INNER RADIUS OF UNIVALENCE FOR A STRONGLY STARLIKE DOMAIN

TOSHIYUKI SUGAWA 須川 敏幸 (京都大学大学院理学研究科)

ABSTRACT. The inner radius of univalence of a domain D with Poincaré density ρ_D is the possible smallest number σ such that the condition $\|S_f\|_D = \sup_{w \in D} \rho_D(w)^{-2} |S_f(z)| \le \sigma$ implies the univalence of f for a nonconstant meromorphic function f on D, where S_f is the Schwarzian derivative of f. In this note, we will give a lower estimate of the inner radius of univalence for strongly starlike domains of order α with a concrete bound in terms of the order α .

1. Main result

For a constant $0 \le \alpha \le 1$, a holomorphic function f on the unit disk is called *strongly starlike of order* α if f satisfies the condition

(1)
$$\left|\arg\frac{zf'(z)}{f(z)-f(0)}\right| \leq \frac{\pi\alpha}{2} \quad (z \in \mathbb{D}^* = \mathbb{D} \setminus \{0\}).$$

Note that a strongly starlike function is starlike in the usual sense. Every strongly starlike function f of order $\alpha < 1$ is bounded. In fact, Brannan and Kirwan [1] showed that

$$(2) |f(z) - f(0)| \le |zf'(0)|M(\alpha) (z \in \mathbb{D}).$$

Here $M(\alpha)$ is defined by

(3)
$$M(\alpha) = \exp\left[\int_0^1 \left\{ \left(\frac{1+t}{1-t}\right)^{\alpha} - 1 \right\} \frac{dt}{t} \right]$$
$$= \exp\left\{ 2\alpha \sum_{k=0}^{\infty} \frac{1}{(2k+1)(2k+1-\alpha)} \right\}$$
$$= \frac{1}{4} \exp\left\{ -\frac{\Gamma'((1-\alpha)/2)}{\Gamma((1-\alpha)/2)} - \gamma \right\},$$

where Γ is the Gamma function and γ is the Euler constant.

A proper subdomain D of the complex plane \mathbb{C} is said to be strongly starlike of order α with respect to a point $w_0 \in D$ if D is simply connected and if the Riemann mapping function $f: \mathbb{D} \to D$ of D with $f(0) = w_0$ is strongly starlike of order α . A strongly starlike domain of order 1 is nothing but a usual starlike domain. In what follows, without any pain, we always assume that $w_0 = 0$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 30C45; Secondary 30C62.

Key words and phrases. strongly starlike, logarithmic spiral.

The author was partially supported by the Ministry of Education, Grant-in-Aid for Encouragement of Young Scientists, 11740088.

This article will, hopefully, appear in some journal.

We now introduce a standard domain adapted to the strong starlikeness. For a constant α with $0 < \alpha < 1$, we denote by V_{α} the bounded domain enclosed by the logarithmic spirals $\gamma_{\alpha} = \{ \exp((-\tan(\pi\alpha/2) + i)\theta); 0 \le \theta \le \pi \}$ and $\bar{\gamma}_{\alpha} = \{ w; \bar{w} \in \gamma_{\alpha} \}$.

Let D be a proper subdomain of \mathbb{C} containing the origin. It will be convenient to consider the periodic function $R = R_D : \mathbb{R} \to (0, +\infty]$ of period 2π defined by

$$R(\theta) = \sup\{r > 0; [0, re^{i\theta}] \subset D\},\$$

where [a, b] denotes the closed line segment joining points a and b in \mathbb{C} . Note that R is lower semi-continuous.

In the sequel, we will use the convention $a \cdot D = \{aw; w \in D\}$ for $a \in \mathbb{C}$ and a domain D. Also, set $D^{\vee} = I(\operatorname{Ext} D)$, where $\operatorname{Ext} D = \widehat{\mathbb{C}} \setminus \overline{D}$ and I(z) = 1/z.

The next result will be fundamental for our aim here, whose proof can be found in [6].

Theorem A. Let D be a proper subdomain of \mathbb{C} with $0 \in D$ satisfying the condition Int $\overline{D} = D$ and let α be a constant with $0 < \alpha < 1$. Then the following conditions are equivalent.

- (a) D is strongly starlike of order α with respect to the origin.
- (b) D^{\vee} is strongly starlike of order α with respect to the origin.
- (c) For each point $w \in D$ we have $w \cdot V_{\alpha} \subset D$.
- (d) The radius function $R = R_D$ is absolutely continuous and satisfies $|R'/R| \le \tan(\pi\alpha/2)$ a.e. in \mathbb{R} .

Remark. The implication (a)⇒(d) is essentially due to Fait, Krzyż and Zygmunt [2]. Actually, we will employ their idea which was used to show the quasiconformal extendability of strongly starlike functions.

Let D be a subdomain of $\mathbb C$ with the hyperbolic metric $\rho_D(z)|dz|$ of constant curvature -4. The inner radius of univalence of D, which will be denoted by $\sigma(D)$, is the possible maximal number σ for which the condition $||S_f||_D \leq \sigma$ implies the univalence of the nonconstant meromorphic function f on D, where S_f denotes the Schwarzian derivative $(f''/f')' - (f''/f')^2/2$ of f and $||\varphi||_D = \sup_{w \in D} \rho_D(w)^{-2}|\varphi(w)|$. Note that $\sigma(D)$ is Möbius invariant in the sense that $\sigma(L(D)) = \sigma(D)$ for a Möbius transformation L. In particular, $\sigma(D^{\vee}) = \sigma(\operatorname{Ext} D)$. The reader may consult the textbook [4] by Lehto as a general reference for the inner radius of univalence and related notions. When D is simply connected, theorems of Ahlfors and Gehring imply that $\sigma(D) > 0$ if and only if D is a quasidisk, furthermore, $\sigma(D)$ is estimated from below by a positive constant c(K) depending only on K for a K-quasidisk D. However, it is hard to give an explicit lower estimate of $\sigma(D)$ for a concrete quasidisk D in general. Our second result concerns the inner radius of univalence of strongly starlike domains.

Theorem 1. A strongly starlike domain D of order α satisfies

(4)
$$\sigma(D) \ge \frac{2}{M(\alpha)^2} \cdot \frac{\cos(\pi\alpha/2)}{1 + \sin(\pi\alpha/2)},$$

where $M(\alpha)$ is defined by (3).

Remarks. 1. When α tends to 0, the right-hand side above tends to 2. On the other hand, it is known that $\sigma(\mathbb{D}) = 2$. See also the final section.

- 2. By a result of Fait, Krzyż and Zygmunt [2], we know that a strongly starlike domain D of order α is a $K(\alpha)$ -quasidisk, where $(K(\alpha)-1)/(K(\alpha)+1)=\sin(\pi\alpha/2)$. Hence, as a corollary, we have $\sigma(D) \geq c(K(\alpha))$. So, the novelty of this theorem lies in the explicitness of the estimate.
- 3. From Theorem 1 we observe that D^{\vee} is strongly starlike of order α under the assumption of Theorem 1. Hence; we obtain $\sigma(\operatorname{Ext} D) \geq 2\cos(\pi\alpha/2)/(1+\sin(\pi\alpha/2))M(\alpha)^2$ simultaneously. We also note that the standard domain V_{α} has the property $\sigma(V_{\alpha}) = \sigma(\operatorname{Ext} V_{\alpha})$.

2. Mapping function of V_{α}

Let S denote the set of holomorphic univalent functions on the unit disk \mathbb{D} normalized by f(0) = 0 and f'(0) = 1. For $0 \le \alpha \le 1$, we define the function k_{α} in the class S by the relation

$$\frac{zk_{\alpha}'(z)}{k_{\alpha}(z)} = \left(\frac{1+z}{1-z}\right)^{\alpha}$$

on \mathbb{D} . More explicitly, k_{α} can be expressed by

$$k_{\alpha}(z) = z \exp \left[\int_{0}^{z} \left\{ \left(\frac{1+\zeta}{1-\zeta} \right)^{\alpha} - 1 \right\} \frac{d\zeta}{\zeta} \right].$$

This function is known to play a role of the usual Koebe function in the class of normalized strongly starlike functions of order α in many cases. Actually k_1 is nothing but the Koebe function.

Noting $k_{\alpha}(1) = M(\alpha)$, we consider the function

(5)
$$g_{\alpha}(z) = k_{\alpha}(z)/M(\alpha) = \exp\left[\int_{1}^{z} \left(\frac{1+\zeta}{1-\zeta}\right)^{\alpha} \frac{d\zeta}{\zeta}\right].$$

The following fact is useful to note. Although this result was stated in [6], we give a direct proof here.

Lemma 1. $g_{\alpha}(\mathbb{D}) = V_{\alpha}$ for $0 < \alpha < 1$.

Proof. If we set $g_{\alpha}(e^{it}) = r(t)e^{i\Theta(t)} = R(\theta)e^{i\theta}$, then we have $e^{it}g'_{\alpha}(e^{it})/g_{\alpha}(e^{it}) = \Theta'(t) - ir'(t)/r(t)$. Since $\arg(zg'_{\alpha}(z)/g_{\alpha}(z)) = \pi\alpha/2$ for $z = e^{it}$ with $t \in (0,\pi)$, we obtain

$$\frac{R'(\theta)}{R(\theta)} = \frac{r'(t)}{r(t)\Theta'(t)} = -\tan\frac{\pi\alpha}{2},$$

which yields $\log R(\theta) = -\theta \tan(\pi \alpha/2)$ for $\theta = \Theta(t) \in (0, \pi)$. In the same way, we have $\log R(-\theta) = -\theta \tan(\pi \alpha/2)$ for $\theta \in (0, \pi)$. These imply that the radius function R of $g_{\alpha}(\mathbb{D})$ agrees with that of V_{α} , and hence $g_{\alpha}(\mathbb{D}) = V_{\alpha}$.

3. Proof of Main Theorem

First, we recall the construction of a quasiconformal reflection in the boundary of a strongly starlike domain given by [2]. Let D be a strongly starlike domain of order $\alpha \in (0,1)$ with respect to the origin and R be its radius function. Then we can take the quasiconformal reflection λ in ∂D defined by

$$\lambda(re^{i\theta}) = \frac{R(\theta)^2}{r}e^{i\theta}$$

for all r > 0 and $\theta \in \mathbb{R}$ following [2]. We then calculate

(6)
$$\partial \lambda = i \frac{RR'}{r^2} \quad \text{and} \quad \bar{\partial} \lambda = \frac{e^{2i\theta}}{r^2} (iRR' - R^2)$$

at $w = re^{i\theta}$.

Now we use the following estimate to prove our main result. This estimate is originally due to Lehto [3], however, the following more general form can be found in [5].

Theorem B. Let D be a quasidisk with quasiconformal reflection λ in ∂D . Then the following inequality holds:

(7)
$$\sigma(D) \ge \varepsilon(\lambda, D) := 2 \underset{w \in D}{\text{ess. inf}} \frac{|\bar{\partial}\lambda(w)| - |\partial\lambda(w)|}{|\lambda(w) - w|^2 \rho_D(w)^2}$$

Let us return to our case. By (6) and Theorem 1 (d), we obtain the estimates

$$\begin{split} |\bar{\partial}\lambda(w)| - |\partial\lambda(w)| &= \frac{R^2}{r^2} \left(\sqrt{1 + |R'/R|^2} - |R'/R| \right) \\ &\geq \frac{R^2}{r^2} \left(\sqrt{1 + \tan^2(\pi\alpha/2)} - \tan(\pi\alpha/2) \right) \\ &= \frac{R^2}{r^2} \cdot \frac{\cos(\pi\alpha/2)}{1 + \sin(\pi\alpha/2)} \end{split}$$

and

$$|\lambda(w) - w| = \frac{R^2}{r} - r = \frac{R^2 - r^2}{r}$$

for almost all $w = re^{i\theta} \in D$.

Secondly, we estimate ρ_D from above. Fix $w=re^{i\theta}$ and set $R=R(\theta)$. If we think of the domain $W=w_0\cdot V_\alpha$, where $w_0=Re^{i\theta}\in\partial D$, from Theorem 1 (c), we have $W\subset D$. The monotonicity property of the Poincaré metric then implies $\rho_D(w)\leq \rho_W(w)$. Now we write $\tau_\alpha=\rho_{V_\alpha}$. Then $\rho_W(w)=\tau_\alpha(w/w_0)/|w_0|=\tau_\alpha(r/R)/R$. Consequently, we have $\rho_D(w)\leq \tau_\alpha(r/R)/R$.

Summarizing the above, we have the estimate

$$\frac{|\bar{\partial}\lambda(w)| - |\partial\lambda(w)|}{|\lambda(w) - w|^2 \rho_D(w)^2} \ge \frac{R^2}{r^2} \cdot \left(\frac{r}{R^2 - r^2}\right)^2 \cdot \frac{R^2}{\tau_\alpha(r/R)^2} \cdot \frac{\cos(\pi\alpha/2)}{1 + \sin(\pi\alpha/2)} \\
= \frac{1}{(1 - (r/R)^2)^2 \tau(r/R)^2} \cdot \frac{\cos(\pi\alpha/2)}{1 + \sin(\pi\alpha/2)}.$$

Hence,

$$\varepsilon(\lambda, D) \ge \frac{2}{\sup_{0 \le u \le 1} (1 - u^2)^2 \tau_{\alpha}(u)^2} \cdot \frac{\cos(\pi \alpha/2)}{1 + \sin(\pi \alpha/2)}$$

So, if we can show the following lemma, the proof of our main theorem will be finished.

Lemma 2. The Poincaré density τ_{α} of V_{α} satisfies

$$\sup_{0 < u < 1} (1 - u^2) \tau_{\alpha}(u) = M(\alpha).$$

Proof. Since $g_{\alpha}: \mathbb{D} \to V_{\alpha}$ is biholomorphic by Lemma 1, we have $(1-|z|^2)^{-1} = \tau_{\alpha}(g_{\alpha}(z))|g'_{\alpha}(z)|$ for $z \in \mathbb{D}$. Note here that $u=u(x)=g_{\alpha}(x)>0$ and $g'_{\alpha}(x)>0$ for positive x. If we set

$$Q(x) = (1 - u(x)^{2})\tau_{\alpha}(u(x)) = \frac{1 - u(x)^{2}}{(1 - x^{2})u'(x)}$$

for $x \in (0,1)$, we have only to show that Q is non-increasing in the interval (0,1) because $\lim_{x\to 0} Q(x) = \tau_{\alpha}(0) = 1/|g'_{\alpha}(0)| = M(\alpha)$.

Since $xu'/u = \{(1+x)/(1-x)\}^{\alpha}$, we have the expression

$$Q = \frac{1 - u^2}{1 - x^2} \cdot \frac{x}{u} \cdot \left(\frac{1 - x}{1 + x}\right)^{\alpha} = \frac{x}{u} \cdot \frac{1 - u^2}{(1 + x)^{1 + \alpha} (1 - x)^{1 - \alpha}}.$$

Taking the logarithmic derivative, we obtain

$$x\frac{Q'}{Q} = 1 - \frac{xu'}{u} \cdot \frac{1+u^2}{1-u^2} + \frac{2x(x-\alpha)}{1-x^2} = \frac{1-2\alpha x + x^2}{1-x^2} - \frac{1+u^2}{1-u^2} \left(\frac{1+x}{1-x}\right)^{\alpha}.$$

Therefore, Q' > 0 if and only if

$$\frac{1-u^2}{1+u^2} \le \left(\frac{1+x}{1-x}\right)^{\alpha} \cdot \frac{1-x^2}{1-2\alpha x + x^2} = \frac{(1+x)^{1+\alpha}(1-x)^{1-\alpha}}{1-2\alpha x + x^2} =: P(x).$$

By representation (5), we see

$$\frac{1-u^2}{1+u^2} = \tanh\left[-\int_1^x \left(\frac{1+t}{1-t}\right)^\alpha \frac{dt}{t}\right].$$

Hence, the assertion $Q' \geq 0$ on the interval (0,1) is further equivalent to the validity of the statement that

$$\int_{x}^{1} \left(\frac{1+t}{1-t}\right)^{\alpha} \frac{dt}{t} \le \operatorname{arctanh} P(x)$$

holds whenever P(x) < 1.

We now investigate the behaviour of the function P on (0,1). Since

$$\frac{P'(x)}{P(x)} = \frac{4(x-\alpha)(\alpha x - 1)}{(1-x^2)(1-2\alpha x + x^2)},$$

P is increasing in $(0, \alpha)$ and decreasing in $(\alpha, 1)$. Noting P(0) = 1 and P(1) = 0, we observe that P(x) > 1 for $x \in (0, \beta)$ and that 0 < P(x) < 1 for $x \in (\beta, 1)$ for some number β between α and 1. Here, we use the following elementary fact.

Lemma 3. Let S and T be continuous functions on the interval $(\beta, 1]$ that are positive, have continuous integrable derivatives on $(\beta, 1)$ and satisfy S(1) = T(1) = 0 and $S'(x) \le T'(x)$ for $x \in (\beta, 1)$. Then $S(x) \ge T(x)$ for $x \in (\beta, 1]$.

Thus it is enough to show the inequality

$$-\frac{1}{x} \left(\frac{1+x}{1-x} \right)^{\alpha} \ge \frac{d}{dx} \operatorname{arctanh} P(x) = \frac{P'(x)}{1 - P(x)^2}$$

$$= \frac{-4(x-\alpha)(1-\alpha x)}{(1 - 2\alpha x + x^2)^2 - (1+x)^{2+2\alpha}(1-x)^{2-2\alpha}} \left(\frac{1+x}{1-x} \right)^{\alpha}$$

for $x \in (\beta, 1)$. This inequality is equivalent to

$$(1 - 2\alpha x + x^{2})^{2} - (1 + x)^{2+2\alpha} (1 - x)^{2-2\alpha} \le 4x(x - \alpha)(1 - \alpha x)$$

$$\Leftrightarrow (1 + x)^{2+2\alpha} (1 - x)^{2-2\alpha} \ge (1 - 2\alpha x + x^{2})^{2} - 4x(x - \alpha)(1 - \alpha x) = (1 - x^{2})^{2}$$

$$\Leftrightarrow \left(\frac{1 + x}{1 - x}\right)^{2\alpha} \ge 1.$$

The last inequality is certainly valid for $x \in (0,1)$. So, now the proof is complete. \square

Remark. We can see from the proof that $\varepsilon(\lambda, V_{\alpha}) = 2\cos(\pi\alpha/2)/(1+\sin(\pi\alpha/2))M(\alpha)^2$ holds, where λ is the quasiconformal reflection constructed for V_{α} as above.

4. Upper estimate of $\sigma(V_{\alpha})$

In this section, we give a rough upper estimate of $\sigma(V_{\alpha})$ in order to examine how good our estimate (4) is.

Theorem 2. For $0 < \alpha < 1$, we have $\sigma(V_{\alpha}) \leq 2(1 - \alpha)^2$.

Proof. We consider the holomorphic function $f(w) = \log(1-w)$ on the domain $\mathbb{C}\setminus[1,+\infty)$. Although f is univalent, $f(V_{\alpha})$ has an outward pointing cusp. So, $f(V_{\alpha})$ is not a quasidisk. On the other hand, for a quasidisk D, if $||S_f||_D < \sigma(D)$, we know that f(D) is also a quasidisk (see [4, p. 120]). Hence, we conclude $\sigma(V_{\alpha}) \leq ||S_f||_{V_{\alpha}}$ for the above f.

Now we estimate $||S_f||_{V_{\alpha}}$. First note that $V_{\alpha} \subset W := \{w; |\arg(1-w)| < (1-\alpha)\pi/2\}$. By the monotonicity of the Poincaré metric, we have $||S_f||_{V_{\alpha}} \leq ||S_f||_W$. Since $(1-w)^{1/(1-\alpha)}$ maps W conformally onto the right half plane, we compute

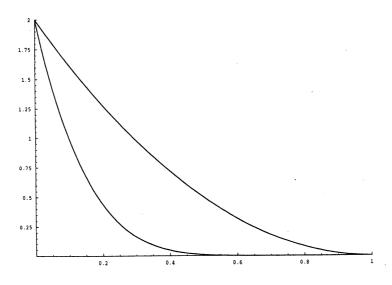
$$\rho_W(w) = \frac{|1 - w|^{\alpha/(1 - \alpha)}}{2(1 - \alpha) \operatorname{Re}\left[(1 - w)^{1/(1 - \alpha)} \right]}.$$

On the other hand, $S_f(w) = 1/2(1-w)^2$. Thus, we calculate

$$||S_f||_W = \sup_{w \in W} 2(1-\alpha)^2 \operatorname{Re}\left[\frac{(1-w)^{1/(1-\alpha)}}{|1-w|^{1/(1-\alpha)}}\right] = 2(1-\alpha)^2.$$

Now the proof is completed.

Finally, we exhibit the graphs of the function $2\cos(\pi\alpha/2)/(1+\sin(\pi\alpha/2))M(\alpha)^2$ and $2(1-\alpha)^2$ below.



REFERENCES

- D. A. Brannan and W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. (2) 1 (1969), 431–443.
- 2. M. Fait, J. G. Krzyż, and J. Zygmunt, Explicit quasiconformal extensions for some classes of univalent functions, Comment. Math. Helv. 51 (1976), 279-285.
- 3. O. Lehto, Remarks on Nehari's theorem about the Schwarzian derivative and schlicht functions, J. Analyse Math. 36 (1979), 184-190.
- 4. _____, Univalent Functions and Teichmüller Spaces, Springer-Verlag, 1987.
- 5. T. Sugawa, A remark on the Ahlfors-Lehto univalence criterion, preprint, 2000.
- 6. _____, A self-duality of strong starlikeness, preprint, 2000.

Department of Mathematics, Kyoto University, 606-8502 Kyoto, Japan Current address:

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HELSINKI,

P. O. Box 4 (Yliopistonkatu 5) FIN-00014 Helsinki, Finland

E-mail address: sugawa@kusm.kyoto-u.ac.jp