a subsequence $\{C_{i_{m}}\}_{m=}^{\infty}1$ which converges strongly

to a hyperbolic 3-cone-manifold $c_{*}$ homeomorphic to $C$ , where the notion “converge strongly”

is defined as follows; the sequence $\{C_{i_{m}}\}_{m}^{\infty}=1$ converges $geomet\dot{n}cd\iota_{y}$ to the cone-manifold
$C_{*}h_{omeo}morphiC$ to $C$ and a sequence $\{\rho_{i_{m}}\}_{i_{m}}\infty$ of their holonomy representations converges

algebraically to the holonomy representation $\rho_{*}$ of $C_{*}$ with respect to the identification by

$\xi_{i_{m}}$ .

Remark. The property (2) induces the following one,

(4) there is a constant $V_{\max}$ such that $\mathrm{v}\mathrm{o}\mathrm{l}(C_{i})\leq V_{\max}$ .

Remark. By the argument on geometric convergence due to Gromov [2], it can be shown

that the following property is satisfied,

(5) the sequence $\{(C\dot{x}, ci)\}^{\infty}i=1$ has a subsequence $\{(C_{i_{k}}, ci_{k})\}_{k}^{\infty}=1$ which converges geometri-

cally to a complete metric space.

Proof. Take a subsequence $\{i_{k}\}\subset\{i\}$ which satisfies the properties (1), $\ldots,(5)$ . By

choosing a further subsequence, we may assume that the sequence $\{C_{i_{k}}\}k\infty=1$ satisfies the

following properties also,
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(6) $c_{i_{k}}$ lies on a component $\partial \mathcal{T}_{i_{k}}^{c}$ with a constant reference number $c$ , and

(7) $f_{i_{k}}$ lies on a component on a component $\partial \mathcal{T}_{i_{k}}^{f}$ with a constant reference number $f$ .

Then the sequence $\{c_{i_{k}}\}k\infty=1$ has the same property as in Kojima $[4,\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}4]$ , except for
the condition on the range of the cone angles.

By following the arguments described in section 3 and section 5 of [4], we can verify that

Corollary 5.1.4 of [4] holds with replacing the cone angle condition “$\alpha_{i}^{j}\leq\pi$” with “
$\alpha i_{i}<2\pi$”,

if Lemma 3.1.1 of [4] holds with the cone angle condition $”<2\pi$” Lemma 2 is exactly such

a version of Lemma 3.1.1 of [4]. Then Corollary 5.1.4 of [4] with the cone angle condition
“

$\alpha_{i}^{\uparrow}<2\pi$
” holds. This is what we need. $\square$
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