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Abstract

The existence of equitable allocations of divisible goods is established.
The methods used give divisions of a good into geometrically simple sets,
such as simplexes or polyhedral convex cones. Market for indivisible goods
is modelled, in which a financial intermediary plays the role as an income
re-distributer and each consumer can demand as many goods as he wants
subject to his budget constraint, and the existence of a competitive equilib-
rium is proved. These two seemingly unrelated economic problems are solved
by applying David Gale’s covering lemma and a dual version of its extension.
The extension of Gale’s lemma and its dual versions are established here; the
proofs are based on Ky Fan’s fundamental theorem on coincidence of two
set-valued [unctions.
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1 Introduction

We address two types of resource allocation problems: One type is a norma-
tive division of a divisible good, and the other type is a descriptive market
allocation of indivisible goods.

There has been a substantial amount of the literature that studies alloca-
tions of divisible goods, subject to a given welfare criterion such as fairness,
equitableness or envy-freeness. While much of the literature concerns divi-
sions of a good into merely measurable subsets (see, e.g., Akin (1995) and the
references therein), it is desirable from a practical point of view to have divi-
sions into geometrically simple subsets, like intervals (see, e.g., Alon (1988)),
simplexes or polyhedral convex cones.

The first purpose of our paper is two-fold: (1) to strengthen some of the
earlier results on optimal division problems, and (2) to have divisions of a
good (a subset of a Buclidean space) into geometrically simple subsets while
satisfying a welfare criterion. We establish two theorems on a-equitable
divisions, by applying Gale’s (1984) extension of the Knaster-Kuratowski-
Mazurkiewicz (K-K-M) lemma on closed coverings of a simplex.

We turn to the market allocation of indivisible goods (for another recent
work, see van der Laan, Talman and Yang (1997); for normative allocation
of mdlwslble goods, see, e.g., Thomson (1995) and the references therein).
Shapley and Scarl (1974) constructed a model of an exchange market, in
which each consumer is initially endowed with one unit of an indivisible good.
They established the existence of a core allocation, and then in collaboration
with David Gale the existence of a competitive equilibrium. Quinzii (1984)
introduced a divisible good, called money, into the Shapley-Scarf model,
and established the core equivalence (equivalence of a core allocation and a
competitive allocation) and the existence of a competitive equilibrium. Gale
(1984) provided an extension of the K-K-M lemma, and derived Quinzii’s
existence result from his extended K-K-M lemma. All three works are on
instances of the assignment game broadly defined, in light of their basic
postulate that cach consumer supplies his indivisible good and demands one
unit of another. On the other hand, in the price-guided economy of the
neoclassical paradigm, a consumer can demand scveral goods as long as these
goods are within his budget constraint.

The second purpose ol our paper is to consider a Il’lOdlﬁ(‘d version of
the Shapley-Scarl model in which each consumer can demand several goods
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subject to his budget constraint, thereby bringing together the assignment
game and the neoclassical paradigm. Let n be the number of consumers
in the economy. While the total demand for each good can be any integer
between 0 and n in disequilibrium, it has to be equal to 1 in equilibrium, since
the total supply is 1. Therefore, an assignment emerges as a consequence of
equilibrium even in our modified Shapley-Scarf model. We introduce to the
model a particular role of financial intermediaries, and establish the existence
of a competitive equilibrium.

The above two seemingly unrelated economic problems have one thing in
common: Gale’s (1984) covering lemma. Gale considered n covers of an (n —
1)-dimensional simplex, each satisfying the K-K-M type boundary condition.
In our paper we consider more general theorems on n covers of a simplex. The
first result along this line of research is an extension of Gale’s lemma, which
allows for covers that satisfy Shapley’s (1973) boundary condition. The next
result is a dual version of our extended Gale lemma, which allows for covers
that satisfy the boundary condition studied by Alexandrov and Pasynkov
(1957) and Scarf (1967). The third result is yet another dual version of the
extended Gale lemma, which allows for covers that satisfy Ichiishi’s (1988)
boundary condition. It is this second dual version that we apply to establish
our aforementioned existence result for the modified Shapley-Scarf model.

The next section presents our extension of Gale’s lemma and its two dual
versions. Section 3 presents our results on a-equitable divisions. Section 4
presents our result on the modified Shapley-Scarf model.

2 An extension of Gale’s covering lemma and
its dual versions

This section establishes an extension (Theorem 2.3A) of Gale’s (1984) cov-
ering lemma and its dual versions (Theorems 2.3B and 2.3C).

Let N be a nonempty finite set. The cardinality of set N is denoted by
#£N. Denote by RV the (7/:N)-dimensional Euclidean space and by Rf{\_’ the
nonnegative orthant of RY. Given a subset X of RV, let co X denote the
convex hull of X, int X denote the interior of X, P(X) denote the family
ol all nonempty subsets of X, all X denote the afline hull of X, ri X denote
the relative interior of X and 9X denote the relative boundary of X. Let

38



f: X — P®RY) be a function. We say that f is upper semicontinuous
(u.s.c.) on X if the set {z € X | f(z) C V} is open in X whenever V is an
open subset of RY. Functions f,g: X — P(R") have a coincidence if there
exists z € X such that f(z) N g(z) # 0. The unit vectors of R are denoted
by e;,j € N; here ¢} =1 and €} =0 for all i € N\ {j}. The unit simplez is
theset AN :=co {e; | j € N} and its facesare A% :=co {e; | j € S}, S C N.
For a set A and a point z in R, define aset A~z :={a—=z € R | a € A}.

The Euclidean inner product of two vectors z and y in R" is denoted by
z - y. We recall that a hyperplane H in RY is a set of the form H = {z €
RY | p-2 = t}, where p € RY, p # 0, and ¢ is a real number. Given a
compact convex set X in RV a proper subset I of X is called a proper face
of X, if there exist p € R \ {0} and ¢ € R such that F/ = X N {z € R" |
p-z =t},and p-x >t forevery x € X \ F. In this case, the hyperplane
H={zeR"|p -z =t} is called a supporting hyperplane of X. A face G
of a compact convex set X is an opposite face to face I' of X, if G = X N H,
and F' = X N H, for some parallel supporting hyperplanes H; and Hj of X.

Ky Fan (1972a) proved the following fundamental theorem on coincidence
(we formulate its special case here):

Theorem 2.0 (Fan (1972a, Theorem 3)) Let X be a nonemptly compact
convex subset of RN, and let f and g be upper semicontinuous functions from
X to P(RM) such that both [(z) and g(z) are nonemply compact convez sets
for each z € X, and such thal

VzeX):(VpeRY :p.z=min{p-2z|2z€ X}):
Jue f(z): 3veglz): pru>p-o.
Then there exisls x € X such that f(z) N g(x) # 0.

We first formulate two special cases (Theorems 2.1A and 2.1B) of the
foregoing theorem. Some special cases of these theorems have found applica-
tions Lo unification of theorems on covering of compact convex sets (Ichiishi
(1981, 1988), Ichiishi and Idzik (1990, 1991)), to solutions of inequalities
(IFan (1968, 1972b)), to the theory ol equilibrium (Gale (1984)), to the fair
division problem (Akin (1995)), and to multidimensional matrices (Bapat
(1982), Bapat and Raghavan (1989)). '

Theorem 2.1A Let X be a nonemply compact convex subsel of RN and let
[: X =>PRY) and g: X = P(X) be upper semicontinuous funclions such
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that both f(z) and g(z) are nonempty compact convez sets for each & € X,
and such that

VzeX): VpeRY: p-z=min{p-2|z€ X}):
Jue f(z): p-ru=min{p-2z|z€ X}

Then f and g have a coincidence. In particular: X C f(X), and each of f
and g has a fized poini.

Theorem 2.1B Let X be a nonempty compact convez subset of RN, and let
f: X = P(RN) and g: X — P(X) be upper semicontinuous functions such
that both f(x) and g(z) are nonempty compact convez sets for each x € X,
and such thal

VzeX): (VpeRY: p-z=min{p-z]|z€ X}):
Jue f(z): p-u=max{p-z]|z€ X}

Then f and g have a coincidence. In particular: X C f (X), and [ has a
fized point.

We present yet further special cases (the following Corollaries 2.2A and
2.2B).

Corollary 2.2A Let X be a nonempty compact convez subset of RN. Let
f:X = PRM) and g : X — P(X) be upper semicontinuous functions,
such that both f(z) and g(z) are nonempty compact convex sets for each
t € X. Let [ transform every face IF of X in such a way that for each
reF, f(z)Naff F# 0 (which would be the case, e.g., if [ lransforms every
face F of X into all F). Then [ and g have a coincidence. In particular:
X C f(X), and [ and g have fized poinls.

Corollary 2.2A reduces to Akin (1995, Proposition 17), when f transforms
every face I ol X into [

Corollary 2.2B Lel X be a nonemply compact convex subsel of RN. Let
f: X = PRN) and g: X = P(X) be upper semiconlinuous funclions such
that both f(z) and g(z) are nonemply compacl convex sels for each v € X.
Let [ transform cvery face IF of X in such a way that f(I7)Nall G # 0 (which
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would be the case, e.g., if f transforms every face F' of X into aff G), for
each face G opposite to F. Then f and g have a coincidence. In particular:
X C f(X), and f has a fized point.

Now, let n := #N, and define mg := Y5 ej/(#S) for each S € P(N).
Choose a set K in RY such that

{ej|j € N} C K C aff AN, #K < oo;

the set K will be fixed throughout this section. A point v € aff AN is
uniquely expressed as an affine combination of the vertices of AN, v =
Yienbie;, b) € R, ey b) = 1. The support of v is the set of j for which
bi # 0, and is denoted by supp v.

Theorem 2.3A  [or each i € N, let {CP}yex be a closed cover of AN
satisfying

AT c U{cy

v e Knaff AT} for every T € P(N)\ {N}.
Then there exists a function w: N — K such that

N CTD 40 and U supp = (i) = N.

ieN i€N

The closed covers considered in Theorem 2.3A were studied by Ichiishi and
Idzik (1990, Theorem 2.1). Theorem 2.3A reduces to Gale’s (1984) lemma
when K = {e; | j € N}. In this case each cover {C?},cx is of the K-K-
M type, that is, the boundary condition is: AT C U;erC;? for every proper
subset 7" of N. Gale’s lemma strengthens Svensson’s theorem (1983, Theorem
5). Our theorem allows for covers of Shapley’s (1973) type (K = {ms | S €
P(N)}); in this case the boundary condition becomes: AT C UscrCi™ for
every proper subset 1" of N.

Proof of Theorem 2.3A [Lor cach i € N and cach S € P(N), define

CF = LH{C! [ve K, suppv =S}
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Choose any z € AN and define

filz) = co {ms }SEP(N), cs Bcc},
1
f = E%:Vfi-

Observe that the function f : AY — P(AN) is us.c,, and that v € aff A®
iff supp v C S, so by Corollary 2.2A,

Jz* e AN : my € f(z*). (1)

Let nmy = Yen 77, where z7 € fi(z*).

By definition of fi(z*), there exist ad >0, S € P(N), such that [af >0
only if C% 3 z7], L SeP(N) af =1, and 2] = Tsepw) aims.

For each S € P(N), define b € R, j € N, by: by = 1/(#5),if S > j;
and b5 := 0, if S # j. Then ms = Ljen ble;.

We claim that the n x n matrix whose (¢, j)-element is Y sep(n) aisbf
is bistochastic. Indeed, by definition of {af }sep(n) and {bf’}je N as convex
coefficients,

VieN: Z( > afbf) =1.
JEN \SeP(N)
On the other hand, by looking at each component of the vector equality,
nmy = Y ien &5, it follows that

VjeEN: Z( Zafbf>:1.

ieN \SeP(N)

Thus by the Birkhoff - von Neumann theorem, there exists a permutation
7. N — N such that

VieN: Y afbg(i) > 0.
SeP(N)
Consequently,

Vie N: 353) e P(N): a»f(i)bfr((f)) > 0.
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For each i € N, ais(i) > 0, so C’f @ 5 g*. In view of the definition of CS, we
can choose 7(i) € K such that supp 7(z) = S(i) and CT® 3 g,

We will show that 7 : N — K is the req)uired function. First, it is clear
that N;enCT® 5 2. Second, for each i, bi((;) > 0, so 7(z) € S(2). Since 7 is
a permutation,

N=U{F@}c | SsE = supp 7(3) C N,
iEN ieEN ieN

which establishes the second required result. O

Theorem 2.3B  [or each i € N, let {C’},ex be a closed cover of AN
salisfying '
ANNIY « CF for every j € N.

Then there exists a function 7: N — K such that

N T £ 9 and | supp #(z) = N.

iEN ieN

For the case K C AN, the type of closed covers considered in Theorem 2.3B
was studied by Alexandrov and Pasynkov (1957) and by Scarf (1967). .

Proof of Theorem 2.3B Define C’f, fi and f as in the proof of Theorem
2.3A. Notice that C’.,;{j b= C77. In view of the present boundary condition,
Corollary 2.2B is applicable, so condition (1) in the proof of Theorem 2.3A
is satisfied. The rest of the proof is the same as the proof of Theorem 2.3A.

(]

Theorem 2.3C Suppose K C AN and has the property that for each v €
K NAAN there exists v' € K such that my € co {v,v'}. For eachi € N, let
{C?}uex be a closed cover of AN salisfying

AT cly {C',,'f'l [ ve KN AT} for every T € P(N)\ {N}.
Then there eaists a funcltion w: N — K such thal ’

N i g and |J supp 7(3) = N.

icN ieN

43



The closed covers considered in Theorem 2.3C were studied by Ichiishi and
Idzik (1990, Theorem 2.5). They reduce to the type considered by Ichiishi
(1988) when K = {ms | S € P(N)} and (ms) = mn\s; in this case the
boundary condition becomes: AT C Uson\rCi® for each proper subset T of
N.

Proof of Theorem 2.3C Choose any z € AN and define
fi(z) == co{ve K|C! >},

1
= ;L‘ Z f,
ieN
The function f: AN — P(AV) is us.c. Choose any T'C N, z € 1i AT, and
p € R" for which p-2 = minp- AN, If T'= N, then p-y = minp - A" for
all y € AV, in particular, p-my =p-y for all y € f(z). If T # N, then by
the present assumption,

Ju, € KOAT: (v) € filz).

Since p-v; = minp- AN it follows that p-vi < p-(v). But my lies on the
segment that joins v; and (v;)’, so there exists « € [0,1) such that

p-my =oap-vi+(l-a)p-(v),

and consequently
p-my <p-(v).
Set y 1= Yien(vi)/n € f(z). Then, p- my < p-y. Define constant function
g: AN — P(AN) by g(z) = {mn}. '
Ky Fan’s coincidence theorem (Theorem 2.0) is now applicable here, so

327 e AV: [(=)gla") £,

that is, my € f(x%).

The rest of the proof follows the idea of the prool of Theorem 2.3A.
Indecd, let nmy = Y ;cn o7, where 27 € fi(z*). By definition of f;(z*), there
exist af > 0, v € K, such that [af > 0 only if C} 3 z*|, Y,exa! = 1,

1
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and 7 = e alv. Since K C AV, each v € K is a convex combination
of the vertices of AN, so there exist uniquely b7 2 0, j € N, such that
Yienb? =1, and v = Yjen blej. The n X n matrix whose (4, j)-element is
Yovek a”b” is bistochastic. By the Birkhoff - von Neumann theorem, there
exists a permutation 7 : N — N such that

Vie N: Za”b”(1)>0

veK
Consequently, ‘
VieN: 3n@) e K: of L > 0.
It is easy to check that @ : N — K is the required function. O

Remark 2.4 Theorems 2.3A, 2.3B and 2.3C are also true, if instead of
closed covers of AN we consider open covers. Both forms are equivalent. O

A subfamily B of P(N) is called balanced if there exist A° > 0, S € B, such
that > sen Mg = my. The following Corollaries 2.5A, 2.5B and 2.5C on n
covers of a simplex are consequences of our proofs of Theorems 2.3A, 2.3B
and 2.3C, and generalize the theorems on a balanced family due to Shapley
(1973), Scarf (1967) and Ichiishi (1988), respectively. (Each corollary reduces
to the respective theorem on a balanced family, if the n covers are identical.)

Corollary. 2.5A  Suppose K = {ms | S € P(N)}. For each i € N,
let {CP}uex be a closed cover of AV satisfying AT C UscrCi™ for every
T € P(N)\{N}. Then for each i € N there exist B; C P(N), B; # 0, and
A >0, S € B, such that :

N () C"™ #0 and mN_—~ZZ/\SmS

ieN SeB; lGN SeB;

Proof In this case, the set C¥ defined in the proof of Theorem 2.3A is equal
to C;". The required result is a re-statement of condition (1). a

Corollary 2.5B  [For cach i € N, let {C}vex be a closed cover of AV
satisfying ANNUY < CF for every j € N. Then for each i € N there exist
Bi C K, B; #0, and \! > 0, v € B;, such thal

N NC#A0 and my= Z > A

i€N ve3; IGN v€3;
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Proof Choose any z € A" and define

fi(z) == co{vekK |.C;" >z},
1
e ivn

Then, by the same argument as in the proof of Theorem 2.3B, there exists
z* € AV such that my € f(z*). The required result follows. O

Corollary 2.5C Suppose K = {ms | S € P(N)}. For each i1 € N, let
{CP}uex be a closed cover of AN satisfying AT C UgonrCie for every
T € P(N)\ {N}. Then for eachi € N there exist B; C P(N), B; # 0, and
X >0, S € B;, such that

m m Cims % 0 and my= % Z Z /\fms

ieN SeB; i€N SeB;

Proof Define f; and f as in the proof of Theorem 2.3C. There exists z* € AN
such that my € f(z*). The required result follows. a

3 Equitable allocation of divisible goods

Let N ={1,...,n} and let a = (o, ..., an), where a; (i € N) is a positive
number and ey @ = 1. Consider a problem of dividing the unit simplex
AN into n subsets for n persons. Each person has a nonatomic signed measure
i (the measure of a subset ol hyperplanes in afl AV is equal to zero and
values can be negative) defined on (Lebesgue) measurable subsets of AY such
that u;(AN) > 0, and wants to get a subset A4; C AY which has at least 1/n
of the value of AN according to his own measure, i.e. j1;(A;) > (1/n)p(AY)
(i€ N).
We call a measurable division (partition) B = (B,..., B,) of AV

e «—fair, il there exists a bijection 7 : N — N such that for every 1. € N
1i( Brgiy) = cmiypa(AY),
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o a-equitable, if there exists a bijection 7 : N — N such that for every
1€N a;&)pi(B,r(i)) > o 'pi(B;) for all j € N,

e envy-free, if there exists a bijection 7 : N — N such that for every
1€N /Lz(Bﬂ(z)) Z ;J,,(B]) for all] € N.

Observe that if a division is a—equitable, then it is a—fair. In the case a; =
1/n (i € N) a—equitable divisions coincide with envy—free divisions.

The purpose of this section is to establish the existence of a-equitable
divisions. While some of the earlier papers (e.g., Weller (1985), Berliant,
Thomson and Dunz (1992) and Akin (1995)) came up with merely measurable
divisions, we divide a good into simple subsets, like simplexes or polyhedral
convex cones.

Idzik (1995) generalized Woodal’s theorem (Woodal (1980, Theorem 3))
and proved the existence of an envy-[ree division consisting of intervals:

Theorem 3.1 (Idzik, (1995, Theorem 2.2)) Let uy,. .., pu, ben nonatomic
signed measures defined on the unit interval I = [0,1] such that p;(I) > 0
fori€ N, and let a; (i € N) be a positive number with Y ,cnyc; = 1. Then
there exist a partition of I into n subintervals I1,...,I, (in order along I)
and a bijeclion 7w : N — N such that for everyi € N

ayti(ley) > o5 pa(ly) for j € N,
1.e. there exists an a-equitable division of I into intervals.

Now we apply the idea of the proof of Theorem 3.1 and establish the
following theorem:

Theorem 3.2 Let py,. .., pu, be n nonatomic signed measures defined on

the unit simplex AN such that p;(AN) >0 fori € N, and lel oy (i € N) be

a postlive number with Y ;e y a; = 1. Then there exist a partition of AN into

n subsimplezes AN, ... AN and a bijection @ : N — N such that for every

i€ N ' o
a;&)pﬂi(A,’:{(i)) > a,-"l/L,;(A;-V) Jorj €N,

J

i.c. there exisls an a-equitable division of AN into subsimplezes.
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Proof For any point z € AM and any i € N, denote by A¥(z) the set
co [{z} U AM\M#}] and define

Cl:={z eV a;lp,-(Aj-V(:r)) > o7 p(AN(z)) for all s € N}.

Observe that for each i, {C}jen is a cover of AN. The set G} is closed
and does not contain subsimplex AM\}, So the assumptions in Sperner’s
theorem (see Ichiishi and Idzik (1990, Theorem 1.1)), hence the conditions of
Theorem 2.3A, are fulfilled. Direct application of Theorem 2.3A establishes
the present theorem. O

Remark 3.3 Observe that Theorem 3.2 can describe a more general situa-
tion: Instead of the simplex AN we can consider as an object any bounded
Lebesgue measurable subset A of aff AN such that p;(A) > 0 for i € N; we
can assume without loss of generality that A C AV, O

We now turn to a problem of the Kuratowski-Steinhaus type. Let No =
{0,1,...,n}. Choose p; € R", i € Ny, so that P:= co {po,p1,-..,pn} isan
n-dimensional simplex and 0 € int P. Define the faces,

]Dl = Co {pO,Ph oy Dic1, Pigls - - ;pn}, 1€ NO)

and the cones ,
M;={dzeRY|A>0, z€ P}

Let K, :={z € RY | ||lz|| < r}, 7 > 0, where | - || is the Euclidean norm for
RV,

Theorem 3.4 Let A C RN be a bounded Lebesque measurable set. Let
1oy« i be (n + 1) monalomic signed measures defined on the Lebesgue
measurable subsels of RN such that for some v > 0, p(A —z) > 0 for all
€ RV\ K, and all i € Ny. Let a; (i € Ny) be a posilive number with
Sien, @i = 1. Then there exisl a poinl z € RY and a bijeclion w : No — No
such that for every i € Ny,

(A = 2) N Mey) 2 o5 (A — ) 0 M) for all j € No.

i.e. there exists a point x € RN which generales an a—equitable division of
(A — ) into (n + 1) sels, cach conlained in ils associated cone M;, i € Ny.
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Proof Since the set A is bounded, we can choose a real number s > 0 large
enough so that the following properties hold true: Let d; := sp;, 1 € Np.
For the simplex D and its faces defined as D := co {do,...,dn}, D; :=
co {do,-..,di—1,di41,...,dn}, we have

AcCD,
K, C int D, and
(A-z)NM; =0 forallz € D;.

Deline

Cl = {CL‘E D

o (A = z) N M) > o pa((A — ) 0 M),
, foreachse Ny |~

Observe that for each i, {C?}jen, is a cover of D. The set C/ is closed and
does not contain the subsimplex D;, because K, C int D and consequently
pui(A — ) > 0 for each z € Dy, but for this z p;((A — z) N M;) = 0. So
the assumptions in Sperner’s theorem (see Ichiishi and Idzik (1990, Theorem
1.1)), hence the conditions of Theorem 2.3A, are fulfilled. Direct application
of Theorem 2.3A establishes the present theorem. O

Theorem 3.4 generalizes the result of Kulpa (1994, Corollary, p. 47);

Kulpa considered a-fair allocations for the case in which p; is the Lebesgue

measure for all 2 € Np.

4 Market allocation of indivisible goods: The
case of segmented housing market with a
financial intermediary

This section studies a model of indivisible goods that are traded in a com-
petitive market. Let N be a set of n consumers, n < oco. There is a financial
intermediary besides these n consumers. Bach consumer 7 initially holds
one unit of an indivisible good (say, a house), called here the jth good. A
consumer can obtain a loan [rom, or make an investment in, a financial in-
termediary, but his initial balance at the financial intermediary is zero. The
loan/investment is a special form of money, so its price is equal to 1. He can
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buy as many indivisible goods (called henceforth simply goods) as he wishes
subject to his budget constraint, but knowing that there is one and only one
unit of each good available in the economy, he demands at most one unit of
each good. Denote by P(N) the family of nonempty subsets of N, 2/ \ {0}.
Each consumer’s consumption set is Rx P(N); an element (¢, S) € RxP(N)
means that he obtains a loan ¢ and holds the set of goods S. A negative loan
¢t means a positive investment |t|. In the following, the phrase “to receive a
loan t” will be used synonymously with the phrase “to make an investment
—t”. Implicit in our formulation of a consumption set is the postulate that
a consumer has to hold at least one good. Consumer j’s initial endowment
is (0,{j}) € R x P(N). His preference relation is summarily represented by
a price-dependent continuous utility function u; : R x P(N) x RY — R.
Here, function u; incorporates both consumer j’s taste and the financial in-
termediary’s behavior in the following way: A commodity bundle (¢,S) and
the lending interest rate on a loan or the deposit interest rate on an invest-
ment determine the consumer’s utility level, and the financial intermediary is
postulated to determine these interest rates as continuous functions of prices
(1,p), hence the price-dependent utility function u;(¢,S,p). Each consumer
is a price-taker. The financial intermediary also takes prices of goods as
given, but has a monopoly power over the loan/investment market.

A pure exchange economy with indivisible goods and a financial inter-
mediary (called henceforth simply an economy) is a specified list of data
{R x P(N),uj, (0,{s})}jen of consumption set R x P(N), utility function
u; : Rx P(N)x RY — R and initial endowment (0, {5}) for every consumer
JE€N.

When price vector p € Ri’ of the goods prevails, consumer 7 sells his
initial endowment in the market, thereby receives the sale value p;. He may
also decide the amount ol a loan ¢; he receives from the financial intermediary.
Let S C N be the set of goods he purchases. His total expenditure on goods
is then > ;cg pi, and he has to satisfy his budget constraint,

Zp,: < p; +tj.
i€S
Consumer j’s demand behavior is summarized by his inverse demand
correspondence [rom P(N) to the subsets of RY, S+ CF. Here, p € cy
means that j demands goods § il p is the prevailing market price vector of
goods; in light of the budget constraint, he is also obtaining a loan of ¢; >
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2 ics Pi — pj- His behavior comes from utility-maximization, so u;(t;, S, p) >
u;(t;, S, p) for all (t},8") for which Yo pi < pj + 5.

In competitive equilibrium, the total demand for good 4 is equal to its total
supply, and the latter is equal to 1, i € N. Each consumer demands at least
one good. An equilibrium is achieved, therefore, iff [each consumer demands
one and only one good, and each good is demanded by some consumer].
Formally, a competitive equilibrium of an economy is a pair (p*, 7*) of a price
vector p* € RY and a bijection #* : N — N such that p* € mjeNC]{rt(j)}.

Markets of indivisible goods were considered by a pioneering paper, Shap-
ley and Scarf (1974). They do not introduce any financial intermediaries, but
make the postulate that each consumer demands one indivisible good. This
is contrasted with our setup that a consumer can obtain a loan or make an
investment, and can hold several indivisible goods at the same time (pro-
vided that his budget constraint is satisfied). So, while the consumption
set of each consumer is N in the Shapley-Scarf setup, the consumption set
of each consumer in our setup is R X P(N); recall that element j € N is
identified with one unit of the jth good, and element S € P(N) is identified
with set S of goods. We have followed Quinzii (1984) and Gale (1984) in
our formulation of an economy, but our model differs from theirs in two im-
portant respects: IFirst, while the divisible commodity that Quinzii and Gale
introduced is interpreted as money as a store of value, the divisible commod-
ity that we introduce is interpreted as a loan/investment, which essentially
functions as a channel [or income re-distribution. The price domain both
in the Quinzii-Gale setup and in our setup is {1} x RY (here, the price of
money is always equal to 1). Second, while Quinzii and Gale postulate that
each consumer can hold a pair of money and one indivisible good, we pos-
tulate that he can hold a pair of a loan and several indivisible goods. Thus,
while the consumption set of each consumer is R, X N in the Quinzii-Gale
setup, the consumption set of each consumer in our setup is R x P(N). We
point out that although each consumer is allowed to hold several indivisible
goods in our setup, he ends up holding one indivisible good in a competitive

equilibrium. In short, an assignment of goods emerges in equilibrium even

in our setup.

The purposc of the present section is to establish an equilibrium existence
theorem (Theorem 4.3). The first assumption is the following monotonicity
condition on a consumer’s prelerence relation, which says that goods affect
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his utility positively, and a loan affects his utility negatively; the latter as-
sumption is justified because a loan creates commitment to future payments
and an investment yields future returns.

Assumption 4.1 Let p € RY be any price vector of goods.

(i) For everyt € R, u;(t,S,p) > u;(t,S',p) for all S,S' € P(N) for which
SO>S and S #S'.

(i) For every S € P(N), u;(t,S,p) > u;(t',S,p) for all t,t’" € R for which
t<t.

Assumption 4.1 (ii) guarantees that given any p € C7, consumer j de-
mands goods S by obtaining the exact amount of loan t; = 3 esPi — Pj-
Without loss of generality, therelore, his constrained maximization problem

becomes:

Maximize Uy (Z pi — Ppj, S, P) )
icS
subject to S € P(N), |
given - pE€ Rf .

Since P(N) is a finite set, a solution to this problem always exists. In other
words, for each consumer j, the family {C’;s Ysep(ny is a cover of Rf .

We specify behavior of the financial intermediary. By setting the de-
posit/lending rates, it influences consumers’ decisions on the total investment
2 jit;<0 |t;| and the total loan }5;;;50;. The latter has to be funded from the

former,
Y4 < Y Il
Jit;>0 j:it;<0
that is,
> 4 <0,
JEN

which constitutes the constraint on the intermediary’s behavior. The next
assumption says that as long as the average price of goods is high, the inter-
mediary can always set the two interest rates so that this constraint is met.
This is justified as follows: A loan is typically demanded by relatively low-
income consumers, i.e., by those consumers whose initially endowed goods
have low prices. Some other consumers must have high incomes, in view ol
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the high average price. A high-income consumer opts to sell his high-priced
good, buys low-priced goods and invests the surplus for high future returns.
Thus, whenever there is demand for a loan, there is also supply of investment.
Recall that e; € RY is a unit vector, j € N. Given a positive number M,
define the simplex,

AN(M) := co {Me; | j € N}.
A price vector p has the average price M/n, iff p € AN (M).

Assumptlon 4.2 There exists a positive real number M such that for any
pE ﬁjeNC'” NAN(M), it follows that Yjen t; < 0, where t; = Yies; Pi—Dj-

- The present paper does not specify the intermediary’s behavior other than
Assumption 4.2 and the continuous dependence of the interest rates on prices.
So our analysis is applicable to a broad class of economies. Assumption 4.2
is nothing but Walras’ law within the markets for Lhe goods, provided that
the average price is M/n. Indeed, when p € ﬂ,GNC , the total demand for
good ¢ is the number of the consuners who demand 7, #{ jEN|S; 21}, s0
the value of the total excess demand is:

S pi(#{ieN|S; 36} -1)

d€N
= Z (Z pi— Pj)
v JEN ‘iGSj o
= >
JEN
< 0.

We will discuss Assumption 4.2 in the example of a segmented housing market
later (alter the statement of Lemma 4.4).

Theorem 4.3 Let {RxP(N),u;,(0,{s})}jen be an economy which satisfies
Assumptions 4.1 and 4.2. Then, there exists a competilive equilibrium of the
CCONOTNY. ”

In order to prove Theorem 4.3, we need to establish two lemmas; the first

says that each consumer demands all the goods whose prices arc substantially
low. ’
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Lemma 4.4 For each compact subset C of Rf , there exists a positive number
§ such that for every p € C; N C it follows that S D {i € N | p; < §}.

In order to see the role of the financial intermediary and Assumption 4.2,
consider a housing market. In reality, a housing market is segmented: a buyer
usually looks at houses of a particular price range, or rather, he looks at set
N of houses of a similar capacity and quality. Suppose several houses are
extremely low-priced, say 1 cent each. A buyer will demand them all; this is
the content of Lemma 4.4. He does so even when his initially owned house is
also 1 cent, so that he has to obtain a loan from the financial intermediary;
he is willing to pay interest on the several cents in the future, if he can keep
all these low-priced houses. On the other hand, if his initially owned house is
extremely high-priced, say 1 billion dollars, he will buy all the 1-cent houses
(which are after all of similar quality as his), and sell his house. This way, he
can invest in the financial intermediary the large excess of his sale over his
purchases and expect high returns in the future. Walras’ law for the markets
of the goods in the inequality form is satisfied.

A quantitative example of the above paragraph is in order. Let N =
{1,2,3}. Let M be the positive number given in Assumption 4.2, let § be the
positive number given in Lemma 4.4 applied to C = AY(M), and consider
price vector p = (M — 26,6,9). Each consumer demands the second and the
third houses (low-priced houses), so his total expenditure is 2. Consumer
i € {2, 3} receives his sale value d, so needs to receive a loan of §. Consumer
1 receives his sale value (M — 26), so he can invest value (M — 44) in the
financial intermediary. The value of the total excess demand is, therefore,

pi(0=1) +p2(3 - 1) +ps(3— 1) = =M + 69,
which is nonpositive because d is very small, hence Walras’ law.

Proof of Lemma 4.4 Suppose the contrary. Then for each positive integer
k, there exist S* € P(N), p* € C’fk N C and i* € N such that p& < 1/k and
i* ¢ S*. By passing through a subsequence if necessary, one may assume
without loss of generality that p* — p* € C, and S*¥ = §*, i* = ¢* for every
k. Then, pj. =0, and i* ¢ S*. Define t¥ := ¥cq. pF — 5, 1 1= Ties- P} —1}-
Clearly, t¥ — 13, By the monotonicity assumption, u; (L}, S*, p*) < u;(t;, S*U
{i*},p*). By continuity of uj;, there exists a neighborhood U of (t},p*) in
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R x C and a positive number 7 such that
Vty,p)eU: u(t;,S%p") + 7 <u,(t;, S*U{i*},p).

But for all k£ sufficiently large, u,-(t;“,S*,pk) < wu;(t;, 8%, p*) + 7 and (tF +
pk,p*) € U. Thus, under price vector p*, the commodity bundle (tji +
ok, S* U {i*}), which satisfies the budget constraint, yields a higher utility
than (¥, S*) for all k sufficiently large; this contradicts the choice of (t¥, S*)
as a maximizer of utility u;(-,p*) in the budget set given p*. ]

The next lemma says that the demand correspondence is upper semicon-
tinuous and closed-valued: the properties equivalent in the present setup to
closedness of the graph of the demand correspondence, {(p, Y ;cspi—p;,S) €
Rf XxXRxP(N)|pe C'JS}

Lemma 4.5 [For each j € N and each S € P(N), the set C'J‘-S s closed in
RY.

Proof Upper semicontinuity of the demand correspondence follows from
the standard argument which uses the maximum theorem. We only need to
show that the budget-set correspondence B; from the price-domain RY to
the subsets of the consumption set R x P(NN), defined by

Zm5m+ﬁ,

i€S

Bj(p) := {(t,S) € R x P(N)

is lower semicontinuous. Let {p*}, be any sequence in RY which converges

to p*, and let (¢*,5*) be any point in B;(p*). Choose t° € R so that for all -

k sufficiently large,

STpF <t
I€ES*

IFor each &, define o by

ok = max {a € [0,1]

E:Pffpf+aﬁ4-ﬂéwﬂf}.
i€S* :

Clearly, of — 1. Define t¥ := oft* 4- (1 — oF)t°. Then, (t¥,S*) € B;(p*) lor
all & sufliciently large, and (¥, S*) — (t*, S*). a
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Proof of Theorem 4.3 Given the positive numbers M of Assumption 4.2
and 6 of Lemma 4.4 applied to C = AN(M), define the trimmed simplex,

AN(M):={pe AN(M)|Vie N: p; > 6}.
Its faces are defined by
AT(M) :={pe A} (M)|Vie N\T: p; =6}, T € P(N).
Lemma 4.4 says that for each consumer j,

vrcnN: AT c | ¢,
SON\T

and Lemma 4.5 says that each Cf is closed. By Theorem 2.3C applied to the
covers of AY (M), {CF NAY (M)}sepny, § € N, there exists 7 : N — P(N)
such that

NCT9 nal (M) #0,

jJEN
U supp 7(j) = N.
JEN
This means that
3p~ € NICTY nay(M)), 2)
JEN
ViEN:r/ﬁ{jENlﬂ’(j)Bi}zl. (3)

On the other hand, by Assumption 4.2,

PR L OED B R (@)
By strict positiveness of p* and (3), inequality (4) holds true only if #{j €
N | w(j) i} —1 =0 lor every ¢ € N. This means that cach 7(j) is a
singleton, and function @ may be regarded as a permutation on N. 'The
theorem is established in view of (2). a
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