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Abstract

We discuss several open $\mathrm{p}_{1}\cdot \mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{s}$ in combinatorics of words and
related areas. The problems fall into six different problem areas.

1 Introduction
Combinatorics of words is an enorrnous source of fascinating open problems.
Problems might be of quite a different nature, some asking decision questions
and some others existential questions of various types. Often problems are
closely related to other areas of discrete lnathematics, in particular to algebra
or matrices. A striking feature of these problems is that they are very easy
to formulate and understand, but in many cases very hard to solve. In other
words, they are mathematically extremely challenging.

The goal of this paper is to discuss several such problems. More precisely,
we introduce six problem areas and formulate on each of these 1-4 different
problems. Problems are by no means “discovered” by the author, but each
of $\mathrm{t}_{1}^{\dot{\mathrm{h}}_{1}}\mathrm{o}\mathrm{s}\mathrm{e}$ have fascinated the author over the past years.
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The problems we introduce deal with the following questions on different
problem areas: How large can an independent system of word equations on $n$

variables be? When does a cumulative defect effect of words hold true? When
an equality language of two morphisms is guaranteed to be “simple”? When
is the equivalence of two finite substitutions on languages decidable? When
do two finite languages commute?. Are some simple problems on integer
matrices decidable?

2 Preliminaries
As we hinted we need only very standard notions of mathematics, and in
particular of words. Consequently, the following lines are mainly to fix our
ternlinology. Whenever necessary the author is referred to $[\mathrm{C}\mathrm{h}\mathrm{K}]$ for unde-
fined notions on words and [HU] on automata.

We denote by $\Sigma$ a finite alphabet and by $\Sigma^{*}$ (resp. $\Sigma^{+}$ ) the free monoid
(resp. free semigroup) it generates. Elements of $\Sigma^{*}$ are called words and
subsets of $\Sigma^{*}$ languages. The empty word, i.e. the neutral element of $\Sigma^{*}$ , is
denoted by 1, consequently $\Sigma^{+}=\Sigma^{*}\backslash \{1\}$ . Let $X$ be a set of words. A word
$w$ admits an $X$ -factorization if $w$ can be written as $w=x_{1}\ldots x_{n}$ with each
$x_{i}$ in $X$ . This notion extends directly to one-way infinite words, that is to
set $\Sigma^{\omega}$ , as well as to two-way infinite words, that is to set $\omega_{\Sigma^{\omega}}$ .

An equation over $\Sigma^{*}$ (or $\Sigma^{+}$ ) $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}_{\cup}^{-}-$ as a (finite) set of variables is any pair
$(u, v)$ of words in $( \Sigma\bigcup_{\cup}^{-}-)^{*}$ , usually written as $u=v$ . A solution of an equation
$u=v$ is a $\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}_{\mathrm{S}\mathrm{n}1}\varphi$ : $(\Sigma\cup\Xi)^{*}arrow\Sigma^{*}$ satisfying $\varphi(u)=\varphi(v)$ and $\varphi(a)=a$

for each $a\in\Sigma$ . A system of equations is any set of equations. Two systems
of equations are equivalent if they have exactly the same solutions. Finally a
system is independent if it is not equivalent to any of its proper subsystems.
In this note we consider only constant-free equations, i.e. equations where
$u,$ $v\in---*$ .

For two morphisms $h,g:\Sigma^{*}arrow\triangle^{*}$ we say that they are equivalent on a
word $w\in\Sigma^{*}$ if $h(w)=g(w)$ , and that they are equivalent on the language
$L\subseteq\Sigma^{*}$ if they are equivalent on each of its words. This notion extends,
in a natural way, to more general mappings like finite substitutions, i.e. to
morphisms $\sigma$ : $\Sigma^{*}arrow 2^{\Delta^{*}}$ , where $2^{\Delta^{*}}$ denotes the monoid of finite languages.
The nlaximal set of words on which two morphisms $h,g$ are equivalent is
referred to as their equality language and is denoted by $E(h, g)$ . Hence,

$E(h,g)=\{w\in\Sigma^{*}|h(w)=g(w)\}$ .
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Two languages $X,$ $\mathrm{Y}\subseteq\Sigma^{*}$ are said to commute, if $X\mathrm{Y}=\mathrm{Y}X$ . It is
straightforward to see that for a given $X$ there exists the unique maximal set
commuting with $X$ . Such a set is called the centralizer of $X$ and is denoted
by $C(X)$ . The multiplicative semigroup of $n\cross n$ matrices with entries on a
semiring $S$ is denoted by $M_{n\cross n}(S)$ . The cardinality of a set $X$ is denoted by
card$(X)$ .

3 Independent systems of equations
One of the fundamental properties of words is the Ehrenfeucht Compactness
Property of word equations originally formulated as the Ehrenfeucht Conjec-
ture in early $70’ \mathrm{s}$ . In 1985 it was shown to hold independently in [AL] and
[G]. It states that each system of equations over free semigroups having a
finite number of variables is equivalent to some of its finite subsystems. In
other words, each independent system is finite. The same compactness type
of result holds for equations over commutative semigroups cf. e.g. [Re] or
[KPII]. Concerning other finitely generated semigroups the property might
hold or might not hold as was discussed in [HKP], but no characterization
when it holds is known.

Both of the above compactness results are based on Hilbert’s Basis Theo-
rem. In the abelian case it is not difficult to see that an independent system
can be arbitrarily large, that is it is not bounded by any function on the
number of variables. For the word case the problem is much more intriguing
leading to the following general question:

How large can an independent system of equations with $n$ vari-
ables over a free semigroup be?

Here it is natural to assume that the equations are constant-free. The above
question leads to the following more concrete problems:

Problem 1 Does there exist a function $f$ : $Narrow N$ such that any indepen-
dent system $S$ of word equations in $n$ variables satisfies card$(S)<f(n)$ ?

As related modified problems we state:

Problem 2 Can $f$ (if exists) in Problem 1 be polynomially bounded or even
the function $f(n)=2^{n}$ ?
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Very little is known about these questions. The best known lower bound for
the function $f(n)$ is cubic in $n$ that is in the class $\Omega(n^{3})$ , cf. [KPII] or $[\mathrm{C}\mathrm{h}\mathrm{K}]$ .

The above problems were formulated for equations over free semigroups.
If instead free monoids are used then the situation changes slightly, but both
of the problems remain. In this case a lower bound for the function $f(n)$ is
known to be in $\Omega(n^{4})$ , cf. again [KPII] or $[\mathrm{C}\mathrm{h}\mathrm{K}]$ .

Another extremely simply formulated problem on independent systems
of equations is as follows:

Problem 3 Does there exist an independent system over a free semigroup
consisting of three equations with three variables and having a nonperiodic
solution ?

Two observations related to this amazing problem are pointed out in the
next examples.

Example 1 Any system of equations with three unknowns and of the form
$eq_{1}$ : $x\ldots=y\ldots$

$S:eq_{2}$ : $x\ldots=z\ldots$

$eq_{3}$ : anything

has only periodic solutions in free semigroups. This, indeed follows from the
Graph lemma of the next section.

Example 2 The system

$\{$

$xyz$ $=$ $zyx$

xyyz $=$ zyyx

is an example of two independent equations having a nonperiodic solution.
Indeed, it has a solution $x=z=a$ and $y=b_{f}$ and the system is independent
as shown by the triples $(x, y, z)=(a, b, aba)$ and $(x, y, z)=$ ( $a,$

$b$ , abba).

4 Cumulative defect effect

Another fundamental property of words is revealed in so-called defect the-
orem, which states that if a set $X\subseteq\Sigma^{+}$ of $n$ nonempty words satisfies a
nontrivial relation then there exists an $F\subseteq\Sigma^{+}$ such that

$X\subseteq F^{*}$ (1)
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and
card$(F)\leq card(X)-1$ . (2)

In other words, defining the combinatorial rank of $X$ as the minimal cardinal-
ity of $F$ satisfying (1), the defect theorem says that any nontrivial relation on
$X$ implies that the combinatorial rank of $X$ is at most $n-1$ , i.e. $X$ possesses
a defect effect. We denote by $r(X)$ the combinatorial rank of $X$ .

As discussed in $[\mathrm{C}\mathrm{h}\mathrm{K}]$ , there are lnany different formulations of the defect
theorem based on different notions of the rank of a finite set. For our purposes
the above combinatorial rank is most suitable.

Now, a natural question arises: If the $n$ words of $X$ satisfies 2, or in
general $k\leq n-1$ , “different” relations can 1 in (2) be replaced by 2, or in
general by $k$ . That is, would these assumptions imply a cumulative defect
effect. This motivates to formulate a general question:

When does.a cumulative defect effect of words hold true?

Two natural directions to study this question are to restrict

(i) type of relations, or

(ii) type of sets $X$ .

Actually very little is known about these questions. $\mathrm{E}_{\mathrm{X}\mathrm{a}\mathrm{n}1}\mathrm{p}\mathrm{l}\mathrm{e}2$ shows that
in general a cumulative defect effect does not hold, for more see [KPIII] or
$[\mathrm{C}\mathrm{h}\mathrm{K}]$ .

As an example of a cumulative defect effect we recall the following so-
called Graph Lenmla, cf. [HK] of $[\mathrm{C}\mathrm{h}\mathrm{K}]$ . Let $X\subseteq\Sigma^{+}$ be a finite set of
nonempty words. Define the graph $G_{X}=(V, E)$ by setting

$V=X$

and

$\mathrm{u}- \mathrm{v}\in E$ if and only if $uX^{+}\cap vX^{+}\neq\emptyset$ . Then we have

Graph Lemma. For each finite $X\subseteq\Sigma^{+}$ the combinatorial rank of $X$ is at
most the number of connected components of $G_{X}$ .

Note that the Graph Lemma was used in Example 1. As another ap-
plication of it we formulate a variant of the defect theorem for bi-infinite
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words. We can interpret a double $X$-factorization of a word $w$ as a relation
on $X$ . Now, we consider $\mathrm{b}\mathrm{i}$-infinite relations, i.e. double factorizations of
$\mathrm{b}\mathrm{i}$-infinite words. We call such a set of $X$-factorizations of $w$ disjoint if no
two factorizations match at any point inside $w$ . Then we have, [KMI]

Defect theorem for $\mathrm{b}\mathrm{i}$-infinite words. Let $X\subseteq\Sigma^{+}$ be finite. If
a nonperiodic $bi$-infinite word possesses two disjoint $X$ -factorizations then
$r(X)\leq card(X)-1$ .

The above result is the first defect theorem for $\mathrm{b}\mathrm{i}$-infinite words, and
more interestingly it holds only with the combinatorial rank, but not with
the other types of ranks considered e.g. in $[\mathrm{C}\mathrm{h}\mathrm{K}]$ . It also allows to formulate
a nice problem on cumulative defect effect.

Problem 4 Let $X\subseteq\Sigma^{+}$ be finite. Is it true that whenever there exists a
nonperiodic $bi$-infinite word having $k$ disjoint factorizations, for $k\leq n_{f}$ then
necessarily $r(X)\leq card(X)-k+1$ ?

The case $k=2$ is answered affirmatively by the above formulation of
the defect theorem, and the case $k=n$ is taken care by the famous Critical
Factorization Theorem cf. [Lo] or $[\mathrm{C}\mathrm{h}\mathrm{K}]$ . About the other cases only the
following is known: Problem 4 has an affirmative answer if $k=3$ and $X$ is a
prefix set, cf. [KMII].

5 Equality languages
We recall that the equality language of two morphisms $h,g:\Sigma^{*}arrow\triangle^{*}$ is the
language

$E(h,g)=\{w\in\Sigma^{*}|h(w)=g(w)\}$ .

Consequently, the famous Post Correspondence Problem, cf. [HU] asks to
decide whether a given equality language is empty (modulo 1). Since this
is undecidable it is not surprising that there are challenging open problems
connected to equality languages.

Problem 5 It the equality language of two binary nonperiodic morphisms
always of the form $\{\alpha, \beta\}^{*}for$ some words $\alpha,$

$\beta\in\Sigma^{*}?$
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Here by a binary morphism we mean a morphism defined on a binary
alphabet, and by a periodic morphism the one satisfying that all images are
powers of a single word. Note also that the words $\alpha$ and $\beta$ are allowed to
be empty. By examples in $[\mathrm{C}\mathrm{u}\mathrm{K}]$ there exist equality languages of this form
with $\alpha$ and $\beta$ having different primitive roots. More interestingly, as was
shown in [EKR], all equality languages of binary nonperiodic morphisms are
either of the above form or of the form $(\alpha\beta^{*}\gamma)^{*}$ for some words $\alpha,$

$\beta,$ $\gamma\in\Sigma^{+}$ .
So the problem is to rule out the second case, which, however, does not seem
to be easy.

As another problem we state

Problem 6 Find the smallest $k$ such that the equality language of two in-
jective morphisms $h,$ $g:\Sigma^{*}arrow\triangle^{*}$ with card$(\Sigma)=k$ , can be nonregular.

By the above discussion $k>2$ , and by an example in [K] $k\leq 5$ . Hence,
the exact value of $k$ is 3, 4 or 5. This problem, although very special looking,
might help to solve the Post Correspondence Problem in the case where
card$(\Sigma)=3$ .

6 Equivalence of finite substitutions
In this section we slightly change our emphasis, namely from words to finite
languages. We pose the following problem:

Problem 7 Is it decidable whether two finite substitutions $\tau,$ $\sigma$ : $\{a, b, c\}^{*}arrow$

$\Delta^{*}$ are equivalent on the language $L=ab^{*}c$ .

The problem might look very special and uninteresting. At the first glance
it is clearly $\cdot$ decidable. However, it has turned out very intriguing, and after
all it is not ruled out that it were undecidable. We give some support for
these views.

Firstly, as shown in [La], any fixed finite subset of $L$ is not enough to test
whether, for all $\tau$ and $\sigma$ , they are equivalent on $L$ . Secondly, the problem
becomes undecidable if $L$ is replaced by $a\{b, c\}^{*}d$ , cf. [Li]. And finally, if the
inclusion instead of the equivalence is asked also then the problem becomes
undecidable, cf. [KL].
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7Commutation of finite languages
We continue with finite languages and study when do they commute, i.e. we
consider $X,$ $Y\subseteq\Sigma^{*}$ satisfying

$XY=YX$. (3)

We recall that for a given $X$ there exists the unique maximal $Y$ satisfying
(3). Such a $\mathrm{Y}$ is the centralizer of $X$ , in symbols $C(X)$ .

Problem 8 For a given finite $X\subseteq\Sigma^{*}$ is its centralizer rational?

This is a problem posed by Conway in $[\mathrm{C}^{\mathrm{I}}\mathrm{o}]$ (in a slightly general form
assuming that $X$ is rational). In some special cases the answer is known to
be affirmative: this is the case if $X$ is a prefix set, cf. [Ra], or card$(X)\leq 3$

cf. [CKO] and [KPe]. On the other hand, in the general case it is only known
(and not very difficult to see) that $C(X)$ is in Co-RE. Consequently, also the
following seems to be a nontrivial problem.

Problem 9 For a given finite $X\subseteq\Sigma^{*}$ is its centralizer recursive?

Another set of problems associated to the commutation is obtained when
all $\mathrm{Y}’ \mathrm{s}$ commuting with a given $X$ are looked for. Clearly, any $X,$ $\mathrm{Y}\subseteq\Sigma^{*}$

of the forms

$\mathrm{X}=\bigcup_{i\in I}V^{i}$ and $Y= \bigcup_{j\in J}V^{j}$ with $I,$ $J\subseteq N$ and $V\subseteq\Sigma^{+}(4)$

commute. An interesting question is whether this, in certain cases, is also a
necessary condition for the colmnutation.

For the falnily of all finite languages this is not the case, a counterexample
being the following four-element set $X=$ { $a$ , ab, $ba,$ $bb$} which commutes with
$Y=X\cup X^{2}\cup\{bab, bbb\}$ , cf. [CKO].

In order to formulate our further problenls, let us say that a finite $X\subseteq\Sigma^{+}$

satisfies $BTC$-condition if, for any Y. $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{n}g$

,
with $X,$ $X$ and $Y$ can be

written in the form (4). Hence, as we saw four-element sets do not satisfy
BTC-condition. On the other hand, all prefix sets $X$ satisfy this condition,
see [Ra], and so do all binary sets, see [CKO]. So there remains two inter-
esting problems:
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Problem 10 Does every three-element set $X$ satisfy the BTC-condition?

Problem 11 Does every finite code $X\subseteq\Sigma^{+}$ satisfy the BTC-condition $l.$?

As a final comment we recall that all polynomials with noncommuting
variables and coefficients in $Q$ , i.e. all finite multisets, satisfy the condition
very similar to that in (4), namely the one where unions of powers of $V$ are
replaced by one variable polynomials on $V$ . This is a deep result of Bergman,
see [Be], as well as the explanation for the abbreviation BTC: Bergman’s Type
of Characterization.

8 Matrix problems

In this final section we turn to problems which are still a bit farther away
from words. A connecting point here is the embedding

$\Sigma^{*_{\mathrm{c}}}arrow M_{2\cross 2}(N)$

known already to Nielsen in $20’ \mathrm{s}$ . That is the fact that the word semigroups
are subsemigroups of the multiplicative semigroup of matrices over nonneg-
ative integers.

. This embedding is extremely useful in both directions: In one hand, it
motivates to extend the problems of words into matrices –undecidability
results are neat examples of that. And conversely, results on matrices can be
used to deduce properties of words-the Ehrenfeucht Compactness Property
is a splendid example of that. Our emphasis here is in the first direction.

Let $\mathcal{M}=\{M_{1}, \ldots , M_{t}\}$ , for $t\geq 1$ , be a set of $n\cross n$ matrices over a
semiring $S$ , i.e. $M_{i}\in M_{n\cross n}(S)$ for all $i$ . Actually, $S$ will be mostly either
the set of integers $Z$ or the set of nonnegative integers 1V. We denote by $\mathcal{M}^{*}$

the multiplicative semigroup $\mathcal{M}$ generates.
We ask the following natural decision questions:

(i) Is $\mathcal{M}^{*}$ free?

(ii) Does $\mathcal{M}^{*}$ contain the zero matrix $0$ ?

(iii) Does $\mathcal{M}^{*}$ contain the identity matrix I?

. Problem (i) was shown to be undecidable in [KBS] for 3 $\cross 3$ matrices
over $N$ , and this was extended for $3\cross 3$ upper triangular lnatrices in [CHK].
What remains is the following interesting problem:
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Problem 12 Let $\mathcal{M}=\{M_{1}, \ldots , M_{t}\}\subseteq M_{2\cross 2}(N)$ . Is it decidable whether
$\mathcal{M}^{*}$ is free $t.$?

Surprisingly, even the case $t=2$ of this problem is unanswered, see $\mathrm{a}g$ain
[CHK].

Problem (ii) asks –essentially –whether the existence of the zero ele-
ment is decidable for certain finitely $g$enerated semi$g$roups. Amazingly, this
problem is undecidable already in the case when only the semigroup of two
integer matrices is considered, see $[\mathrm{C}\mathrm{a}\mathrm{K}]$ . Moreover, the dimension of the
matrices can be assumed to be only 45. Further this result can be translated
into a general interesting undecidability result of $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p},\mathrm{s}$, namely to the
result that the existence of the zero element in 2-generator semigroups is
undecidable. The undecidability of Problem (ii) holds also for $3\cross$ 3-integer
matrices, as was shown in [P] already in 1970. The case of $2\cross 2$ matrices
seems to be open.

A problem related to (ii) is the so-called Skolem’s Problem asking,
whether, for a given $n\cross n$ integer matrix $M,$ solne of its powers contains zero
in the right upper corner. Similarly as Problem (ii) it becomes undecidable
if instead of one two matrices are considered, see again $[\mathrm{C}\mathrm{a}\mathrm{K}]$ .

From algebraic point of view Problem (iii) asks a very similar question
as Problem (ii) does, namely the existence of the unit element in a finitely
generated semigroup. However, instead of results we have only problems:

Problem 13 Let $\mathcal{M}=\{M_{1}, \ldots , M_{t}\}\subseteq M_{n\cross n}(Z)(or\subseteq M_{n\cross n}(Q))$ . Is it
decidable whether $\mathcal{M}^{*}$ contains the identity matrix?

As should be clear there are much more similar open problems on matri-
ces. We have only tried to pick up a few most interesting ones.
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