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INNER RADIUS OF UNIVALENCE FOR A STRONGLY STARLIKE
DOMAIN

TOSHIYUKI SUGAWA
AN BE  (RERFERERBERAR)

ABSTRACT. The inner radius of univalence of a domain D with Poincaré density pp is the
possible smallest number o such that the condition ||S¢ | p = supyep pp(w)~2Ss(2)| < @
implies the univalence of f for a nonconstant meromorphic function f on D, where Sy
is the Schwarzian derivative of f. In this note, we will give a lower estimate of the inner
radius of univalence for strongly starlike domains of order & with a concrete bound in
terms of the order a.

1. MAIN RESULT

For a constant 0 < a < 1, a holomorphic function f on the unit disk is called strongly
starlike of order « if f satisfies the condition

zf'(2) T D=
(1) argf(z)—f(O) < 5 (eD* =D\ {0}).

Note that a strongly starlike function is starlike in the usual sense. Every strongly starlike
function f of order a < 1 is bounded. In fact; Brannan and Kirwan [1] showed that

(2) f(2) = FO)] < 12f(0)IM(a) (z€D).
Here M(a) is defined by

wer=en[[{(5) -1}

> 1
) =P {20‘; (2k+1)(2k+1—a)}
_1 (M=)
! p{ T(1-a)/2) ”’}’

where I is the Gamma function and 7 is the Euler constant.

A proper subdomain D of the complex plane C is said to be strongly starlike of order
a with respect to a point wo € D if D is simply connected and if the Riemann mapping
function f : D — D of D with f(0) = wy is strongly starlike of order o.. A strongly starlike
domain of order 1 is nothing but a usual starlike domain. In what follows, without any
pain, we always assume that wp = 0.
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We now introduce a standard domain adapted to the strong starlikeness. For a constant
a with 0 < a < 1, we denote by V,, the bounded domain enclosed by the logarithmic spirals
Yo = {exp((— tan(ra/2) +14)0);0 < § < 7} and J, = {w; D € Yo} |

Let D be a proper subdomain of C containing the origin. It will be convenient to
consider the periodic function R = Rp : R — (0, +0o0] of period 27 defined by

R(8) = sup{r > 0;]0,r¢*] c D},

where [a, b] denotes the closed line segment joining points a and b in C. Note that R is
lower semi-continuous.

In the sequel, we will use the convention a - D = {aw;w € D} for a € C and a domain
D. Also, set DY = I(Ext D), where Ext D = C\ D and I(2) = 1/=.

The next result will be fundamental for our aim here, whose proof can be found in [6].

Theorem A. Let D be a proper subdomain of C with 0 € D satisfying the condition

IntD = D and let o« be a constant with 0 < o < 1. Then the following conditions are
equivalent.

(a) D is strongly starlike of order o with respect to the origin.

b) DV is strongly starlike of order o with respect to the origin.
c) For each point w € D we have w -V, C D.
d)

The radius function R = Rp 1is absolutely continuous and satisfies |R'/R| < tan(wa/2)
a.e. in R.

TN~

Remark.  The implication (a)=>(d) is essentially due to Fait, Krzyz and Zygmunt
[2]. Actually, we will employ their idea which was used to show the quasiconformal
extendability of strongly starlike functions.

Let D be a subdomain of C with the hyperbolic metric pp(z)|dz| of constant curvature
—4. The inner radius of univalence of D, which will be denoted by o(D), is the possi-
ble maximal number o for which the condition ||S¢||p < ¢ implies the univalence of the
nonconstant meromorphic function f on D, where Sy denotes the Schwarzian derivative
(f"11Y = (f"])?/2 of f and |j¢|lp = supyep po(w) ~?|p(w)]. Note that o(D) is Mdbius
invariant in the sense that o(L(D)) = o(D) for a Mobius transformation L. In particular,
o(DY) = o(Ext D). The reader may consult the textbook [4] by Lehto as a general refer-
ence for the inner radius of univalence and related notions. When D is simply connected,
theorems of Ahlfors and Gehring imply that o(D) > 0 if and only if D is a quasidisk,
furthermore, (D) is estimated from below by a positive constant ¢(K) depending only
on K for a K-quasidisk D. However, it is hard to give an explicit lower estimate of o(D)
for a concrete quasidisk D in general. Our second result concerns the inner radius of
univalence of strongly starlike domains.

Theorem 1. A strongly starlike domain D of order o satisfies

2 cos(ma/2)
(4) o(D) 2 M(a)? 1+ sin(ra/2)’

where M () is defined by (3).
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Remarks. 1. When « tends to 0, the right-hand side above tends to 2. On the other
hand, it is known that o(ID) = 2. See also the final section.

2. By a result of Fait, Krzyz and Zygmunt [2], we know that a strongly starlike domain
D of order a is a K(a)-quasidisk, where (K (a) —1)/(K(a) + 1) = sin(ra/2). Hence, as a
corollary, we have o(D) > ¢(K(a)). So, the novelty of this theorem lies in the explicitness
of the estimate.

3. From Theorem 1 we observe that DV is strongly starlike of order o under the as-
sumption of Theorem 1. Hence; we obtain o(Ext D) > 2cos(ra/2)/(1+sin(re/2)) M ()?
simultaneously. We also note that the standard domain V,, has the property o(V,) =
o(Ext V,).

2. MAPPING FUNCTION OF V,

Let S denote the set of holomorphic univalent functions on the unit disk D normalized
by f(0) =0 and f'(0) = 1. For 0 < a < 1, we define the function k, in the class S by the

relation
2kl (z) (14 2\

on D). More explicitly, k, can be expressed by

wor-sen[ ({55 -1}4].

This function is known to play a role of the usual Koebe function in the class of normalized
strongly starlike functions of order « in many cases. Actually k; is nothing but the Koebe
function.

Noting k(1) = M(a), we consider the function

5) n(2) = ha(2)/ M) = xp | [ (1—}5) .

The following fact is useful to note. Although this result was stated in [6], we give a
direct proof here.

Lemma 1. go(D) =V, for0< a < 1.

Proof. If we set go(e®) = r(¢)e*®®) = R(6)e*, then we have efg, (e®)/ga(e®) = ©'(t) —
ir'(t)/r(t). Since arg(zg,(2)/g9a(2)) = ma/2 for z = e with t € (0, ), we obtain
/ /

RO)_ v _ o

R(G) r@)O'(t) 2
which yields log R(6) = —@tan(wa/2) for § = ©(t) € (0,7). In the same way, we have
log R(—0) = —6@tan(ra/2) for 6 € (0, 7). These imply that the radius function R of g,(D)
agrees with that of V,,, and hence go(D) = V,. O




3. PrROOF OF MAIN THEOREM

First, we recall the construction of a quasiconformal reflection in the boundary of a
strongly starlike domain given by [2]. Let D be a strongly starlike domain of order
a € (0, 1) with respect to the origin and R be its radius function. Then we can take the
quasiconformal reflection A in 0D defined by

2
)\(Teie) — R(Q) 61’6
T
for all 7 > 0 and 6 € R following [2]. We then calculate
' RR/ _ 621'0 ' )
(6) oX=1 = and O\ = = (iRR — R?)
at w = re¥.

Now we use the following estimate to prove our main result. This estimate is originally
due to Lehto (3], however, the following more general form can be found in [5].

Theorem B. Let D be a quasidisk with quasiconformal reflection X in 0D. Then the
following inequality holds:

(7) (D) > e(\, D) := 2ess. inf [OM(w)] — [9M(w)]

weD  |A(w) —wl?pp(w)?

Let us return to our case. By (6) and Theorem 1 (d), we obtain the estimates

AW - 0Aw)| = & (VIFTRTRT - 1/ R)
L <\/1 + tan?(ra/2) — tan(wa/Z))

>

R*  cos(ma/2)
2 1+sin(ra/2)

and

for almost all w = re? € D.

Secondly, we estimate pp from above. Fix w = re and set R = R(f). If we think of
the domain W = wy - V,,, where wo = Re® € 8D, from Theorem 1 (c), we have W C D.
The monotonicity property of the Poincaré metric then implies pp(w) < pw(w). Now
we write 7o, = py,. Then pw(w) = 7o(w/wo)/|wo| = 74(r/R)/R. Consequently, we have
pp(w) < 7a(r/R)/R.

Summarizing the above, we have the estimate

|OA(w)] — |OA(w)] S R? T 2 R? cos(ma/2)
IMw) —wlppw)? = 72 <R2 = r2> " Ta(r/R)? 1+ sin(ra/2)
_ 1 cos(ma/2)
~ (1= (r/R)®2r(r/R)? 1+sin(ra/2)’
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Hence,

2 cos(ma/2)
D) > . .
e\ D) 2 SUDPpcu<1 (1 — u2)?75(u)? 1+ sin(ma/2)
So, if we can show the following lemma, the proof of our main theorem will be finished.

Lemma 2. The Poincaré density 1, of V, satisfies

Oiligl(l — u®)To(u) = M(a).

Proof. Since g4 : D — V, is biholomorphic by Lemma 1, we have (1 — |2]?)7! =
Ta(9a(2))|g4(2)] for z € D. Note here that u = u(z) = go(z) > 0 and g/ (z) > 0 for
positive z. If we set

1—u(z)?
(1~ 2?)u/(z)
for z € (0,1), we have only to show that @ is non-increasing in the interval (0, 1) because
limz o Q(z) = 7a(0) = 1/]g,(0)| = M(a).

Since zu'/u = {(1 + z)/(1 — z)}*, we have the expression

Q__l—u2 z (1—=z a__a: 1 —u?
T1-22 u \l4+z/) u (1+z)*e(l-z)l-o

Taking the logarithmic derivative, we obtain

Qz) = (1 - u(@))ra(u(z)) =

Q' . v’ 1+u? 2z(z—a) 1—-2az+2® 1+u? (14+2z\°
T—==1——" = - X
Q@ u 1 —u? 1— 22 1—z2 1—u2\1l-2z
Therefore, Q" > 0 if and only if
.1«—U2§ l+z a' 1—x2 :(1+x)1+"(1—x)1‘°‘ — P(2).
1+ u? 1-z 1 — 20z + z2 1 —2ax + z?

By representation (5), we see

1—u? 1+t \*dt
1+u2_tanh[“/1 (1—-7:) T}'

Hence, the assertion Q" > 0 on the interval (0,1) is further equivalent to the validity of

the statement that
1 o
1+t dt
/ <——i_—-> n < arctanh P(z)
T

1-1¢
holds whenever P(z) < 1.
We now investigate the behaviour of the function P on (0,1). Since

P'(z) 4z — a)(ax — 1)

Plz)  (1-2%)(1-2az +22)’
P is increasing in (0,a) and decreasing in (a,1). Noting P(0) = 1 and P(1) = 0, we
observe that P(z) > 1 for z € (0,) and that 0 < P(z) < 1 for z € (§,1) for some
number [ between a and 1. Here, we use the following elementary fact.




Lemma 3. Let S and T be continuous functions on the interval (8, 1] that are positive,
have continuous integrable derwatives on (8,1) and satisfy S(1) = T(1) = 0 and S'(z) <
T'(z) for z € (B,1). Then S(z) > T(z) for z € (8,1].

Thus it is enough to show the inequality
a /
_i (1 f z> > %arctanhP(:c) = ETP}()_J&)?
B —4(z — a)(1 — ax) (1-%—:1:)0’
(1-2az+2%)2—(1+2)2%(1 —g)2-22\1—7x
for z € (8,1). This inequality is equivalent to
(1-2az+2%% - (1+2)*2*(1 — )% < dz(z — a)(1 — az)
& 1+ (1-2)" > (1 - 20z + 2%)? — da(z — a)(1 — az) = (1 — z%)*

1 2a
4:( +$> > 1.
11—z

The last inequality is certainly valid for z € (0, 1). So, now the proof is complete. O

Remark. We can see from the proof that £(A, V,) = 2cos(ma/2)/(1+sin(ra/2)) M (a)?
holds, where A is the quasiconformal reflection constructed for V,, as above.

4. UPPER ESTIMATE OF o(V,)

In this section, we give a rough upper estimate of o(V,) in order to examine how good
our estimate (4) is.

Theorem 2. For 0 < a < 1, we have o(V,) < 2(1 — )2

Proof. We consider the holomorphic function f(w) = log(1—w) on the domain C\[1, +00).
Although f is univalent, f(V4) has an outward pointing cusp. So, f(V;) is not a quasidisk.
On the other hand, for a quasidisk D, if ||Sf|lp < o(D), we know that f(D) is also a
quasidisk (see [4, p. 120]). Hence, we conclude o(V,) < ||Sf|lv, for the above f.

Now we estimate [|S¢||v,. First note that V, C W := {w; |arg(1—w)| < (1—a)7/2}. By
the monotonicity of the Poincaré metric, we have ||S¢|lv, < ||S¢|lw. Since (1 — w)Y/(-o)

maps W conformally onto the right half plane, we compute
1 — wje/(-e)
Pw ) = S o) Re [(1 = w) /0]
On the other hand, Sf(w) = 1/2(1 — w)?. Thus, we calculate
1/(1-a
157l = sup 201 - e [ 12200 <1 -
Now the proof is completed. |

Finally, we exhibit the graphs of the function 2cos(ra/2)/(1 + sin(wa/2))M(a)? and
2(1 — a)? below.
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