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Abstract

The purpose of this paper is to show the existence of stationary Markov processes of temporary
equilibria within the framework of a stochastic overlapping generations model; considering the pos-
sibility that each generation may have heterogeneous expectations for future states. As the main
theorem, we show that there exists a time-homogeneous Markov temporary equilibrium process
whose transition admits an ergodic measure when the expectations of members in each generation
are independently and identically distributed. The result may be regarded as an extension of the
analysis in Grandmont and Hildenbrand (1974) and Blume (1982). To establish the result we enlarge
sufficient conditions of theorem 1.1 of Duffie et al. (1994).

1 Introduction

In stochastic overlapping generations models, one can view the evolution of the economy as a sequence
of equilibria. Particularly, since a stationary equilibrium process may be a focal point on dynamic
economies, the problem of existence of stationary equilibrium processes has been studied in various
frameworks. As seen in Spear and Srivastava [15] and Duffie et al. [5], almost literatures show the
existence of rational expectations equilibria. The assumption of rational expectations imposes the
restriction that agent’s beliefs about future realizations be the true distributions of the relevant variables.
Alternatively, the same problem has been studied within the framework of temporary general equilibrium
models investigated by Grandmont [6]. Examples include Grandmont and Hildenbrand [7], Hellwig [8]
and Blume [1]. In temporary equilibrium settings, agent’s beliefs about future realizations are not
necessarily consistent with the true distributions. However, all agents have same expectations in the
model of Grandmont and Hildenbrand [7). ; o ‘

The purpose of this paper is to show the existence of a stochastic process of temporary equilibria
whose transition admits an ergodic measure, considering the possibility that ecach agent in sequential
cconomies may have a heterogencous expectation for future states. Since ergodic measures are the notion
of stochastic analoguc of steady states in deterministic systems, the existerce of ergodic Markov processes
is important, still more on the cconomy in which heterogencous agents exist. Intuitively, crgodicity
shows that the long-term average behavior of any dynamic paths on the economy is stable. The main

theorem shows that under standard assumptions there exists a time-homogeneous Markov temporary
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equilibrium process whose transition admits an ergodic measure if the expectations. of members in each
generation are independently and identically distributed. This result may be regarded as an extension
of the analysis in' Grandmont and Hildenbrand [7] and Blume [1]. The assumption that distributions
on expectations are independent may be not so much restrictive from the economic point of view. Note
that even if distributions on expectations are identical, the expectations of members in each generation
may be in general heterogeneous on any dynamic paths of the temporary equilibrium process.

The proof of the main result depends heavily on the method developed in a work by Duffie et al. [5],
where they established sufficient conditions under which an expectation correspondence has a time-
homogeneous transition probability with an ergodic measure. We enlarge sufficient conditions of theorem
1.1 of them. In the case that the state space is a product of two Borel spaces and the expectations
correspondence assigns each element of state space product measures whose marginal distributions to
one space are arbitrary fixed, to ensure the existence of an invariant measure, we can take into account
the noncompact self-justified set which is represented by the product of a compact set and a noncompact
measurable set. This result is quite similar to Theorem 2.1 of Blume [1].

The remainder of this paper is organized as follows. In section 2, some definitions of stationary Markov
equilibrium are introduced, adopting térnljnologieé and notations similar to those in Duffie et al. [5].
In section 3, we analyze a temporary equilibrium model and prove the main result. The arguments in
this section are mainly due to Grandmont and Hildenbrand [7], Christiansen and Majumdar [2] and
Blume [1]. o

The following notational conventions, definitions, and facts will be employed in this paper.. For a
correspondence F : X —' Y, f = F will denote a measurable selection from F and Gr(F) will denote
the graph of F. The product of topological spaces will always be given the product topology. The o-
algebra over any topological space X is to be understood to be the Borel a-aigebra, denoted by Z(X).
Given a measurable space (X, #(X)), the set of probability measures on X is denoted by (X ). Unless
otherwise stated, (X ) will be endowed with the weak convergence topology (Parthasarathy (12, p.40]).
Given the weak convergence topology, if X is a compact metric space, then (X) is compact metric

space (Parthasarathy [12, p.45]).

2 Stationary Markov Equilibria

We consider the method for constructing a stochastic process which describes equilibrium in cach
period. The descriptions and notations given here are for the most part consistent with Duffie et al. [5].
State space S is the space in which the equilibrium processes live. 'A state must therefore contain
enough information to represent equilibrium conditions. State space may be constructed by both ex-
ogenous and endogenous spaces. We assume S is a nonempty Borel space! .

The equilibrating forces in the model are described by an ezpectations correspondence G defined by,
G:5— 2(9).

i € G(s) is a distribution of tomorrow’s state consistent with the constraints imposed by the current
state s. If we regard S as the set of states of economy, then G can be interpreted as the constraint which

restricts the relation between a current state and distributions of tomorrow’s states.

1 A Borel space is a measurable subset of a complete separable metric space, endowed with the rclatnc topology and
the g-algebra generated by relatively open sets.
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Now, consider aset J C S such that if an arbitrary state in J is currently realized, then a corresponding
distribution of tomorrow’s states can be again a distribution on J. Such a subset is called a self-justified
set. That is, a self-justified set is a nonempty measurable set J C S such that G(s) N P(J) # 0 for all
s € J. Then we can obtain a selection II from G on J such that II(s) € G(s)N P(J) forall s € J. If
IT is measurable, I is what is called a transition probability. Given II : J — 2(J) and an arbitrary
initial distribution u € (J), we can construct a time-homogeneous Markov process {3,}72; on some
probability space such that for all ¢ it is almost surely the case that the conditional distribution of 54,
given 3p,---,3; is in G(3;). (This is the usual theory of Markov processes. See e.g. Doob (3, p.190].
About conditional distribution, see e.g. Dudley {4, p.269].) Then the evolution of {3,}2, governed by
IT satisfies the constraint on distributions of tomorrow’s states embodied in G. Hence we adopt the

following natural definition.

Definition 2.1 A time-homogeneous Markov equilibrium (THME) for G is a nonempty measurable
subset J and a transition probability IT : J — P(J) with II(s) € G(s) for all s € J.

For convenience, let (J,II') denote a THME for G. We are interested in a THME which is able to
sustain some notions of stationarity. An invariant measure for a THME IT : J — Z(.J) is a measure
u € P(J) such that

p(A) = /H(s)(A)d,u(s), for all A € &(J).

Definition 2.2 A stationary Markov equilibrium for G 1s ¢« THME which has an invariant measure.

A more restrictive notion of stationarity is given by an ergodic measure. If p is invariant for a
transition probability IT : J — 2(J), then a u-invariant set is a measurable subset A C J satisfying
II(s) € &(A) for py-a.e. s € A. If Ais a py-invariant set, A is also a g-invariant set. An invariant
measure y is ergodic for the transition IT if, for any p-invariant set A, u(A) =0, or u(A) = 1. Suppose
that p is an ergodic measure for IT. Let {§,;} be a Markov process induced by initial distribution g and
transition II. Let (Q, %, P) be the probability space which is the domain of {5;}. Ergodicity is the
following property(See e.g. Doob [3, p.219]). For any h € L'(J, 1),

T
o1 <
Ylgr;o T él h3(w)) = /hd/t, P—g.e wef

Roughly speaking, the sample distribution generated by {3,} converges to the ergodic measure almost

everywhere? .
Definition 2.3 An ergodic Markov equilibrium for G is a THME which has an ergodic measure.

For convenience, if y is an invariant (ergodic) measure for a THME (J,IT), let (J,IT, 1) denote a
stationary (ergodic) Markov equilibrium for G.

We summarize the result of Duffie et al. [5] in the following proposition.

Proposition 2.1 (Duffic et al. (1994)) If G i3 convez-valued with a closed graph and there exists a
compact self-justified set J C S, then there ezists an ergodic Markov equilibrium (J, I1, 1) for G.

2 e anv : ’ . . H . nas Lo : (o 3 (. R
For any point w € Q let g5} denote the measure which has mass - at cach of the n points §(w), -, 5. (w). p% is

called the sample distribution based on the n random mapping 31, -, §n at w(Parthasarathy (12, p.52]).



Now we wish extend their result. Consider the following situation.

(1) state space is the product of two Borel spaces S and Ss.
(2) G: Sy x Sy — P(S;) is given.

The main result in this section is as follows.

Theorem 2.1  If G is convez-valued with a closed graph and there ezists a nonempty compact set
J1 C S and a nonempty measurable set J, C Sy such that G(s1,52)NP (J1) # 0 for all (s1,52) € Jy X Ja,
then for all A € P (J;) there ezists an ergodic Markov equilibrium (Jy x Jo, II, n ®@ X) for G, defined by
G(sy,2) = {u® AMp € G(s1,52)}.

Proor: See Appendix.

When S; = {59}, it can be reduced to the case in Duffie et al. [5]. On the contrary, since the self-
justified set J; x J» may not necessarily be a compact subset of S; x S2, Theorem 2.1 is not contained
in Proposition 2.1. Qur result is quite similar to Theorem 2.1 of Blume [1]. In the same setting, Blume

shows the existence of stationary Markov equilibrium.

3 Ergodicity of Temporary Equilibrium Processes

3.1 The Primitives and Equilibrium Definition

We apply the result of section 2 to a temporary equilibrium model with the framework of an overlap-
ping generations model. The fundamentals of the economy have the following conditions. In some case
we use subscript ¢ to indicate the period explicitly.

Y is a compact metric space of exogenous shocks. The random process {y;} of exogenous shocks is a

time-homogeneous Markov process with transition P : Y — Z(Y).
Assumption 3.1 P is continuous and P(y) is atomless for ally € Y.

There are ! perishable consumption goods in each period. The ({41)-th good, money, can be stored
from one period to the next. The commodity space is R'*!. There are no future markets. We assume
that the total stock of money is constant and equal to AL > 0. ,

The number of agent types in each generation is n. Each agent lives for 2 periods. For agents of type
i, the consumption set in a single period is X* = Rfk.

The private consumption endowments for the first (young) period of agents of type i is defined by

el Y - RL, . eh Y o R, gives the endowments of agents of type ¢ for the second (old) period.
Assumption 3.2 ¢! and ¢} are continuous for all i.
p ! 2

Each agent has a von Neuman-Morgenstern utility function u* defined over consumption goods in

both periods.

Assumption 3.3 u' : X' x X' — R is bounded continuous function which is strictly concave and

strictly increasing for all 1.

83
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With e = (e}, e})™, and u = (u*)™,, the primitives of the economy is &= (P, e,u, M).

The set of admissible price systems is given by
A= {p=(r) € By x Ry Y b7 =1}

q is the vector of prices of consumption goods and r denotes the price of money. Let At = {p € Alg; >
0,¢=1,---,1} and A** = {p € A*|r > 0}.

Let A' = Rfjl be the action space of agent 7. For a = (z,m) € Al, z is current consumption and
m is saving ,in terms of money, to be carried into the next period. Let Z = [] A* x [ A* x A be the

endogenous space. We define the state space S as
S= {(yv(a17a2ap)) € Y x ZI Z(‘T}l + 'TIZ) = Z(ei(y) + e;(y))? Zm; = ‘\[}

Next we consider the standard optimization, problem of agents. Let us first consider an old agent at
period ¢. Given the current exogenous shock y, price p and the action @} € A’ that he took at period

t — 1, an old agent chooses a current consumption z} € X' to maximize his utility u'(Zi,) subject to
gz} = qey(y) + rimj.

The solution of this problem is denoted ¢:(y,a},p). Note that from Assumption 3.3 no solution exists
if pe A\ A*. ti(y,al,p).= (¢'(y,@,p),0) is the action chosen by the old agent i. This défines the old
agent’s demand function, .
&Y, x Al_, x A = AL

Next consider a young agent at peﬁod t. A young agent makes a forecast of the equilibrium price
system and of the exogenous shock in the next period. By assumption, the agent’s expectation depends
only on the current exogenous shock, price system which is currently quoted and the equilibrium price

system that prevailed in the preceding period.

Assumption 3.4 The ezpectation function P Yy x Aoy X Ay — P(Yig, X A;"_H) s continuous for

all i. The set & & {¢}Y? is continuous.} is endowed with the compact-open topology® .

Given the current exogenous shock y, the current price p;, the previous equilibrium price p;_; and the
expectation function %', a young agent’s choice among actions is made in the usual dynamic program-
ming fashion. More precisely, the young agent chooses a} to maximize, subject to his budget constraint

gl +remi = qiel(y), the expected utility v¥(y, ¥, pi—1,p¢, a}) defined by

vi(yﬁ 'Zf'l)i7pt—l s Pty ai ) = / ui(Ii 3 éi('a (li, '))dl/)i(yvpl—l 71’1)-
Y¢+1 XA;*:H
The optimal actions of this problem is denoted by &i(y, ¥*, pr—1, p¢)-
If p, € A7\ AFT and agent 7 has the expectation 3* such that for some (y, pi—, )y (Y, pe—1, p)(Y %
A**) > 0, then clearly no optimal solution exists for agent 2. Roughly speaking, if the price of moncy

is zero 1n a period and a agent forecasts that it will be positive in the next period, he will infinitely

3 A subbasc for this topology is given by sets of the form {¢:[¢:(D) C U} for any compact subset 1 of ¥ x A x A and
any open subset U of (Y x A+). ¥ is a separable metric space with this topology (Kuratowski [11}, p.93-94).
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demand money. Hence in the sequel we assume that all agents in the economy have the expectation
e i defined by

o' = {'ﬁi € SVvLﬂt € Af \Af* = 1/)i(y,Pt~1,Pt)(Y X A?-++1) =0, for all (y,p—1) €Y x Ay }.
Assumption 3.5 o' ¢ ¥ for alle.
Let ¥ = 11 ¥ be the space of expectation profiles for a single generatién in a single period.

Definition 3.1 A temporary equilibrium given (y,s,%) € Yy x S;_q x ¥, is a pair of allocation and
price (af,a3,p*) € Z, satisfying the following conditions,

(i) ai* € &i(y, ¥, p,p*), for all 4,

(ii) ab* = &i(y, ab, p*), for all 4,
(i) 3o;(23" + 257) = Lilei(y) + ex(v)),
(iv) Yo, mi* = M.

This is the standard temporary general equilibrium concept. Let {1}, be a W-valued stochastic
process on some probability space (2, Z,Q).

Definition 3.2 A temporary equilibrium process with respect to {1,7’,}?;1 15 & S-valued stochastic process
{31122, on (9, F, Q) such that it is almost surely the case that for all t > 1 (al,a?,p) is a temporary

equilibrium given (¢, s¢—1, ¥e).
The main result of this paper is as follows,

Theorem 3.1 Under assumptions from 3.1 to 3.5, if {4,}32, is an i.i.d. process, then for arbitrary
economy & there exists a time-homogenecous Markov temporary equilibrium process {3,}52, with respect

to {1, }2, whose transition admits an ergodic measure.

The proof of the theorem is relegated to subsequent subsections. The result in Grandmont ahd
Hildenbrand [7] follows immediately from Theorem 3.1 when ; is a constant mapping whose distribution
is some Dirac measure 6, for all t * . In this case there is no possibility that each generation may have
héterogcneous expectations.. While, in our setting, even if {?,B,}‘f_'i_, Is 1.1.d., the expectations of members
in cach generation are in general heterogeneous on a dynamic path (si—1,%¢)2, of temporary equilibrium

process {3,}52, with respect to {15,}2,.

3.2 First Step: the Temporary Equilibrium Correspondence

In this subscction, from demand correspondences of agents we construct the temporary equilibrium
correspondence and prove the properties.

Old agent’s demand function has following propertics.

Proposition 3.1 Under Assumption 3.2 and 3.9,

* the Dirac measure at ¢ is the measure that assigns unit measure to the singleton {}.
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(i) ¢' : Y x A} x AT — X3 is a continuous function.
(ii) Let the sequence (y, @i, p") € Y x A} x A* be convergent to (y,a},p) such that p € A\ At. Then
”d’i(yn,ain,pn)ﬂ diverges to infinity.

Proor: The correspondence B : Y x A} x A¥ — X' where Bi(y,ai,p) = {z} € X'|gz} =

gei(y) + rmi} is clearly nonempty, compact-valued and continuous correspondence. Since u'(zi,) is

continuous and strictly concave, (i) follows from the Maximum theorem. (ii) is obvious from strict

monotonicity of u'. g

Clearly &} is also continuous.
Next we consider the optimization problem of young agents. The expected utility v has the following

properties.

Lemma 3.1 Under assumptions from 3.2 to 3.4, v' : Y x ¥ x A,_; X A?’ x A} — R is a continuous

function.
PRrOOF: Let (y", %", pi_1, P}, ai") = (¥, %", Pi~1, P, 01). Clearly,
. . . . . i : -1 .
vy, Pt ponal) = / w2, )Y (s peors pO)S ek ).
R

Since from theorem 7.5 of Kelley [10, p.223], compact-open topology and jointly continuous topology is
coincident on ¥¥, we have i (y", pf_y.p}) — $(y, pi—1,p:)- Define p™ = ™ (y™, pp_, p)¢' " (ai®, -, )
and g = ¥i(y,pr_1,pe)é'  (ai,-,-). Then we obtain ™ — u by theorem 68 of Hildenbrand [9, p.51].

[ gan - [t < | [ - [wera
+] [ gan = [uitel au (1)
Since {u(zi",-)} is uniformly bounded and equicontinuous, the first term of the right-hand side of (1)

converges to zero from theorem 6.8 of Parthasarathy [12, p.51]. The second term also converges to zero

because ui(xin, ) - ui(zi) ) Hence Ul(ynv wln’p?—lvl)?aatln) - vl(yv wtvpl—laphai.)' [ ]

Lemma 3.2 Consider ai, a'i € Al such that a} # a’i. Under assumptions from 3.2 to 3.4,
fOT any (yv lr/)ivpl—hpt) € Y X wi X At—l X A?‘ and 3 € (071)7 vi(yvz/”ivpl—lapl»tai + (1 - t)a’;) 2
tvi(y,zj)i,p,_l,pt,ai) +(1~ t)vi(y,¢i,pt_1,p,,a';). Inequality is strict if and only if (1) :vi #£a'l or (2)
i = z'} and mi # m'] aend (y,¥', pi—1,pt) satisfies that Py, pe—1,p (¥ x AtT) > 0.

Proor: By definition of ¢!

vy, %", peor,ptal + (L —t)a'y)
= /Tli(tiﬂi + (1 — t)I“l’ ¢l(fa; + (1 . t)a'i, : .))dylji(y’p‘_] 7[)[)

v

/ u'(t‘z,",' + (1~ t).t'j,téi(ai vy (1= t)go'i(a'j, ; -))d-z/)"(y,pl*l,pt).

(1) is obvious from strict concavity of u’. Let mi > m’:. For any (§,pi+1) € ¥ x Af, \ AEY the budget

constraints Bi(§, pri1,al) and Bi(, pit1,a'}) are coincident and hence ¢*(§, i1, a}) = gSi(g},ﬁ,H,a'j ).
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For any (§,pi+1) € ¥ x A?-++1 we have ¢'(§,pr41,a}) # ¢i(g,ﬁt+1,a'i) from strict monotonicity of u’.
Hence when 1*(y, pi—1,p)(Y x ATT) > 0, (2) follows from strict concavity of u’. g

We can prove the following properties of demand correspondence &} .

Proposition 3.2 Under assumptions from 3.2 to 8.5,

() &Y x & x Ary x AF — Al has a closed graph.
(i) & Y x ¥ x Ay X AFT — Al is o continuous function.
(iti) Let (y, 9, pe—1,pt) € Y x T x Apmy x (AF\AFY). & (y, ¥, pe-1, pt) is nonempty. Ifai = (zi,mi) €
E;(y,I/’I’Pt—laPt): then (I;’tm;) € fi(ya¢',Pt—1,Pt) fOT all t Z 0.

Proor: ,

(i) Let (y™, %™, pi1, PF) = (¥, %', pe=1,pe) and oi* — @; with af* € &{(y", %™, pf_;,p"). The cor-
respondence B : Y x¥ix A} — A}, where Bi(y, %', p1) = {a} € Al|p;ai = qei(y)} is clearly nonempty-
valued and continuous correspondence. Since v* is continuous from Lemma 3.1, v‘(y", i, Pr_1,P%s ai") >
v (y", 9™, piy, PF, ai), for all aj € Bi(y™, ', pp) implies v(y, %", pe-1,p6,a}) 2 v'(y, %%, pi-1,p1 a}),
for all ai € Bi(y,¢*, p:). Hence @i € &i(y, v, pi—1,p¢)- &

(i) B} : Y x B x At — Al is clearly nonempty, compact-valued and continuous correspondence.
Then ¢ is nonempty-valued and us.c. on Y x & x A,_; x AF* by maximum theorem. Let al
@'y € Ei(y, %", pe—1,p:). From Lemma 3.2(i) zi = «'}. But this implies mi = m'} since quzi + remi =
g’} + rym'] and r, > 0. Hence &i(y, ', pi—1,p:) contains only one point. Hence ¢i is a continuous

function.

(iii) From Assumption 3.5 we may restrict our attention to the state (y,p) € Y x Af, \ At}. While

in this case for any a} and a'i € Al such that zi = z’i, we have ¢*(al,y,p) = ¢i(a’i, y,p). Now consider
the problem of maximizing v*(y, ¥, pi—1, p1, ) under Biy(y, ¥, p) def {a} € Al|piatl = giei(y),mi = 0}.
Let &iy(y, %, pe—1,p:) be the optimal actions of this problem. We define the set

&y, %' o1, pr) = {a = (z},m])lfor some (z},0) € &jo(y, %", pe—1,p1), (2}, m}) for all mi > 0}.

Then clearly é{(y, ¥t pi—1,p0) = E(y, %, pi—1, pe). While & (y, ¢, pr—1,p¢) is nonempty from compact-
ness of Bio(y,¥", p:). Therefore £i(y,", pi—1,p¢) is also nonempty. g

We shall denote by V(y,s,%) the set of temporary equilibria given (y,s,%). Now we define the

temporary equilibrium correspondence as
WY, xS x Q}t E] (y;5)¢) = (y,V(y,s,t,b)) C S

We can prove the following proposition.

Proposition 3.3 Under assumptions from 3.2 to 3.5, W is (i) nonempty-valued, (i1) compact-valued

and u.s.c.

Proor:
(1) Fix (yo, 0, {0 ). For any p € A*, consider the set ((p) of aggregate excess demand,

€)= 3 (6iu0, 5. p0,2) + (€330, alo, P)} = {(ci(w0) + 3 (w0), M)}).
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We wish to find a p* such that 0 € ((p*). Now from Proposition 3.1 and 3.2, ¢ is a continuous function
on Att. From Walras law, p € AT, z € {(p) imply pz = 0. Next consider a increasing sequence of
compact, convex subsets A™ of AT such that AT+ C |JA". For each n we define Q™ as the convex
hull of ((A™). Then Q™ is convex compact set. For any z € Q, let 8"(z) be the set of prices p € A"
which maximize p - z. To each (p,2) € A™ x Q™, associate the set §*(z) x {{(p)}. This correspondence
has a fixed point. That is, there exists p® € A™ and z"® = ((p") such that pz” < p"z" = 0, for
all p € A". This implies that {z"} is bounded. Indeed {z"} is clearly bounded below. And since
p'z™ < 0 with 0 < p! € Al, {z"} is bounded above. We may therefore obtain convergent subsequences
z™ — z* € R and p™ — p* € A. Clearly p* € AY, for otherwise, one could contradict Proposition
3.1(i). Since ¢ has a closed graph on A™, this implies z* € ((p*). Finally pz* < p*z* = 0forallp € At.
It follows that z* < 0. Hence if p* € AT+, 0 =z* € ((p*). When p* € At \ At*, we have 2z} =0 and -
zy, <0, where 2* = (z},2;,) € R! x R. From Proposition 3.2(iii), this implies 0 € {(p*) in this case,

too.
(1) Let us first prove the following Lemma.

Lemma 1 Let X and Y be metric spaces. ¢ : X — Y is compact-valued and u.s.c. if and only if

z™ — 20, y™ € ¢(z™) implies there exists a subsequence y™ converging to some y € ¢(z).

Proor: (only if part) Since | Jow,{z"} is compact, | Jow, #(z™) is also compact. Hence y” has a
convergent subsequence y™ — y. Then y € ¢(z°) since ¢ has a closed graph. (if part) ¢ is clearly
compact—valued. Suppose that for some z°, ¢ is not u.s.c. There exists an open set U D é(z°) and a
sequence z" € V™(z%) such that V*(z%) = {z € X|d(2°,z) < 1} and ¢(z") ¢ U. We have a sequence
y™ € ¢(z™)(U°. Then there exists a subsequence y™ — y € ¢(z°). This contradicts y € U®. g

Hence it is sufficient to show that (y",s",¢¥™) — (y,s,%¥) and 5" € W(y",s™,¥") implies that there
exists a subsequence 5% — 5 € W(y, s,%). Since ¢} has a closed graph and £} is continuous, {(p,y, s, %)
has a closed graph. it is easy to see that W itself has a closed graph. We claim that §* = (§"*,a}, a7, p")
has a convergent subsequence. Since p" € A, there is a subsequence p™ — p € A. Clearly p € A*, for
otherwise, one could contradict Proposition 3.1(ii). Since compactness of 3 (el (Y)+eb(Y')), there exists
k € R' such that 3 (ei(y)+ei(y)) < kforally € Y. Hence we have 0 < zi™ < Y (el (y™) +eb(y™)) < k
and 0 € mi® < M for all n and i. Then there is a convergent subsequence of a}. Therefore There
exists a subsequence (y",ai",a;",p"") — (Q,dl,&g,ﬁ) €Y x R x R'™*! x A*. Hence we have

(§,61,a2,p) € W(y,s,%) since W has a closed graph. g

3.3 Second Step: the Expectations Correspondence

First, we can prove the following lemma. This lemma shows the existence of a self-justified set.

Lemma 3.3 Under assumptions from 3.2 to 3.5, For any state s € S there is a compact subset J of
S containing s such that W(Y,.J, kﬁ) cJ.

Proor: Assume the proposition is false. Then there exists s = (yo, @10, a20,p0) € S such that for
every compact subset J containing sq we have W (Y, J, %) ¢ J. Choose p € A \ A% such that p # pq.
Let Un(p) = {z € R'"*'|d(p,z) < L}. For some n we have py & Un(p). A™ def ANTUnim(p)© is a

compact subset of A for all m € N. Then J™ = {(yo, a0, az20)} X A™ is a sequence of compact subset
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of S containing sg. By assumption there exists (y™,s™, ™) € ¥ x J™ X ¥ and there is 3™ € S such
that (1)5™ € W(y™,s™,¢v™) and (2)5™ ¢ J™. Clearly p™ — p € A\ A*. While the sequence {al'} is
bounded. This is a contradiction to Proposition 3.1(ii). g

Next, we concretely construct the expectations correspondence é’ From Lemma 3.3 ﬁhere exists a
nonempty compact set J C § such that W(Y,J,%) C J..Let W denote the restriction W to ¥ x J x &,
that is, .

WYy x Jop x @ — Jy.

Ji—1 and J; are identical. Fix (s¢—1,%:). This point (s;—1,%:) and an exogenous shock y,; determine
corresponding -period’s temporary equilibria, V‘/’J(y“-s:_l,'d)t): Now choose a selection f from W’J.
Then f(-, s¢—1,%:) is a function which assigns a exogenous shock a corresponding temporary equilibrium.
Meanwhile, since t-period’s distribution of exogenous shocks is determined to P(y.—1), Yt is fegarded
as the probability space (Y3, B(Y:), P(yt-1)). In additioﬁ, if f is a measurable selection from W, we
can obtain a distribution of temporary equilibrium, P(y;—1)f(-,se—1,%¢)"" € F(J,). é(s,_l,yb,) is
constructed as the set of all ¢-period’s distributions of temporary equilibrium related to (s¢—1,v:). That
is, ' ‘ C ’ o
G oy x ¥ 3 (5,9) = {P)f(5,9) 71 € P(I)IF R Wi} C P(T).

Note that G is nonempty-valued. Indeed, since W is clearly nonempty-\;alued, combact-valued and
u.s.c. from Proposition 3.3, there exists a measurable selection f from W by the Kuratowski-Ryll-
Nardzewski Theorem (Hildenbrand [9],p:55). .

Finally, we can prove the following property of G.

Proposition 3.4 Under assumptions from 3.1 to 3.5, (z) G has a closed graph and () G is convez-

valued.

~ Proor: We claim that & C ¥ is closed. it suffices to show that ¥ C ¥’ is closed. Let 1 n bt with
W" € . Choosc pL€ At \A++- For all (y, pi—1), we have B/?in(y,Pt—hPt) - 1/Ji(y7Pt—1,Pt)« (See the
proof of Lemma 3.1.) Since Y x A** C Y x A% is open, by the theorem 6.1 of Parthasarathy [12, p.40],

0 = liminf ™" (y, peo1, PO(Y x A%F) 2 §'(y, pr, p)(Y x AFF).

Hence ' (y, pi—1, p (Y x A+F) = 0. Now Proposition 3.4 follows from theorem 3.1 and 3.2 of Blume [1]

Now Theorcmn 3.1 follows directly from Theorem 2.1. From Proposition 3.4 G is convex-valued with a
closed graph. J is compact and for all (s,9) € J x &, G(s,1) C P(J). The assumptions of Theorem 2.1
is all satisfied. Let A € .9”(@) be the identical distribution of {1,7’,}?;1. When G : J x ¥ — P(] x !:/) is
defined by G(s,%) = {p@ A € G(s,%)}, we can obtain an ergodic Markov equilibrium (J x &, IT, p® A)
for G. The Markov process {3,_1, ¢4}, which is constructed by (J x @, 1T, ® A) is clearly the required
temporary cquilibrium process {3,172, with respect to {t:’,}?i] This completcé the proof of Theorem

3.1.

Appendix
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Proor oF THEOREM 2.1 : (This proof is adapted from Duffie et al. {5, Theorem 1.1 and Corollary
1.1])

The map j is defined by j : 2(S1) > u— p® X € P(51)® A5 . Clearly j is bijective and linear.
Since G is the composite correspondence of j with G, G is convex-valued with a closed graph. Let G
be the restriction of G to J; x J; in both domain and range, that is, Gy : J; x Jo, = F(J1) @ A, where
G(s1,8) = 6(51,32) ® A. G is also convex-valued with a closed graph. Let m; : &(Gr(G;)) —
P(J; x Jo) and my : P(Gr(G ) — P(P(J1) ® A) be the restrictions to P(Gr(G s)) of the functions
that give the marginals of distributions on J; x J2 X &(J;) @ A.

Lemma 1 For afbitrary 6 € P(J, x Jy), there exists v € P(Gr(Gs)) such that my(v) = 6.

ProOF: There exists a measurable selection IT ~ G from the Kurat-owski-Ryll—Nardzeyvski Theorem
(Hildenbrand [9],p.55). We define the function

k:Ji1xJs> (51,32) — (.S],Sg,H(S[,Sg)) € J; x Jy x 9(.]1) @ A.

Clearly k is measurable. For arbitrary 8 € &(J; x J;), we have a distribution 6k~! € P(J; x.J, x P(J;)®
A). Then 8k~ is obviously a measure in #(Gr(G;)). Since forall A € B(J; x J2), 0k H(Ax P(J1)QN) =
6(A), we have m;(8k~1) = 6. 4

From Lemma 1 we can define the nonempty-valued correspondence my! : P(J; x Jo) — P(Gr(G y)).
m ! is clearly convex-valued with a closed graph. Let C(J;) be the set of all continuous functions on
Ji. Let T': C(J1) — C(J; x J2) be the bounded linear operator which is defined by I'(f)(s1, s2) = f(s1).
For any nn € 2(%(J;) @A), we define the bounded linear functional

A:C()> fw / / T(f)(s1,s2)dp’ @ M(s1,s2)dn(p’' @ A) € R.
(JU)DA J Iy x Tz

4

By the Reisz représentation theorem (Royden {13}, p. 357), there exists En € Z(J;) such that for all
Fec(h)

A(f)= | fdbn.

This function E : #(P(J,) @A) — P(J;) is continuous and linear. Since Eomyomi'oj: P(J) —
P(J1) is convex-valued with a closed graph, by Fan-Glicksberg fixed point theorem this correspondence
has a fixed point. Let M be the set of fixed points of this correspondence. M is clearly convex and
compact.

We claim that for each p € M thereis & = G such that p = [Edu@ A For each 1 € M there
exists v € P(Gr(Gj)) such that E o my(v) = j~' o m(v) = p. Then there exists a measurable
P:Jy xJy, = P(Z(J)® \) such that

v(E X F)= / P(s,s2)(F)dp® A, for all E € B(J, x Jz) and F € B(P(J;)Q N).
= :
The existence of P can be verified from Dudley [4](p.269, theorem 10.2.1).

Lemma 2 p= [EoPdu®A

S 2(N)ONE {uo A€ 2(41)).



Proor: From Reisz representation theorem, for f € C(J;), we have two equations

/ fdEo Pdp® X = / / / | T(f)dy' @ AdP(s1,82)(¢' @ N)dp @ A,
JixJy JJy JixJy JP(L)BA J Iy x Ty :

/Jl fdE (/P(sl,SZ)du@)/\) Zv/ﬂm@) /Jlsz N © 2 (/p(51,32)_d,¢®x).

Then right-hand sides of this equations are equal. For, in general, we have for an arbitrary measurable

function g on P(J;) @ A

/ / gdP(s1,8)dp @\ = / gd (/ P(sy,s2)dp ® /\) . (2)
Jix J, 9(.]1)®/\ 9(J1)®/\

Indeed, it is easy to see that (2) holds for any characteristic functions and simple functions. For an
arbitrary measurable g, there is an increasing sequence of simple functions which pointwisely converges to

g. From monotone convergence theorem(Royden [13], p.265), (2) holds for g. Hence for each f € C(Jy),

/ deoPdu®/\=/ de(/Pd,u@)\).
Jlsz Jl Jl

For any closed set F of Jv, we define B,(F) = {s1 € J1|d(F,s;) < ;11-}, n > 1. There is a continuous
function f, on J; to [0,1] such that f, is zero on J; \ B,(F') and one on F. Clearly lim f, = xr. From

we have

bounded convergence theorem(Royden [13], p.267),

limfjlxj2 le frndEoPdp®@ A= limfjl fodE([ Pdp® N)
& [y wn [y imfadEoPdp@ A = [} lim fodE([ Pdp @A)
ad Jrxn EoP(F)dp® A = E([ Pdu @ M\)(F).
Since every measure on a metric space is regular (Parthasarathy [12], p.27), we have / TixJs EoP(A)&,u@
A= E(f Pdp ® M)(A) for all A € B(J;1). Further E([ Pdu ® \) = E(m,(v)) = p implies the required

result. g

Next we will show that Eo P(sy,s;) € G(sy,52), 4 ® A-a.e. Consider f € C(J;) and a constant € € R.
We define

max /fdp £€</deoP(sl,sz)},

pE€G(s1,32)

B« {u®/\e9(.],)®/\i/1“(f)dp®)\>s},

A dé{ {(31752)

Al déf {(.91,52)[ max /fd/) <e ) P(31752)(B) > 0}‘
p€EG(31,32)

Lemma 3 AC A
Proor: Let (s;,82) € A.

e< | fdEoP(sy,s2) = / / L(f)dp' @ MdP(sy,52)
J P(J)QAJV Iy xSz

/ / D(f)du’ © AdP(s1, 52) +
BJIyxJ,

]

/ F(f)d,u' ® )\dP(sl, 32)
Be Jlsz

// I’(f)(i/;'@z\dP(sl,52)+/ edP(sy, s2)
B JJyxJ, Be

/ / I(f)du’ © MP(s,32) + £P(s1,352)(B°).
BJIxa v

IA

fl

91
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Thus we have

[ [ ra e xap(srs) > 1 - Plowsa) (B
BJJyxJ,

Suppose P(s1,s2)(B) = 0. Since P(s1,s2)(B°) = 1, we have 0 = [, lexJz I'(f)dy' ® AdP(sy,s2) > 0.

This is a contradiction. Hence (s1,52) € 4'.

Suppose that g ® A(A) > 0. Then g @ A(A’') > 0 from Lemma 3. Since v € P(Gr(G)) and
G j(s1,52) N B = { for any (s1,s2) € A’, we now have

0=1v(A4'x B) =/ P(s1,32)(B)dp @A > 0.
AI
This is a contradiction. By similar arguments, for each f € C(J,) we obtain

min /fdpf/deoP(sl,sz)S max /fdp, LN~ a.e.

pEG(s1,52) pEG(s1,32)

Suppose that for u @ A -a.e.(sy,s2), E o P(s1,52) & G(Sl,32). Let &(J;1) be the dual of &(J;). Since
G(sy1,s2) C P(J1) is a convex set, by separation theorem there is an element F of 2(J;)" such that
F(EoP(sy,s2)) > F(p)forall p € G(s1,s7). While C(J;) is a weak* dense subset of 2(J;)'(Schaefer [14,
p.?]). Hence there exists f € C(J;) such that [ fdE o P(s;,s2) > [ fdp for all p € G(s1,5,). This is a
contradiction. Hence F o P(s;;3;) € é(sl,'.SQ), LR A-ae.

Choose arbitrary X’ = G. Define the function X on Jy x J, whose value equals to Eo P(s1,52) on p@A
-a.e.(sy, s2) and X'(s1, s2) on the complement. Then ¥ % G. From Lemma 2, we have p = qu @ .
Define II(s1,s2) = Z(s1,52) @ A, and now we have IT © G such that p @ A = JOp@ A

Finally we show that there exists p € M such that p @ A is an ergodic measure for some measurable
selection IT from G ;. Let ;1@ A be an extreme point of M @ A 6 and IT be the measurable selection from
G j associated with p @ A. Extreme points exist by the Krein-Milman theorem({Royden (13, p.242]). Let

F .C J, be the support of A. We first prove the following lemma.
Lemma 4 If for some E C Ji, E x F is a 4 @ A-invariant set, then p @ M E X F) =1 or 0.

Proor: Suppose that g @ A(E x F) € (0,1). Since E X F is p @ A-invariant, E¢ x F is also u @ A-
invariant. Let v and 7 be the conditional probability of u @ A relative to E x F' and E¢ X F respectively.
That is,

4ot LONAN(E x F))

def M @ /\(.4. n (EC x F))
v(4) O ME x F) B

,U@/\(Ec < F) ) forall A € .@(]1 X ]2)

n(4)

Clearly v and n are elements of &(J;) @ A. We claim that v and 7 are invariant measures for II. Since
p @ A is an invariant measure for IT, we have p @ AMAN(E x F)) = [II(AN(E x F))(s1,52)dpt @ A for
all A € B(.J;, x.Jy). Hence

oA) = / Dts)(ANE X F) oy

O AME x F)

SMOA def {nSApe M}
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Since p @ A is an invariant measure and F x F is a 4 @ M-invariant set, we have
LRMAN(EXF)) = //H(sl,sz)(A N(E x F))I(s},s5)(ds1,ds2)dp @ A(sh, sh)

= //E FH(S“SZ.)(A“(ExF))H(Sllab"z)(dsl,dsz)dp®,,\

/ II(sy,s2)(A)I (s}, 5)(ds1,dss)dp @ A
ExF

//H(sl,sz)(A)H(s'l,s'z)((E x F)N (dsy,dsg))dp @ .

Hence
LOUANEXF) _ [ f H(sh52)(_4)17(#1,sa)ﬁ(gﬁglnﬁg?sl,dsz»d” oh
' B II(s, sh)((E x F)n (4)
= /H(°1’32)(A)d< u%MExF) du C’”)

Therefore we have v(4) = J I (s1,s2)(A)dv. In the same way we can prove that 7 is an invariant
measure for II. v and 7 turn out to be elements of M @ A\. Now we have y @ A = p(E)v+(1 — p(E))n,
which contradicts the fact that 4 @ A is an extreme point of M ® A. g

Let D C Jy x Jz be a p @ A-invariant set Let F' be the support of A. Then there ex15ts anAxFCD
“such that H(Sl,bz) € A x F for all %) Mae. (51, s2) € D. From Lemma 4, @ MA x F) is zero or one.
If u@A(A x F) =1, we have p @ A(D) = 1. Suppose that 4@ A(((J; x F)\ (4 x F))N D) > 0 when
g2 AMAx F)=0. We have
I = p@MH xF)\(AxF))
H(SI,SQ)(-]I X F\A X F)dy®/\

/(.h X F\AXF)nD

+/ H(SI,SQ)(JIXF\AXF)d/l®A
Ji xF\AXF)\D

< 1

This is a contradiction. Hence if p @ A(A x F) = 0, we have £ A(D) = 0. Therefore @ A is an ergodic

measure for I7. g
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