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This paper introduces an application of the S-4 logic. There are two aims
in this paper. Aim 1 is to check the relation between our model and the S-4
logic. $\mathrm{W}\mathrm{e}’ 11$ see the soundness and completeness of the S-4 logic with respect
to the model by using the concept of structure. Aim 2 is to prove Agreeing
theorem in the model. Roughly speaking, Agreeing theorem insists that if
peoples’ information $\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\iota \mathrm{u}\cdot \mathrm{e}$ satisfy some conditions, then their posteriors
are equal.

1. INTRODUCTION

The word “knowledge” and especially “common $\mathrm{k}\mathrm{n}\mathrm{o}\mathrm{w}\mathrm{l}\mathrm{e}\mathrm{d}_{\xi}\sigma,\mathrm{e}$

” play a very
important role in game theory. Intuitively, an event is common knowledge if
everyone knows it, everyone knows that everyone knows it, everyone knows
that everyone knows that everyone knows it and so on. Then how can we
treat (common) knowledge formally?

Aumann (1976) tried to solve this problem. He introduced the formal no-
tion of common knowledge based on partitional information structure and
showed a theorem that players who have the common prior can not agree
to disagree., that is, if their posteriors for a given event are common knowl-
edge, then these must be equal, even though they are based on different
information. In our paper, we call this theorem as Agreeing Theorem.

After Aumann, many papers have studied knowledge. Milgrom (1981),
and Monderer and Samet (1989) treated knowledge by different approaches.
Milgrom (1981) applied axiomatic approach 1 to model knowledge. Mon-
derer and Samet (1989) used probability approach2. They managed to ap-

*I would like to thank Shin-ichi Suda and Takashi Matsuhisa for helpful comments.
$\ddagger_{\mathrm{E}-}$-mail address: hirase@pc.highway.ne.jp
1This is the approach which defines the set of all states in which a player knows a

given event. After Milgrom’s paper, many papers have been written by this approach.
2Probability approach defines the event in which player $n$ believes $E$ with probability

at least $p$ .
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proximate (common) knowledge with belief. They also proved that Agree-
ing Theorem holds when knowledge is replaced by belief.

While various approaches to model knowledge have shown up, Agreeing
Theorem has been modified too. Geanakoplos and Polemachakis (1982)
explained the process of agreeing. Samet, (1990) studies non-partitional
information structure. In his paper., a state describes everything, even
information structure. Based on this idea, he showed Agreeing Theorem
holds in non-partitional case. $\mathrm{L}41\mathrm{a}\mathrm{t}_{\mathrm{S}}\mathrm{u}\mathrm{h}\mathrm{i}\mathrm{S}\mathrm{a}$and Kamiyama (1997) generalized
Samet’s result using lattice and filter theory.

This paper also studies non-partitional information structure, or an ex-
tension of Aumann $\mathrm{s}$ Agreeing Theorem. We would like to prove Agreeing
Theorem after showing the relation between the model and the logic. In
section 5, we will see the model is one of the S-4 logic. $\mathrm{A}\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{i}\mathrm{n}\circ\circ\cdot$ Theorem
is proved in section 8.

2. S-4 LOGIC
$S- \mathit{4}$ l.ogic is denoted as $\langle L, S, AR\rangle$ .
$L$ means language. Language consists of $N,$ $PV$ , logical connectives, and

pla.y$\mathrm{e}\mathrm{r}\mathrm{s}$ modal operators. . $N$ means a set of players 1 and 2. Now, we
restrict the number of the players to 2 persons for simplicity. But we can
extend the results to $n$ persons case easily. $PV$ is a set of propositional
variables, or atomic sentences. Logical connectives are $\wedge,$ $\mathrm{v},$ $arrow$ , $(, )$ , and $\neg$ .
Players’ modal operators are $\coprod_{1}$ and $\coprod_{2}$ .

The second element of S-4 logic is S. $S$ means a set of sentences. or a
set of formulae. $S$ is inductively constructed from $L$ .

$(S1):PV\subseteq S$

$(S2)$ : $\emptyset,$ $\emptyset’\in S\Rightarrow\neg\emptyset_{J}.\emptysetarrow\psi’.\phi\wedge\emptyset,$ $\phi\psi,$ $\coprod_{n}\phi\in S(n=1,2)$

$(S3)$ : Every sentence is constructed by a finit, $\mathrm{e}$ number of
applications of (S1) and (S2).

The third element of the S-4 logic is $AR$. $AR$ means axioms and rules.
$AR$ consists of $PL$ , inference rules and modal axionrs and rules.

$PL$ is propositional logic, or a set of all tautologies, that is, for all
$\emptyset,$ $\emptyset,$ $\chi\in S$ .

$(PL1):\phiarrow(\psiarrow\phi)$

$(PL2):(\phiarrow(\psiarrow\chi))arrow((\phiarrow L^{l\mathrm{t}})arrow(\emptysetarrow\chi)$

$(PL3):(\neg\emptysetarrow\neg\psi)arrow((\neg\emptysetarrow \mathrm{t}’|)arrow\phi)$
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$(PL4):\phi\wedge\psiarrow\phi$

$(PL5)$ : $\phiarrow\phi\vee\psi$

Inference rules are Modus Ponens (AIP), $\wedge$-rule, and $\vee$-rule.

$(\lambda\ell P)$ : $\frac{\phiarrow\phi)\emptyset}{\psi}$

( $\wedge$ –rule) : $\frac{\phiarrow\psi\emptysetarrow\lambda}{\phiarrow\psi\Lambda\chi}$

( $\vee$ –rule) :
,

$\frac{\psiarrow\phi\chiarrow\phi}{\psi\vee\chiarrow\phi}$

where $\phi,$ $\psi,$ $\chi\in S$ .

For modal part, we assume axioms K. $T,$ $4$ and N. $K$ is, in other words,
the Axiom of Distribution. $T$ is the Axiom of Knowledge. 4 is the Positive
Introspection. And $N$ is the Necessitation rule.

$(K)$ : $(\coprod_{n}(\emptysetarrow\psi)arrow(\square _{n}\phiarrow\square _{n^{i}}\psi’))$

$(T)$ : $\coprod_{n}\emptysetarrow\phi$

(4) : $\square _{n}\emptysetarrow\coprod_{n}\coprod_{n}\phi$

$(N)$ : $\frac{\phi}{\coprod_{n}\emptyset}$

where $\phi,$ $\psi\in S$ and $n=1,2$

With these axioms and rules. we can define the provability of a sentence
in the logic.

DEFINITION 2.1. A proof is a finite tree satisfying $(\mathrm{P}\mathrm{R}1)$ and $(\mathrm{P}\mathrm{R}2)$ .

$(PR1)$ : A sentence is associated with each node, and the sentence
associated with every leaf node is an instance of $(PL1)-(PL5),$ $K$ ,
$T$, or 4.

$(PR2)$ : Each adjoining node forms an instance of $MP,$ ( $\wedge$ –rule),
( $\vee$ –rule), or $N$ .

We say that $\phi(\in S)$ is prova,bl.e in the S-4 logic if and only if there exist
a proof which root is associated with $\phi$ .

88



3. STRUCTURE
Structure is $\langle\Omega, P_{1}, P_{2}\rangle$ . $\Omega$ is a nonempty finite state space. So $2^{\Omega}$ is

called a set of events.
Players’ inform,ation function,$sP_{1}$ and $P_{2}$ is a function from the state

space $\Omega$ to the event set $2^{\Omega}$ . The set $P_{n}(\omega)$ means the event which player
$n$ recognize when the real state is $\omega$ . The set $P_{n}(\omega)$ is called player $n.\mathrm{s}$

$\inf_{0}\mathrm{r}\mathrm{n}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ set or possibility set at $\omega$ .
We assume that each players’ information function satisfy the following.

$(P-1)$ : $\omega\in P_{\mathrm{z}\mathit{1}}(\omega)$

$(P-2)$ : $\omega’\in P\gamma\iota(\omega)\Rightarrow P_{n}(\omega’)\subseteq P_{\mathit{7}\mathit{1}}(\omega)$

for $\forall\omega,$ $\omega’\in\Omega$ and $n=1_{J}.2$

P-l means the condition that each player never excludes the real state.
When the real state is $\omega$ , the player $n$ thinks that $\omega$ may have occurred.
From P-2, we have that if there is a state $\xi$ , so that $\xi\in P_{n}(\omega’)$ and
$\xi\not\in P_{n}(\omega)$ then $\omega’\not\in P_{n}(\omega)$ . So. P-2 says that player $n$ at $\omega$ can make
consideration as follows: “The state $\xi$ is excluded. If it were the state $\omega’$ ,
I would not exclude $\xi$ . Thus it must be that the state is not $\omega’$ . ’

P-l and P-2 play very important roles in the relation to the S-4 logic.
We call these three tuples $\langle\Omega, P_{1}, P_{2}\rangle$ an information structure.

In Aumann $\mathrm{s}$ paper, P-3: $\omega’\in P_{n}(\omega)\Rightarrow P_{n}(\omega’)\supseteq P_{n}(\omega)(n=1,2)$ for
$\omega,$

$\omega’\in\Omega$ was also assumed. So we can say that our model is an extension
of Aumann’s.

Consider the case that $\omega’\in P(\omega)$ and there is a state $\xi\in P(\omega)$ that is
not in $P(\omega’)$ . Then, P-3 says that a player at $\omega$ can conclude, from the fact
that he (she) can not exclude $\xi$ , that the state is not $\omega’$ , a state at which
he (she) would be able to exclude $\xi$ .

Note the following proposition holds.

$\mathrm{P}\mathrm{R}(\supset \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{I}\mathrm{T}\mathrm{I}\mathrm{o}\mathrm{N}3.1$ . Plo.yer $ns$ inform.ation fun,ction $P_{n}$ satisfies P-l, 2,
and 3 if and onl.y if th,$ere$ is a partition of $\Omega$ such th, $\mathit{0},t$, for an.$y\omega\in\Omega$ th.e
set $P_{?\mathit{1}}(\omega)$ is th, $e$ element of th,$epartit,i_{\mathit{0}}n$, that contains $\omega$ .

Proof. Suppose that $P_{n}$ satisfies P-l, 2. and 3. If $P_{n}(\omega)$ and $P_{n}(\omega’)$

intersect and $\xi\in P_{\mathit{7}\mathit{1}}(\omega)\cap P_{n}(\omega’)$ then by P-2 and 3, we have $P_{n}(\omega)=$

$P_{n}(\omega’)=P_{n}(\xi)$ . By P-l we have
$\bigcup_{\omega\in\Omega}P_{\eta}(\omega)=\Omega$.

The other direction is obvious. I
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Thus, Aumann’s paper treated a partitional information structure. But
we don’t assume P-3. We treat a non-partitional information structure.

4. MODEL

The model $\mathrm{M}$ consists of $L,$ $S$ , an information structure, a truth assign-
ment $\pi$ , and a valuation relation $\models$ . i.e., $\mathrm{M}=\langle L, S, \Omega, P1, P2, \pi, \models\rangle$ .

A truth assignment $\pi$ is a function from $PV\cross\Omega$ to the set $\{\mathrm{T}, \perp\}$ .
From this truth assignment, the valuation $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\models \mathrm{d}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{s}$ the validity

of the sentences. For any sentence $\phi$ and $\psi$ , and for $n=1,2$ , we define the
valuation relation as follows.

$(\mathrm{V}\mathrm{R}1)$ : For any $v\in PV,$ $\models_{\omega}=\pi(v, \omega)=\mathrm{T}$

$(\mathrm{V}\mathrm{R}2):\models_{\omega}\neg\emptyset\Leftrightarrow\models_{\omega}\phi$ does not hold.

$(\mathrm{V}\mathrm{R}3):\models_{\omega}\emptysetarrow’\psi)\Leftrightarrow\models_{\omega}\neg\emptyset or\models_{\omega}\psi|$

$(\mathrm{V}\mathrm{R}4):\models_{\omega}\emptyset\wedge’\psi=\models_{\omega}\emptyset$ and $\models_{\omega}\neg\emptyset$

$(\mathrm{V}\mathrm{R}5):\models_{\omega}\phi\vee’\psi\Leftrightarrow\models_{\omega}\emptyset$ or $\models_{\omega}\psi$

$(\mathrm{V}\mathrm{R}6):\models_{\omega}\coprod_{n}\emptyset\Leftrightarrow P_{n}(\omega)\subseteq\{\xi\in\Omega :\models_{\xi}\phi\}$ for $n=1,2$

5. SOUNDNESS AND COMPLETENESS

With these preparations of logic, structure, and model. we can prove the
following theorem, This theorem is well known by logicians as sou.$n,dn,ess$

and completeness (of the S-4 logic)

THEOREM 5.1. A $sen,ten,Ce\emptyset$ is provable in. $t,h,e$ S-4 logic $\Leftrightarrow\models_{\omega}\phi$ for
$\forall\omega\in\Omega$ in, $th,e$ model $\mathrm{J}\mathrm{v}\mathfrak{l}$ .

Proof $(\mathrm{s}\mathrm{k}\mathrm{e}\mathrm{t}\mathrm{c}\mathrm{h}^{3})$. For soundness $(\Rightarrow)$ , we can verify that each sentence of
$AR^{4}$ is valid at $\forall\omega\in\Omega$ in the model using the properties P-l and P-2. For
completeness $(\Leftarrow)$ , we can show that P-l corresponds to Axiom $T$ , P-2 cor-
responds to Axiom $4^{5}$. Our model where P-l and P-2 assumed is the canoni-
cal model of the S-4 logic. 1

3See Chellas (1980), Hughes and Cresswell (1996) for detail.
4A rule 4 must be modified by a sentence $\phiarrow\psi$ .4’
5Note that P-3 $\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}_{\mathrm{o}\mathrm{n}}\mathrm{d}\mathrm{S}$ to Axiom $5:\square _{n^{\neg}}\emptysetarrow\coprod_{n}\coprod_{\eta^{\neg\phi}}$ for $\phi\in Sn=1.2$ . And

Aumann’s model is one of the S-5 logic.
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6. KNOWLEDGE AND COMMON KNOWLEDGE

Since Agreeing Theorem treats an epistemic condition for the agreement
of the posteriors, We have to define the concept of knowledge, common
knowledge, and posterior. This section defines the knowledge and $\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{n}\mathrm{l}\mathrm{n}\mathrm{o}\mathrm{n}$

knowledge. The definitions here is based on Aumann(1976). Posterior is
defined in the next section.

$\mathrm{D}\mathrm{E}\mathrm{F}\mathrm{I}\mathrm{N}\mathrm{I}\mathrm{T}\mathrm{I}\overline{\cup}\mathrm{N}6.1$ . Player $n$ knows $E(\in 2^{\Omega})$ at $\omega$ $\Leftrightarrow$ $P_{n}(\omega)\subseteq E$ .
$(n=1,2)$ .

From the meaning of the information function, the player $n$ knows that
some state in $P_{n}(\omega)$ has occurred. Hence if $P_{n}(\omega)\subseteq e$ , (of course) the
player $n$ know the state in $E$ has occurred. With this interpretation, we
have defined the player $\mathrm{S}$ knowledge.

Before defining common knowledge. we define the self-evident event.

DEFINITION 6.2. $F(\in 2^{\Omega})$ is a self enid.en.b between 1 and $2\Leftrightarrow\omega\in$

$F\Rightarrow P_{n}(\omega)\subseteq F$ for $n=1,2$ .

An event $F$ is a self-evident event between 1 and 2, if whenever it occurs
players 1 and 2 know that it occurs. Now, we define common knowledge.

DEFINITI\={u} $\mathrm{N}6.3$ . $E$ is $Com,m.on\lambda\cdot,now\iota_{ed},ge$ at $\omega$ between 1 and 2 $\Leftrightarrow$

there exist a self evident event $F$ between 1 and 2 such that $\omega\in F\subseteq E$ .

An event $E$ is common knowledge between 1 and 2, if there is a self-
evident event between 1 and 2 containing $\omega$ whose occurrence implies $E$ .

7. PRIOR AND POSTERIOR

This section defines player’s posterior of $E$ based on a prior. We assume
the existence of a prior and it is common for both players (So. a prior is
called common prior.). Let the comm.on prior be a probability measure
$\mu$ on $\Omega$ . We denote the common prior to $E$ as $\mu[E]$ . And we assunle

$\mu[E]>0$ for any event $E(\neq\emptyset)$ . We consider that each player forms his
(her) posterior based on the common prior. We assume $pl$.ayer $n’ s$ posterior
to some event at $\omega$ is a probability measure on $\Omega,$ $Q_{n}(\cdot:\omega)$ . and we define

$Q_{n}(E; \omega)=\frac{\mu[E\cap P_{n}(\omega)]}{\mu[P_{n}(\omega)]}(n=1.2)$, for any event $E(\neq\emptyset)$ . This is the

conditional probability of $E$ on $P_{n}(\omega)$ . Agreeing Theorem in the next
section shows an epistemic condition for the agreement of the posteriors.

8. AGREEING THEOREM
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THEOREM 8.1 (Agreeing Theorem). Suppose th,$\mathit{0},7,$ $\{\Omega, P_{1}, P_{2}\}$ is an in-
form,ation $strucr,\prime u,re,$ $E\in 2^{\Omega}\backslash \{\emptyset\},\omega\in\Omega,$ $q_{1}\in[0,1],$ $q_{2}\in[0.1]$ , an.d $tho,t\mu$

is the common $p_{7\dot{\mathrm{B}}}or$. If $\{\omega\in\Omega:Q1(E;\omega)=q1\}\mathrm{n}\{\omega\in\Omega:Q_{2}(E.\omega)\text{ノ}\}=q_{2}$

is common knowledge at $\omega$ between, 1 and, 2, then $q_{1}=q_{2}$ .

To prove the theorem, we have to show some lemmata.

LEMMA 8.1. For an,$y$ self-evid.ent even,$tF$ between 1 an,$d2,\mathit{0},nd$, for $n=$

$1,2,$ $F=P_{n}^{1}\cup\ldots\cup P_{n}^{t},$ $u’ h,ereP,.P^{t}\mathfrak{n}^{1}\cdots\prime no,reP_{n}(\omega_{1}),$ $\ldots.P_{N}(\omega_{t})$ such. tho.t,

$\omega_{1},$
$\ldots,$

$\omega_{t}\in F$ ($t$ is a positive in.teger).

Proof. Rom P-l, $\omega_{i}\in P_{n}(\omega_{i})$ for all $\omega_{i}\in\Omega$ . So $F\subseteq P_{71}^{1}\cup\ldots\cup P_{?\mathit{1}}^{t}$ , where
$Pn^{1}\ldots.,$ $P_{n}^{\iota}$ are $P_{n}(\omega_{1}),$ $\ldots.P_{n}(\omega_{\mathrm{t}})$ such that $\omega_{1},$

$\ldots,$
$\omega_{t}\in F$ . And since $F$ is

a self-evident event, $P_{nn}^{1_{\cup\ldots\cup P^{t}}}\subseteq F$ , where $P_{n}^{1},$
$\ldots,$

$P_{\eta}^{t}$ are $P_{n}(\omega_{1})\ldots..P_{7\mathit{1}}(\omega_{t})$

such that $\omega_{1},$
$\ldots,$

$\omega_{\mathrm{t}}\in F$ . $[$

We prepare some notations. From here, we abbreviate the index of the
player and the subscript of $P$ means the number of a stage. Let $I_{m}^{i}\equiv$

$\#\{h : \omega_{i}\in P_{m}^{h}\}$ and $i(m) \in\arg\max_{i}I_{m}^{i}$ . For all $k=1,$ $\ldots,$
$t,$ $P_{o}^{k}=P^{k}$ .

For $h$ such that $h\in$ { $h\in\{1,$
$\ldots,$

$t\}$ : $\omega_{\mathrm{i}(m-1)}\in P_{m-1}^{h}$ and $h\neq i(m-1)$ },
$P_{m}^{h}=P_{m-1}^{h}\backslash P_{m-}^{i(m_{1^{-1)}}}$ . For other $h\in\{1, \ldots, t\},$ $P_{m}^{h}=P_{m-1}^{h}$ . Note that,
with these notations, if $\max_{i}I_{m}^{i}=1$ for some $m,$ $\{P_{m\text{ノ}m}^{1}.\ldots, P^{t}\}$ is a partition
of f.

Now we show that there exist some $m^{*}$ for which $\max_{i}I_{m}^{i}=1$ . To show
this, it is enough to prove that lemma 8.2: if P-2 holds till $m$-stage and
$\max_{i}I_{m}^{i}\geq 2$ , then $P_{m}^{i(m)}\neq\emptyset$ and lemma 8.3: P-2 holds until $\max_{i}I_{m}^{i}\geq 2$ .
Lemma 8. $4:\mathrm{i}\mathrm{f}$ P-2 holds at $m$-stage., then $P_{m}^{i(m)}\subseteq P_{m}^{h}$ hold for all $\in\{h\in$

$\{1. \ldots, t\}$ : $\omega^{i(m)}\in P_{m}^{h}$ and $h\neq i(m)\}$ .
We formally define P-2 holds at m-stage.

DEFINITI($\supset \mathrm{N}\mathrm{s}.1$ . We say $P- \mathit{2}$ hol.ds at $m$-stage if and only if $\omega_{j}\in P_{m}^{j’}\Rightarrow$

$P_{m}^{j}\subseteq P_{m}^{j}(j’,j’\in\{1,2, \ldots, t\})$ .

LEMMA 8.2. If $P-\mathit{2}$ h.olds til.l $m$-stage an.$d \max_{?}I_{m}^{i}\geq 2$ , then $P_{m}^{i(m)}\neq\emptyset$ .

Proof. Suppose that $\max_{i}I_{m}^{i}\geq 2$ and $P_{m}^{i(m)}=\emptyset$ . Since $\omega_{i(m)}\in P_{0}^{i(}m$
)

$\mathrm{h}\mathrm{o}\mathrm{m}$ P-l, for some $l(<m)$-stage (1) $\omega_{i(m)}\in P_{l}^{i(m)},$ (2) $\omega_{i(m)}\in P_{\iota^{(l)}}^{i},$ $(3)$

$\omega_{i(l)}\in P_{l}^{i(m)}$ , and $i(m)\neq i(l)$ hold.
From P-2 at $l(<m)$-stage. $\omega_{i(m)}\in P_{l}^{h}\Rightarrow P_{l}^{i(m}$

)
$\subseteq P_{l}^{h}$ . Since (3) $\omega_{i(l)}\in$

$P_{\iota’(\}}^{i.(m)}\omega_{i}\iota\in P_{l}^{h}$ . Hence, $\omega_{i(m)}\in P_{\mathrm{t}^{h}}\Rightarrow\omega_{i(l)}\in P_{l}^{h}$ .

92



Since $\omega_{i(m)}\in P_{l}^{h}\Rightarrow\omega_{i(l)}\in P_{l}^{h}$ and (2) $\omega_{i(m)}\in P_{l}^{i(\iota)},$ $I_{k}^{(m)}\dot{?}=1$ or $0$ for
all $k(>l)$ -stage.

This contradicts $\omega_{i(m)}\in\max_{i}I_{m}^{i}\geq 2$ . Therefore $\max_{j}I_{m}^{i}\geq 2\Rightarrow$

$P_{m}^{i(m)}\neq\emptyset$ . 1
LEMMA 8.3. P-2 $h,ol.d,s$ until $1\mathrm{n}\mathrm{a}\mathrm{x}_{j}I_{m}^{i}\geq 2$ .

Proof. We show lemma 8.3 by induction. When $m=0$ , P-2 at O-stage
holds from P-2. We show P-2 at $s$-stage $(s=1, \ldots, k)\Rightarrow \mathrm{P}-2$ at $k+1$-stage.

Note that $P_{k+1}^{h}=P_{k}^{h}\backslash P_{k}^{i(k)}$ (if $h\in H_{k}$ ) and $P_{k+1}^{l_{?}}=P_{k}^{h}$ (if $h\not\in H_{k}$ )
where $H_{k}=$ { $h\in\{1,$

$\ldots,$
$t\}$ : $\omega_{i(k)}\in P_{k}^{h}$ and $h\neq i(k)$ }.

CASEI: $j,j’\in H_{k}$

$P_{k}^{j}\backslash P_{k}^{i(k)}\subseteq P_{k}^{j’}\backslash P_{k}^{i(k)}$ . Hence $P_{k+1}^{j}\subseteq P_{k+1}^{j’}$ .

CASE2: $j.j’\not\in H_{k}$

From P-2 at $k$-stage., $P_{k}^{j}\subseteq P_{k}^{j’}$ . Hence $P_{k+1}^{j}\subseteq P_{k+1}^{j^{J}}$ .

CASE3: $j\in H_{k},$ $j’\not\in H_{k}$

From P-2 at $k$-stage, $P_{k}^{j}\subseteq P_{k}^{j^{l}}$ . Hence $P_{k+1}^{j}\subseteq P_{k+1}^{j’}$ .

CASE4-1: $j\not\in H_{k}.j’\in H_{k}$ and $j\neq i(k)$

From P-2 at $k$-stage. $P_{k}^{j}\subseteq P_{k}^{j’}$ . We have to show $P_{k}^{j}\subseteq P_{k}^{j’}\backslash P_{k}^{i(k)}$ .
When $P_{k}^{j}\cap P_{k}^{i(k}$

)
$=\emptyset,$ $P_{k}^{j}\subseteq P_{k}^{j’}\backslash P_{k}^{?(k)}$ holds (And lemma 8.3 holds.).

The case $P_{k}^{j}\cap P_{k}^{i(}k$
)

$\neq\emptyset$ is the matter.
Now suppose that there is some $\omega_{o}$ such that $\omega_{o}\in P_{k}^{j}\cap P_{k}^{(k)}i$ . (We

shall derive a contradiction from this assumption.) Then $\omega_{o}\in P_{k}^{J}’$ . Since
$j\not\in H_{k},j’\in H_{k}$ and $j\neq i.(k),$ $\omega_{()}ik\not\in P_{k}^{j}$ .

Then, from the definition of $i(k)(i(k) \in\arg\max_{i}I_{k}^{i})$ , there is some
$h\in\{1,2, \ldots, t\}$ such that $\omega_{i(k)}\in P_{k}^{h}$ and $\omega_{o}\not\in P_{k}^{h}$ . For this $h,$ $P_{k}^{i(k)}\subseteq P_{k}^{h}$

holds, since P-2 at $k$-stage and $\omega_{i(k)}\in P_{k}^{i}$ hold. But, the assumption
$\omega_{o}\in P_{k}^{j}\cap P_{k}^{i(}k)$ means $\omega_{o}\in P_{k}^{i(k)}.$

, that is, $\omega_{o}\in P_{k}^{h}$ . This is a contradiction.

CASE4-2: $j\not\in H_{k},j’\in H_{k}$ and $j=\prime i(k)$

We have to show $\omega_{i(k)}\in P_{k+1}^{J}\backslash P_{k}^{i(k)}\Rightarrow P_{k}^{i(k)}\subseteq P_{k}^{j’}\backslash P_{k}^{i(k)}$ .
When $\omega_{i(k)}\in P_{k}^{i(k)},$ $\omega_{i(k)}\not\in P_{k+1}^{j’}\backslash P_{k}^{i(k)}$ . And it is impossible that

$\omega_{i(k)}\not\in P_{k}^{i(k)}$ holds. the proof is sanle as the proof of lemma 8.1.
For all $h\in H_{m},$ $\omega_{i(m}$ ) $\in P_{m}^{h}$ . P-2 at $m$-stage means $P_{m}^{j()}m\subseteq P_{m}^{h}$ . There-

fore lemma 8.3 holds. I
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LEMMA 8.4. If $P- \mathit{2}$ holds at m-sto,$ge,$ $th,enP_{m}^{i(m)}\subseteq P_{m}^{h}$ h.old $fo7^{\cdot}$ all
$h\in$ { $h\in\{1,$

$\ldots,$
$t\}:\omega^{i(m})\in P_{m}^{h}$ and $h\neq i(m)$ }.

Proof. We show that if P-2 holds at $m$-stage, the.n $1\mathrm{n}\mathrm{a}\mathrm{x}_{i}I_{m}^{i}\geq 2\Rightarrow$

$P_{m}^{i(m)}\subseteq P_{n}^{h}$, for $h\in H_{m}$ , where $H_{m}=$ { $h:\omega_{i(m})\in P_{m}^{l?}$ and $h\neq i(m)$ }. For

all $h\in H_{m},$ $\omega_{i(m)}\in P_{m}^{h}$ . From P-2 at $m$-stage, $P_{m}^{i(m)}\subseteq P_{m}^{h}$ . Hence lemma

8.4 holds. 1
Proof (Agreeing Theorem). From lemmata, we can get a partition,

$\{P_{m^{*}’\cdots,m}^{1}P^{t}*\}$ . Since $\{P_{m^{*}’\cdots,m}^{1}P^{t}*\}$ is a partition, the rest of the proof fol-
lows Aumann(1976). I
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