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ABSTRACT. In this paper we introduce the class A(a, 3, 7) consisting of analytic functions
which is defined by using the fractional calculus operator J; in the unit disk &/. We shall
determine the relationships of this class and well known classes S*(y) and K(y) and
investigate coefficient estimates and growth theorems for functions belonging to the class
A(a, 8,7). Integral operator F. is also considered for the class A(x, 8, 7).

1. Introduction and Definitions

Let A denote the class of functions of the form

(1.1) f2)=z4+) az2"
which are analytic in the unit disk & = {2 : |z] < 1}. Also let S denote the class of all
functions in A which are univalent in the unit disk U.

A function f(z) belonging to the class S is said to be starlike of order v (0 < v < 1)
if and only if

(1.2) Re (“";('S)) >y (zeU;0<y< 1)
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We denote by 5*(v) the subclass of S consisting of functions which are starlike of order
~vinU.

Further, a function f(z) belonging to the class S is said to be convex of order v (0 <
v < 1) if and only if

zf"(2)
f'(2)
We denote by K(v) the subclass of § consisting of functions which are convex of order
yinl.

We note that

(14) - f(2) €K(y) @ 2f'(2) € S* (),
and that §*(y) € 8§*(0) = 8§* and K(v) C K(0) = K (0 < v < 1), where S* and K

denote the subclasses of A consisting of functions which are starlike and convex in U,
respectively.

(1.3) Re(1+ )>7 (z €U;0 < v < 1).

Many essentially equivalent definitions of fractional calculus have been given in the
literature (cf., e.g., [6] and [7, p.45]). We state the following definitions due to Owa and
Srivastava [5] which have been used rather frequently in the theory of analytic functions

(see also [3]).
Definition 1. The fractional integral of order A is defined, for a function f(2), by

(1.5) D)= o / i (A>0),

C)l Y
and the fractional derivative of order A is defined, for a function f(z), by

(1.6) DA f(2) := f‘(l_l_,\—)jz ’ v —(CC))*dC 0<A<1),

where f(z) is an analytic function in a simply-connected region of the z-plane containing
the origin, and the multiplicity of (2 — ¢)*~! involved in (1.5) (and that of (z — ¢)~*
involved in (1.6)) is removed by requiring log(z — ¢) to be real when z — { > 0.

Definition 2. Under the hypotheses of Definition 1, the fractional derivative of order
n + A is defined by

d

(1.7) DI f(z) == D"f( ) (0<X<1;neNy :=NuU{0}).

With the aid of the above definitions, Owa and Srivastava [5] defined the fractional
operator J* by

(1.8) T} (2) =T2=N2D}f(z) (A #2,3,4,-)



14

for functions (1.1) belonging to the class A.

* We introduce the class A(e, 8,7) of analytic functions f(z) belonging to A satisfying
the condition

(1.9) Re (‘7’:‘;23) > (z € U).

fora<?2,f<2andy<1.

We note that A(1,0,7) = S*(v) and A(a + 1,0,7) = S*(v,) which was studied
by Owa and Shen [4]. Also, for A < 1 and —=X/(1-X) < v < 1, AN+ L, A,y) =
V(2,2 — A\, (1 — M)y + A), which was studied by Kim and Srivastava (3].

In this paper, we find coefficient estimates and growth theorems for analytic functions

belonging to the class A(a,8,7) associated with the fractional calculus operator. We
also point out the relationships between the class A(a, 8,7) and §*(7) (or K(7))-

2. Preliminary Results
In order to establish our results, we need the following lemmas.

Lemma 1. Let the function f(z) is defined by (1.1) and let A < 1. Then

(2.1) (TN (@) =1 - NI () + AT () (zeld).

Proof. Using the definition of fractional calculus, we have

(2.2 TA(2) =z+§: $(n, Nanz",
where
(2.3) #(n,3) = O x e ;)A) (n22)
By applying (2.2), we obtain |
ATM @) =2+ f; (s \)anz™
—(1-N{z+ izqﬁ(n, A+ Danz"} + Mz + iqu(n, Nanz"}

which completes the proof of Lemma 1.
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Lemma 2. (Jack [2]) Let w(z) be analytic in U with w(0) = 0. Then if |w(z)| attains
its mazimum value on the circle |z| = r at a point 2y, we can write

zow'(20) = kw(2o),

where k is real and k > 1.

Lemma 3. (Srivastava and Owa [8]) If the function f(z) defined by (1.1) satisfies
Re(f(2)/z) > 6 (0 <6 < 1), then

o0

(2.4) > lan| <14

n=2

The result (2.4) is sharp.

Lemma 4. (Twomey [10]) Let the function f(z) defined by (1.1) be in the class S*.

Then
1), P ()
(2.5) o< Ton (5 (= €U).

1-[4|
Equality in (2.5) holds true for the Koebe function k(z) = z/(1 - 2)%.
3. Main Results

We begin by proving
Theorem 1. Let o <2, § <2 and v < 1. If f(2) € A(a,8,7), then

. 2(1 T (14 2(1=7)4(8) .
B el < By o ¢(n,ﬂ|H( %G, ¢(J,ﬁ)|> (n22)

j=2

where ¢(n, ) and ¢(n,3) are given by (2.3). The result is sharp.
Proof. If we set

o)
755 7

z

(3:2) p(z) = = "

=14+cz+cz?+--- (f € A),

then p(z) is analytic with p(0) = 1 and has positive real part in U. Since J2f(z) =
(1 = v)p(2) +7)TP f(2), by virtue of (2.2), we have

(¢(n,@) — ¢(n,B)) an = (1 —7) {cn—l + Z_: ¢(m,ﬁ)cn—mam} (n 22).

m=2
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By applying Carathéodory’s Lemma (see [1, p.41]), we obtain

(33) [6(n, @) — $(n, B)llan] < 2(1 - 7) {1 + 3 (m, ﬁ)laml} .

m=2

We will prove, using mathematical induction, that the assertion (3.1) is satisfied for
n > 2. f n =2, then

2(1 =)
‘¢(27 Ol) - ¢(2) :B)l .

Now suppose that the assertion (3.1) is satisfied for n < k. Then, from (3.1) and (3.3)
we have

laz] <

lp(k +1,a) — ¢(k + 1, B)||ar+1]

k
<2(1-7) {1 +y ¢(m,ﬁ)lam|}

m=2

B 2(1 m—1 1 - 'Y)¢(.7a :3)
<2(1—47) {1+ > é(m,B) 6(m,a) — ¢(m B)| II ( |¢(J,a) ¢(J,ﬁ)l)}

m=2 =2

o 2(1 — 7)¢(4, 8)
=2(1 'Y)JIJ2 (1 T 19G.a) - ¢(J',ﬂ)l> '

Hence

2(1—7) nd 2(1 - 7)¢(4,8)
lan| < 60, @) — $(m, B)] H (1+ |95, @) —¢(j,ﬁ)l>

J=2
for all n > 2.
Finally, the result is sharp for the function f(z) given by

f(z) =z 4 2(1 ’Y) o (1+ 2(1 - ’7)¢(.7,16) )zn (n > 2).

|¢(n, @) — é(n, B)] 603, @) — ¢(5,8)|

j=2

Remark 1. Letting o = 1, 8 = 0 and v = 0 in Theorem 1, we immediately obtain that
f(z) €8* = |an| <n

for all n > 2 ([1, Theorem 2.14]).
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Theorem 2. Let A <1 and —=A/(1-X) < v < 1. Then f(2) € AA+1,),7) if and
only if TAf(2) € S*((1 — Ay + ).

Proof. In view of Lemma 1, we have
2T f(2) T 1(2)
A4 —E = (1= M)
(34 Y Ie B 7y P
Assume that f(z) € A(A +1,,4). Then, from (3.4) we obtain

(") - 0 () o

>(1=XAy+ A
Thus J} f(2) € 8*((1 = M)y + )).
Conversely, suppose that J;*f(z) € $*((1 — A\)y+ ). In view of Lemma 1 and (3.4),
it is clear that ()
z
Re | —Zt——= .
(Zre) >
This completes the proof of Theorem 2.
By virtue of Theorem 2 and Lemma 4, we obtain

Corollary 1. Let A <1 and —A/(1—-X) <y < 1. Then zf'(z) € A(A+1,\,7) if and
only if T} f(2) € K((1 = Ny + ).

Proof. By (1.8) and Theorem 2, it follows that

AT} (2)) = TN2f'(2)) € S* (1= Ay + N).
Hence, from (1.4) we obtain J}f(z) € K((1 — M)y + A).
Corollary 2. Let A <1 and let f(z) € AA+1,\,=A/(1 = X)). Then

AT )Y |2|1n ((HIzI)Thﬁf(z)l)
W‘ =1 (1-lehin (1) (=t

1—-|z

(3.5)

Equality in (3.5) holds true for the function f(z) = h(z) * (2/(1 — 2)?), where
h(z)=z+zw 2" (z €U)

and the operator * stands for the Hadamard product or convolution of two regular func-
tions.

With the aid of Lemma 1 and Lemma 2, we prove



Theorem 3. Let A < 1 and 0 < § < 1. Suppose that f(z) € A(X +1,A,7(3)), where

7(5)={1"2‘(1.—£§(r_7) (0<s<d)
L= oy L<s<1).
Then

A
(3.6) Re (J_z_‘:_(f_).) >4 (2 € U).
Proof. If we define the function w by

A —

(5.7 P _1+@ =16

z 1+ w(z)
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then w is analytic in ¢ with w(0) = 0 and w(z) # —1. Making use of the logarithmic

differentiation of both side in (3.7), we have

(T2 _ 2(1 — 6)2w'(2)
T f(z) (1 +w(2))(1 + (26 — 1)w(2))
By Lemma 1, we obtain
TMf(2) _,_20=9) 2w'(2)
T (2) 1-2 (1+w(2)(1+ (26 —1)w(z)

Suppose that there exists a point 29 € U such that max|;|<|z| w(2)| = |lw(z0)| = 1.

Then, by using Lemma 2, we get

TP f(0)\ . 2k(1=9) 5
Re ( T} f(z0) ) =TT 1+ (26 — w(20)>
When 0 < 6 < 1/2,
) ;
Re( T3F(z0) ) ST arona-9)

When 1/2< 48 < 1,
Jz’\“f(ZO)) 1-46
Ve J\RO) ) ey~
R"'( Z N

These contradict the hypothesis that f(z) € A(A + 1,A,v(d)). Hence |w(z)| < 1 for all

z € U. Thus, from (3.7) we obtain the desired result.

Setting § = 1/2 in Theorem 3, we have
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Corollary 3. Let A < 1. If f(z) € A(A+1,A,(1 —2X)/2(1 — X)), then

Re (M) > -;— (z €U).

z

Remark 2. Taking A = 0 in Corollary 3, we see that f(2) € §*(1/2) implies Re(f(2)/z) >
1/2. Since K C §*(1/2), Corollary 3 is a generalization of the result due to Strohhacker
[9] (see also Duren [1, p.72]).

Next, by using Lemma 3 and Theorem 3, we have

Corollary 4. Under the hypotheses of Theorem 8, let the function f(z) is defined by
(1.1). Then

(3.8) |2l = (1 = 8)|z|* < T2 ()] < Jel + (1 = ) =

for z € U. Equality in all cases occurs for the function

(3.9) f(z)=2+ 2- )‘)2(1 )z 2 exp(if)

at z = £|z| exp(—10).
Proof. Notice from (2.2), (3.6) and Lemma 3 that

(3.10) ) P(; (: 21;(3 'A')A) lan] < 1—6.

By using (2.2) and (3.10), we have

— I(n 4+ 1)I'(2 = \)

(8.11) 2@ 2 1 = ) =t o A) |anl2]"

> |z] = (1= §)l2?
and

n+1)I‘(2 2)
ntl-\)

(3.12) T2 ()] < || + Z |an||=]"
< IZI+(1 - )IZI2

for z € U. Combining the inequalities in (3.11) and (3.12), we obtain Corollary 4.
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Corollary 5. Under the hypotheses of Theorem 8, let the function f(z) is defined by
(1.1) and let 0 < A < 1. Then

013)  fal- EENO e g < E2E=Dp

for z € U. This result is sharp with an eztremal function f(z) given by (3.9).

Proof. Observing that ¢(n, ) given by (2.3) is non-decreasing of n for fixed A (0 < A <
1), we find from (3.10) that

> (2-X)(1-9¢)
Z lan] < 5 .

n=2

Hence, by using the same technique as detailed in the proof of Corollary 4, we obtain
the assertion (3.13) of Corollary 5.

Finally, we state and prove

Theorem 4. Let 0<8<1,¢c> -3, 2 +26(1+c)>1and1/(2(c+46)+1)<v< 1L
Ffe A(B=27+1)/1 =76 =/(1=),v= (1 =7)/2(c+9)), then the function
F(z2), defined by

(3.14) Fu(z) = <22

/ £l d (F € Az €U)

belongs to A((6 —2v+1)/(1 = ¥),(6 —7)/(L = 7),7)-
Proof. Let A = (6§ —~)/(1 —~). From (3.14), we obtain

(3.15) 2 (TPFu(2)' + cT2Fu(z) = (e + D)TXf ().

Define the function w(z) by

z (T)MFe( z)) 14 (26 — 1)w(2)
J)Fe(2) - 1+ w(z)

Here w(z) is analytic in ¢/ with w(0) = 0 and w(2) # —1. In view of (3.15), the assertion
(3.16) yields

(3.16)

(0<d<L;z€U).

M=) _ (1+e)+(20—1+cw(z)

(3.17) TEG) - G+ +e)
Differentiating both side of (3.17) logarithmically, it follows that
(M) w(z) 2(1 — §)2w'(2)
(318) —Zipy  —ot(- )1 Folz)  T+0@))0+ct (@ -1+ w(@)
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By assuming max|,|<|z| |w(2)| = |w(20)| = 1 for z, € U and using the same technique
as in the proof of Theorem 3, we find that (3.18) yields

e (2 (T2f)\ _ 5 2k(1—8)(c+9)
T2 f(z0) - 1+ c+ (26 — 1+ c)w(z0)|?
1-4§

<0~ 5.
<$ 2(c+4)

This contradicts the assumption that f(z) € A(A+1,A,v — (1 —%)/2(c + §)), that is,

2T () 1 2 (M) 14
Re( J2(2) )_(1—A) [RB( T2 (2) ) A]” 2(c+ )

for A = (§ —v)/(1 — v). Therefore w(z) has to satisfy that |w(z)| < 1 for all z € Y.
Hence, by (3.16) and Theorem 2, J}F.(z) € §*(8) and F.(z) € A()\ + 1,),7) for
A=(6-7)/1 =) |
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