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1 Introduction

Quantum circuits are proposed as a parallel model of quantum computation by

Deutsch [3], in which computing devices, called quantum gates, are connected acyclicly.

Here we are concerned with parallelization of quantum circuits by using ancillae (i.e.,

auxiliary quantum bits). By parallelization of quantum circuits, we mean to reduce

depth of quantum circuits. In this paper, parallelizations of two types of quantum

circuits are considered. The two types are quantum circuits consisting of controlled-

not gates and phase-shift gates and quantum circuits consisting of controlled-not.
gates and Walsh-Hadamard gates. As a by-product, upper bounds of the number

of ancillae for parallelizing such quantum circuits with $n$-input to logarithmic depth

are reduced to $1/\log n$ of the upper bounds shown by Moore and Nilsson [4].

2 Preliminaries

Let us introduce some terminologies of quantum circuits (see [3, 5] for details). Let

$|0\rangle=$ and $|1\rangle$ $=$ .

For $x=(x_{1}, x_{2}, \ldots, X_{n})\in\{0,1\}^{n}$ with $n\geq 1$ , let

$|X\rangle=|x1,$ $X2,$ $\ldots,$
$Xn\rangle=|X_{1}\rangle\otimes|X_{2}\rangle\otimes\cdots\otimes|x_{n}\rangle$ ,
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$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\otimes \mathrm{i}\mathrm{s}$ the tensor product operation. It follows that $|x\rangle$ is a unit vector of length
$2^{n}$ for each $x\in\{0,1\}^{n}$ . A matrix $U$ is called unitary if $UU^{\uparrow}=U\dagger U=I$ , where $U^{\uparrow}$

is the transposed conjugate of $U$ , and $I$ is a unit matrix.

In quantum computation, a bit is represented by a two-state physical system,

and is called a qubit. For $n\geq 1$ , a state $|\psi\rangle$ of $n$-qubit can be represented as a
superposition of $|x\rangle$ $\mathrm{s}$ with $x\in\{0,1\}^{n}$ ,

$| \psi\rangle=\sum_{x\in\{0,1\}^{n}}a_{x}|X\rangle$
,

where all $a_{x}\mathrm{s}$ are complex numbers satiswing $\Sigma_{x\in}\mathrm{t}^{0,1\}^{n}}|a_{x}|^{2}=1$ . Each $a_{x}$ is called
the amplitude of $|x\rangle$ in $|\psi\rangle.$

’ and for $a_{x}=|a_{x}|e^{ib_{x}},$ $bx$ is called the phase of $|x\rangle$ in state
$|\psi\rangle$ .

A quantum circuit is a directed networks connecting quantum gates acyclicly.
Each quantum gate has the same number of inputs and outputs, and is specified by
a Iunitary matrix in such a way that an $k$-input $k$-output quantum gate $\mathrm{c}$ for some
$k\geq 1$ , which is specified by a $2^{k}\mathrm{x}2^{k}$ unitary matrix $U_{\mathrm{G}}=[u_{xy}]$ for $x,$ $y\in\{0,1\}^{k}$ ,

realizes a mapping of states of its inputs to states of its outputs as follows:

$|x \rangle\mapsto\sum_{y\in\{0,1\}}ku_{x}y|y\rangle$
.

Depth of a quantum circuit is the length (i.e., number of quantum gates) of the
longest directed path in it. Ancilla is a qubit which is in state $|0\rangle$ at the beginning
and the end of realization. We say that for some $\gamma\geq 0$ , a quantum circuit with $\gamma$

ancillae realizes a mapping

$|x_{1,2,\ldots,n}Xx\rangle\mapsto|y_{1},$ $y_{2},$
$\ldots,$

$y_{n}\rangle$ ,

if it realizes the mapping

$|x_{1,2}X,$
$\ldots,$ $x_{n},$ $0^{\gamma}\rangle\mapsto|y_{1},$ $y2,$ $\ldots,$ $y_{n},$

$\mathrm{o}^{\gamma}\rangle$ .

In this paper, we are concerned with the relation of depth and number of ancillae
of quantum circuits.

Here We consider quantum circuits with phase-shift gates, Walsh-Hadamard
gates, and controlled-not gates, and these gates are respectively specffied by uni-
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tary matrices $\mathrm{P}\mathrm{S}_{\theta}$ for $\theta$ : $\{0,1\}arrow[0,2\pi),$ $\mathrm{W}\mathrm{H}$ , and $\mathrm{C}\mathrm{N}$ , which are defined as follows:

$\mathrm{P}\mathrm{S}_{\theta}=$

.

’ WH $= \frac{1}{\sqrt{2}}$ , CN$=$ .

By applying $\mathrm{P}\mathrm{S}_{\theta}$ gate and $\mathrm{W}\mathrm{H}$ gate to the j-th qubit of $n$-qubit, the mappings

$|_{X_{1}},$ $X_{2},$
$\ldots,$

$Xn\rangle$ $\mapsto$ $e^{i\theta()}|x_{j}X1,$ $X_{2,\ldots,n}x\rangle$ ,

$|_{X_{1},x_{2}..,X}\text{ノ}\cdot\cdot n\rangle$ $\mapsto$
$\frac{1}{\sqrt{2}}\sum_{y\in\{0,1\}}(-1)yx_{j}|x1,$ $\ldots,$ $X_{j}-1,$ $y,$ $x_{j}+1,$ $\ldots,$

$Xn\rangle$

are realized, respectively. By applying $\mathrm{C}\mathrm{N}$ gate to j-th qubit and k-th qubit of
$n$-qubit respectively as its first and second input, the mapping

$|x_{1,2,\ldots,n}Xx\rangle\mapsto|x_{1},$
$\ldots,$ $xk-1,$ $X_{k}\oplus Xj,$ $xk+1,$ $\ldots,$

$X_{n}\rangle$

is realized. The first input of $\mathrm{C}\mathrm{N}$ gate is called the control-bit, and the second input
of $\mathrm{C}\mathrm{N}$ gate is called the target-bit

For quantum circuits consisting of $\mathrm{C}\mathrm{N}$ gates, following result was showed in [1].

Proposition 1 Quantum circuits consisting of $\mathrm{C}\mathrm{N}$ gates can be parallelized to

$O(n^{2}/\gamma+\log(\gamma/n))$

depth by using $\gamma$ ancillae for $\gamma\geq n$ .

Let $\mathrm{C}\mathrm{N}(n, m)$ be a set of mappings over states of $(n+m)$-qubit such that each
mapping of $\mathrm{C}\mathrm{N}(n, m)$ can be specified by an $n\cross m0- 1$ matrix $A=[a_{jk}]$ such that

$|_{X_{12,\ldots,y}},$$Xx_{n},1,$ $y2,$ $\ldots,$
$ym\rangle\mapsto|x_{1},$ $x2,$ $\ldots,$ $X_{n},$ $z1,$ $z_{2,\ldots,m}z\rangle$ ,

where $z_{k}=y_{k}\oplus(\oplus^{n}j=1X_{j}ajk)$ for each $1\leq k\leq m$ .

Proposition 2 Every mapping of $\mathrm{C}\mathrm{N}(n, m)$ can be realized by a quantum circuit
consisting of $\mathrm{C}\mathrm{N}$ gates with

$O(nm/\gamma+\log(\gamma/n)+\log(\gamma/m))$

depth and with $\gamma$ ancillae for $\gamma\geq\min\{n, m\}$ .
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3 Two Types of Quantum Circuits

Recall that applying a Ps gate $\mathrm{P}\mathrm{S}_{\theta}$ on the j-th qubit realizes the following mapping:

$|x_{1},$ $x_{2},$ $\ldots,$
$X_{n}\rangle\mapsto e^{i\theta()}|x_{j}X1,$

$x_{2},$ $\ldots,$
$X_{n}\rangle$ .

Thus, a quantum circuit, which consists of $\mathrm{C}\mathrm{N}$ gates and $m$ Ps gates $\mathrm{P}\mathrm{s}_{\theta_{1}},$ $\mathrm{p}\mathrm{S}_{\theta}2’\ldots,$ $\mathrm{p}\mathrm{S}\theta_{m}$ ,

realizes a mapping

$|_{XX}1,2,$
$\ldots,$

$Xn\rangle\vdasharrow e\Sigma^{m}k=1|i\theta_{k(y_{k})}Z1,$
$.62,$ $>n\cdot,$
$z\vee\rangle n$

’ (1)

such that there exist an $n\cross m0- 1$ matrix $A=[a_{jk}]$ and an $n\cross n0- 1$ matrix $B=[b_{jk}]$

satisfying $y_{k}=\oplus_{j=1}^{n}x_{j}ajk$ for $1\leq k\leq m$ and $z_{l}=\oplus_{j=1}^{n}x_{j}bjk$ for $1\leq$

.
$l\leq n$ .

Theorem 3 Quantum circuits consisting $\mathrm{C}\mathrm{N}$ gates and PS gates can be parallelized

to
$O((n^{2}+nm)/\gamma+\log(\gamma/n)+\log(\gamma/m))$

depth by using $\gamma$ ancillae for $\gamma\geq m$ , where $m$ is the number of PS gates in the

quantum circuit.

Proof The mapping shown in (1) can be realized by using ancillae in four stages.

The first stage realizes a mapping

$|x_{1,2}X,$
$\ldots,$

$x_{n},$ $0^{m}\rangle\mapsto|x1,$ $x2,$ $\ldots,$
$X_{n},$ $y1,$ $y2,$ $\ldots,$

$ym\rangle$ .

This is mapping of $\mathrm{C}\mathrm{N}(n, m)$ , and thus from Proposition 2 it can be realized in depth

$O(nm/\gamma+\log(\gamma/n)+\log(\gamma/m))$ by using the remaining $\gamma-m$ ancillae. The second

stage realizes the mapping

$|y_{1},$ $y2,$ $\ldots,$
$ym\rangle\mapsto e^{i\Sigma_{k1}^{m}()}=|\theta_{k}y_{k}y_{m}y1,$

$y_{2},$ $\ldots,\rangle$

by applying the PS gates $\mathrm{P}\mathrm{s}_{\theta_{1},\theta}\mathrm{P}\mathrm{S}2’\ldots$ , $\mathrm{P}\mathrm{S}_{\theta_{m}}$ . Thus it can be done in depth one.

The third stage realizes the inverse mapping of one realized in the first stage, i.e.,

$|x1,$ $x2,$ $\ldots,$
$X_{n},$ $y1,$ $y2,$ $\ldots,$

$ym\rangle\mapsto|x_{1,2}X,$
$\ldots,$

$x_{n},$ $0^{m}\rangle$ .

Again depth of this stage is $O(nm/\gamma+\log(\gamma/n)+\log(\gamma/m))$ . Finally, the fourth

stage realizes the mapping

$|x_{1},$ $x_{2},$ $\ldots,$
$X_{n}\rangle\mapsto|z_{1,2,.,n}Z..z\rangle$ .
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From Proposition 1, this stage can be realized in depth $O(n^{2}/\gamma+\log(\gamma/(n)))$ . There-

fore, the total depth of these four stages is $O((n^{2}+nm)/\gamma+\log(\gamma/n)+\log(\gamma/m))$ .
$\blacksquare$

For quantum circuits consisting of two-input two-output PS gates, we have a
efficient realizing.

Lemma 4 Quantum circuits consisting of two-input two-output PS gates with depth
$d$ can be parallelized to

$O(dn/\gamma+\log(\gamma/n))$

depth by using $\gamma$ ancillae for $\gamma\geq n$ .

Proof Suppose for $1\leq k\leq d$ that k-th layer of the quantum circuit realizes a
mapping

$|x_{1,2\cdot\cdot n}X,.,$$x\rangle\mapsto e^{i\theta_{k}}’)(x_{1x}2\cdots,x_{n})|x_{1,2,\ldots,n}Xx\rangle$ ,

where $\theta_{k}$ : $\{0,1\}^{n}arrow[0.2\pi$ ). Thus, the quantum circuit realizes a mapping

$|X_{1},$
$\ldots,$

$X_{n}\rangle\mapsto e^{i(\theta_{1}(x}1_{)}\cdots,x_{n})+\cdots+\theta d(x1,\ldots,xn))|_{X_{1},\ldots,X_{n}\rangle}$ .

This mapping can be realized in $\hat{d}+2$ stages. Let $l=\lfloor\gamma/n\rfloor$ and $\hat{d}=\lceil d/l\rceil$ . The

first stage realizes a mapping

$|x_{1},$ $x_{2},$
$\ldots,$

$x_{n},$
$\mathrm{o}^{\iota n}\rangle\mapsto|(x_{1,2,\ldots,n}xX)^{\iota+1}\rangle$.

By applying following mapping to each $x_{j}$ for $1\leq j\leq n$ , this mapping can be

realized in depth $O(\log(l+1))=O(\gamma/n)$ . The mapping is

$|_{X_{j},0^{\iota}}\rangle\mapsto|x_{j}^{l+1}\rangle$

which can be realized in depth $O(\log(l+1))$ .

Then, for $1\leq\hat{k}\leq\hat{d}$ and $1\leq l’\leq l$ , the $(\hat{k}+1)$ -th stage realizes mappings

$|X_{1},$
$\ldots,$

$X_{n}\rangle\mapsto e^{i((x}-l+1,\ldots,xn)+\cdots+\theta_{\hat{k}l}(x1,\ldots,xn))|\theta_{(\hat{k}1)1X_{1,\ldots,n}X\rangle}$

by applying $((\hat{k}-1)l+l’)$ -th layer to $l’$-th $n$-qubit. Thus each of these stages can be

realized in depth one. The final stage realizes the inverse mapping of one realized

in the first stage, i.e.,

$|(X_{1}, X_{2}, \ldots, xn)l+1\rangle\mapsto|x_{1},$ $x_{2},$ $\ldots,$ $x_{n},$
$\mathrm{o}^{\iota n}\rangle$ .
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It can be easily verified that the desired mapping, and the total depth is $O(dn/\gamma+$

$\log(\gamma/n))$ . $\blacksquare$

Moore and Nilsson [4] showed that every quantum circuit consisting of $\mathrm{C}\mathrm{N}$ gates

and $\mathrm{W}\mathrm{H}$ gates can be reconstructed by using an ancilla with state $|1\rangle$ as a quantum

circuit with constant number of subcircuits each of which is either a quantum circuit

consisting of $\mathrm{C}\mathrm{N}$ gates, a quantum circuit consisting of $\mathrm{W}\mathrm{H}$ gates, or a quantum circuit

consisting of two-input two-output Ps gates with at most $O(n)$ depth. Notice that

quantum circuits consisting of $\mathrm{W}\mathrm{H}$ gates can be realized in at most depth one, since
$\mathrm{W}\mathrm{H}\mathrm{W}\mathrm{H}=I$ . Therefore, from Proposition 1 and Lemma 4, we immediately obtain

the following theorem.

Theorem 5 Quantum circuits consisting of $\mathrm{C}\mathrm{N}$ gates and $\mathrm{W}\mathrm{H}$ gates can be paral-

lelized to
$O(n^{2}/\gamma+\log(\gamma/n))$

depth by using $\gamma$ ancillae.

4 Concluding Remarks

We have proposed parallelization methods for the three types of quantum circuits

when the number of available ancillae is limited. However, we still do not know any
non-trivial lower bound on depth for realizing a desired mapping on the three types

of quantum circuits. For more general quantum circuits, parallelization method is

still not known. From Barenco et $al[2]$ , in order to realized universal quantum

computation, it is sufficient to consider quantum circuits consisting of $\mathrm{C}\mathrm{N}$ gates, PS

gates, and quantum gates with one-input and one-output, which is specified by

for $0\leq\rho<2\pi$ , while the $\mathrm{W}\mathrm{H}$ gate can be specified by this matrix with $\rho=\pi/4$ .
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