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ABSTRACT. Tameness is a property introduced in 1997 by Steinberg and the author
in connection with the Krohn-Rhodes complexity problem in order to establish the
decidability of semidirect products of pseudovarieties of semigroups. Since then a
number of works have been dedicated to proving tameness of pseudovarieties. This
paper is a survey of work in this area.

1. THE SEMIDIRECT PRODUCT OF PSEUDOVARIETIES

A pseudovariety of semigroups is a class of finite semigroups which is closed under
taking homomorphic images, subsemigroups and finite direct products. A pseudovariety
is said to be decidable if there is an algorithm to test membership in it of a given
finite semigroup. Many applications of finite semigroup theory in other areas such as
language theory, logic, and complexity theory depend on proving the decidability of
specific pseudovarieties.

For a semigroup $T,$ $T^{1}$ denotes the least monoid containing $T$ (which is unique up
to isomorphism). Given a monoid homomorphism $T^{1}arrow \mathrm{E}\mathrm{n}\mathrm{d}S$ into the monoid of
endomorphisms of $S$ , we consider the associated semidirect product $S*T$ which is the
set $S\cross T$ endowed with the operation

$(s_{1}, t_{1})(s_{2}, t_{2})=(s_{1}s_{2}, t_{1}t_{1}t_{2})$

where $t_{1}S_{2}$ denotes the image of $s_{2}$ under the endomorphism associated with $t_{1}$ . It is
easy to see that $S*T$ is again a semigroup.

For pseudovarieties V and $\mathrm{W}$ , their semidirect product $\mathrm{V}*\mathrm{W}$ is the pseudovariety
generated by all semidirect products $S*T$ with $S\in \mathrm{V}$ and $T\in \mathrm{W}$ . A basic question
concerning this operation is under what conditions on the factors the semidirect product
is decidable. By working with a special type of semidirect product known as the wreath
product, it can be shown that the semidirect product of pseudovarieties is an associative
operation. Thus, a more general question is to find conditions on the factors $\mathrm{V}_{1},$

$\ldots,$
$\mathrm{V}_{n}$

that ensure that the semidirect product $\mathrm{V}_{1}*\cdots*\mathrm{V}_{n}$ is decidable. A potential application
of this question appears when one considers such an iterated semidirect product in which
the factors are either the pseudovariety $\mathrm{G}$ of all finite groups or the pseudovariety A
of all finite aperiodic (i.e., with only trivial subgroups) semigroups, both of which are
idempotents $\mathrm{f}\mathrm{o}\mathrm{r}*$ . Krohn and Rhodes $[21, 22]$ have shown that every finite semigroup
belongs to some such semidirect product of A’s and $\mathrm{G}’ \mathrm{s}$ . They defined the least number
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of $\mathrm{G}’ \mathrm{s}$ in such a semidirect product containing a given finite semigroup $S$ to be the
compIexity of $S$ and asked whether the complexity function can be effectively computed.

Rhodes [27] has exhibited decidable pseudovarieties V and $\mathrm{W}$ such that $\mathrm{V}*\mathrm{W}$

is undecidable. One such undecidable example is obtained by taking the semidirect
product $\mathrm{S}1*[\Sigma \mathrm{J}$ of the pseudovariety Sl of all finite semilattices by the pseudovariety
defined by a certain finite set of identities $\Sigma$ .

In contrast, Steinberg and the author $[8, 9]$ have established the following result which
provides the main motivation for the notion of tameness to be introduced below.
Theorem 1. If $V_{1},$

$\ldots$ , $\mathrm{V}_{n}$ are tame pseudovarieties of semigroups then $V_{1}*\cdots*\mathrm{V}_{n}$

is decidable.
So, in particular, the Krohn-Rhodes complexity problem will be settled affirmatively

once it is shown that both $\mathrm{G}$ and A are tame pseudovarieties. For $\mathrm{G}$ this follows from
results of Ash [13]. For $\mathrm{A}$ , this has been announced by Rhodes [28].

In the next section we introduce formally the notion of tameness while the remainder
of the paper discusses particular examples of tame pseudovarieties. While no previous
knowledge of finite semigroup theory is assumed to read this paper, many details on the
required background are omitted and so a familiarity with some of the literature would
certainly help. See [26] for an introduction and motivation, [2] for a more comprehensive
treatment, and [4] for an exposition of the profinite approach.

2. TAMENESS

Throughout this section V denotes a pseudovariety of semigroups.
A topological semigroup is a semigroup $S$ endowed with a topology with respect to

which the semigroup operation $S\cross Sarrow S$ is continuous. Finite semigroups are viewed
as topological semigroups with the discrete topology. By a pro-V semigroup we mean
a compact semigroup $S$ which is residually in V in the sense that, for any two points
$s_{1},$ $s_{2}\in S$ , there is a continuous homomorphism $\varphi:Sarrow T$ into a finite semigroup such
that $\varphi s_{1}\neq\varphi s_{2}$ .

It can be shown that there is a free pro-V semigroup on a set $A$ . This is a (up to
homeomorphic isomorphism, unique) pro-V semigroup $\overline{\Omega}_{A}\mathrm{V}$ endowed with a generaiing
mapping $\iota$ : $Aarrow\overline{\Omega}_{A}\mathrm{V}$ such that, for every mapping $\varphi$ : $Aarrow S$ into a pro-V semigroup
$S$ , there is a unique continuous homomorphism $\hat{\varphi}$ such that the following diagram
commutes:

Given $\pi\in\overline{\Omega}_{A}V$ , this defines an operation
$\pi_{S}:S^{A}$ $arrow$ $S$

$\varphirightarrow$ $\hat{\varphi}(\pi)$

Such an operation is implicit in the sense that, for any continuous homomorphism
$h:Sarrow T$ between pro-V semigroups, the following diagram commutes:
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The mapping
$\pi\in\overline{\Omega}_{A}\mathrm{V}arrow(\pi_{S})_{S\in \mathrm{V}}$

turns out to be a bijection with the set of $A$-ary implicit operations on $V$ .
Two very important examples of implicit operations are the following:

$\bullet$ multiplication: $-\cdot$ -: $(s, t)rightarrow s\cdot t$ , interpreted simply as the semigroup operation
on each finite semigroup;

$\bullet$ $(\omega-1)$-power: $-\omega-1$ : $s$ a $s^{\omega-1}$ where, for a finite semigroup $S$ and $s\in S$ ,
$t=s^{\omega-1}$ is the unique power of $s$ such that $tst=t$; in particular, $s^{\omega}=ss^{\omega-1}$ is an
idempotent.

In case the arity set $A$ has $n$ elements $x_{1},$ $\ldots$ , $x_{n}$ , the element $x_{i}$ may be viewed as
the $i\mathrm{t}\mathrm{h}$ component projection, picking the $i\mathrm{t}\mathrm{h}$ component $s_{i}$ from an $n$-tuple of elements
$(s_{1}, \ldots, s_{n})\in S^{n}$ . We then also say that $A$-ary implicit operations are n-ary.

Implicit operations may be composed to obtain again implicit operations: for $m$ im-
plicit operations $\pi_{1},$ $\ldots,$

$\pi_{m}$ of arity $n$ and an $m$-ary implicit operation $\rho$ , the operation
$\rho(\pi_{1}, \ldots, \pi_{m})$ is defined by the formula

$(\rho(\pi_{1}, \ldots, \pi_{m}))_{S}(s_{1}, \ldots, s_{n})=\rho_{S}(\pi_{1S}(s_{1}, \ldots, s_{n}), \ldots, \pi_{mS}(s_{1}, \ldots, s_{n}))$

for $(s_{1}, \ldots, s_{n})\in S^{n}$ and is again an implicit operation.
Denote by $\mathrm{S}$ the pseudovariety of all finite semigroups. A profinite semigroup is simply

a pro-S semigroup. By an implicit signature we mean a set $\sigma$ of implicit operations on $\mathrm{S}$

containing the basic semigroup multiplication. For example, $\kappa=\{_{-}$ . -, $-\}\omega-1$ is called
the canonical signature. Here the word canonical has no technical connotation as it is
used just because $\kappa$ is the most commonly used signature.

Let $\sigma$ be an implicit signature. Since implicit operations have natural interpreta-
tions as operations on profinite semigroups, every profinite semigroup is thus naturally
endowed with a structure for the enlarged algebraic signature $\sigma$ . We call a semigroup
with interpretations of all other operations from $\sigma$ a $\sigma$-semigroup. The free $\sigma$-semigroup
on a set $A$ in the variety generated by V is denoted $\Omega_{A}^{\sigma}\mathrm{V}$ and it is easy to show that
it may be constructed as the $\sigma$-subsemigroup of $\overline{\Omega}_{A}\mathrm{V}$ generated by the image of the
generating mapping $\iota:Aarrow\overline{\Omega}_{A}\mathrm{V}$ . In other words, $\Omega_{A}^{\sigma}\mathrm{V}$ is the set of all $A$-ary implicit
operations which can be obtained from the component projections by composing with
the operations from $\sigma$ . We say that V is $\sigma$-recursive if the word problem for $\Omega_{A}^{\sigma}\mathrm{V}$ is
algorithmically solvable, i.e., if there is an algorithm to test when two such composites
define the same implicit operation on V.

We consider here a graph to be a set $\Gamma=V\cup\circ E$ consisting of two types of elements,
respectively vertices and edges, endowed with two mappings $\alpha,$ $\omega$ : $Earrow V$ giving
respectively the begining and the ending of a vertex; pictorially this is described by
$\alpha e-^{e}\omega e$ . A labeling of $\Gamma$ is a function $\gamma:\Gammaarrow S^{1}$ such that $\gamma E\subseteq S$ . We say that the
labeling $\gamma$ is consistent if, for all $e\in E,$ $(\gamma\alpha e)(\gamma e)=\gamma\omega e$ .
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A relational morphism is a relation $\mu$ : $Sarrow T$ between two semigroups $S$ and $T$

with domain $S$ which is a subsemigroup of $S\cross T$ . Note that a homomorphism and the
inverse of an onto homomorphism are relational morphisms and that the composite of
relational morphisms is again a relational morphism. A labeling $\gamma$ : $\Gammaarrow S^{1}$ is said to
be $\mu$-inevitable if there is a consistent labeling $\delta$ : $\Gammaarrow T^{1}$ which is $\mu$-related with $\gamma$

in the sense that $(\gamma z, \delta z)\in\mu\cup\{(1,1)\}$ for every $e\in E$ . A labeling $\gamma$ : $\Gammaarrow S^{1}$ of a
finite graph by a finite semigroup is said to be $\mathrm{V}$-inevitable if it is $\mu$-inevitable for every
relational morphism $\mu:Sarrow T$ into $T\in \mathrm{V}$ .

For an $A$-generated finite semigroup $S$ , the composite

is called the natural $\sigma$-relational morphism (associated with the choice of generators),
where $\varphi$ is the homomorphism determined by the choice of generators and $\psi$ is defined
by restriction. In other words, $\mu_{\mathrm{V}}^{\sigma}$ is the $\sigma$-subsemigroup of $S\cross\Omega_{A}^{\sigma}\mathrm{V}$ generated by
all pairs $(\varphi a, \psi a)$ with $a\in A$ . It is easy to check that inevitability of a labeling of a
graph by a finite semigroup $S$ with respect to a natural $\sigma$-relational morphism does not
depend on the choice of generators of $S$ .

The pseudovariety V is said to be $\sigma$ -reducible if every $\mathrm{V}$-inevitable labeling of a finite
graph by a finite semigroup is $\mu_{\mathrm{V}}^{\sigma}$-inevitable. A compactness argument shows that
every pseudovariety is reducible with respect to the signature consisting of all implicit
operations. Also say that V is weakly $\sigma$-reducible if every $\mathrm{V}$-inevitable labeling of a
finite graph by a finite $A$-generated semigroup $S$ is $\overline{\mu_{\mathrm{V}}^{\sigma}}$-inevitable with respect to the
closure of the natural $\sigma$-relational morphism in the product topology of $S\cross\Omega_{A}^{\sigma}$V.

A pseudovariety is said to be $\sigma$-tame if it is recursively enumerable, $\sigma$-recursive,
and $\sigma$-reducible. For this notion to be useful, we require some further computability
assumptions on the signature $\sigma$ . We say that $\sigma$ is highly computable if it is recursively
enumerable and consists of computable implicit operations. This is certainly the case
of the canonical signature $\kappa$ . Finally, we say that a pseudovariety is tame if it is $\sigma$-tame
with respect to some highly computable implicit signature $\sigma$ . This is the notion used in
Theorem 1. The proof of that result is based on an earlier syntactic characterization of
the semidirect product $\mathrm{V}*\mathrm{W}$ due to Weil and the author [5] which led first to the notion
of hyperdecidability [3], which failed to deal with semidirect products with more than
two factors, and later to tameness. A pseudovariety V is said to be hyperdecidable if it is
decidable whether a given labeling of a finite graph by a finite semigroup is V-inevitable.
The notion of tameness is basically a refinement of hyperdecidability in a sense giving,
in general, a very inefficient but uniform type of algorithm to solve the same decision
problem. In particular, tame pseudovarieties are hyperdecidable. However, in handling
specific examples, it appears that proving the stronger property is actually easier as one
simply ignores the difficulties of finding efficient algorithms. The algorithms coming
from proving tameness are very inefficient because they involve in particular examining,
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up to isomorphism, all semigroups and all graphs up to a given size and there are simply
too many of those.

3. TAME PSEUDOVARIETIES

We start by giving some examples of tame pseudovarieties. The first is a reformulation
of a celebrated result due to Ash [13] which proved, in particular, the Rhodes type II
conjecture and the Henckell and Rhodes pointlike conjecture. See [18] for the immediate
significance of this result for the theory of finite semigroups and for a history and
applications of those two conjectures.

Theorem 2. The pseudovariety $\mathrm{G}$ is $\kappa$-tame.

Since $\Omega_{A}^{\kappa}\mathrm{G}$ is the free group on $A,$ $\kappa$-recursiveness of $\mathrm{G}$ amounts to the elementary
solution of the word problem in free groups. In the case of the pseudovariety $\mathrm{J}$ of all
finite semigroups in which every principal ideal admits a unique generator, the word
problem for $\Omega_{A}^{\kappa}\mathrm{J}$ was solved earlier by the author [1] who also showed that $\overline{\Omega}_{A}\mathrm{J}=\Omega_{A}^{\kappa}$ J.
Hyperdecidability of $\mathrm{J}$ was proved by Zeitoun and the author [11] and depends heavily
on structural knowledge about $\overline{\Omega}_{A}\mathrm{J}$ . This is a concrete example for which proving the
stronger notion of $\kappa$-tameness (with algorithms which are outrageously inefficient) is
much easier. In fact, it becomes a simple exercise to prove the following theorem taking
into account [2, Theorem 8.1.11].

Theorem 3. The pseudovariety $\mathrm{J}$ is $\kappa$-tame.

A semigroup $S$ is said to be an orthogroup if it is the union of its subgroups and
the product of two idempotents is again an idempotent. Finite orthogroups form a
pseudovariety denoted OCR. The $\kappa$-semigroup $\Omega_{A}^{\kappa}$ OCR is the free orthogroup on the
set $A$ . The solution of the word problem for this free algebra was obtained by Gerhard
and Petrich [16]. Tameness of OCR was proved by hotter and the author [10]. More
generally, for a pseudovariety $\mathrm{H}$ of groups, let $\overline{\mathrm{H}}$ be the pseudovariety of all finite
semigroups whose subgroups lie in H.

Theorem 4. If the pseudovariety of groups $\mathrm{H}$ is $\kappa$-tame then so is $\mathrm{O}\mathrm{C}\mathrm{R}\cap\overline{\mathrm{H}}$ .

Removing the assumption that the product of idempotents is again idempotent one
obtains the pseudovariety CR of so-called completely regular semigroups. While the
solution of the word problem for the free completely regular semigroup $\Omega_{A}^{\kappa}$ CR is also
available in this case, due to $\mathrm{K}\mathrm{a}\check{\mathrm{d}}\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{k}$ and Pol\’ak [20], the proof of tameness appears to
be much harder. In ongoing work, botter and the author have shown that a conjectured
stronger but closely related property than $\kappa$-tameness for $\mathrm{G}$ would imply that CR is
$\kappa$-tame.

Another important case is that of the pseudovariety A. A solution of the word
problem for the free aperiodic $\kappa$-semigroup $\Omega_{A}^{\kappa}$A has been announced independently by
$\mathrm{M}\mathrm{c}\mathrm{C}\mathrm{a}\mathrm{m}\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{d}[25]$ and Zhilt’sov [33] and depends on the solution of the word problem for
free Burnside semigroups, respectively in the version of $\mathrm{M}\mathrm{c}\mathrm{C}\mathrm{a}\mathrm{m}\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{d}[24]$ and Guba [17].
Tameness of A has been announced by Rhodes [28].

Theorem 5. The pseudovariety A is $\kappa$-tame.
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In view of Theorem 1, from Theorems 2 and 5 we deduce the solution of the Krohn-
Rhodes complexity problem.

Corollary 6. The Krohn-Rhodes complexity function may be effectively computed.

The pseudovariety $\mathrm{D}$ consists of all finite semigroups in which idempotents are right
zeros, also known as definite semigroups. Elements $\mathrm{o}\mathrm{f}\overline{\Omega}_{A}\mathrm{D}$ may be identified with finite
and infinite words (to the left) on the alphabet $A$ . The word problem for the relatively
free $\kappa$-semigroup $\Omega_{A}^{\kappa}\mathrm{D}$ , consisting of finite and ultimately periodic infinite words, is
therefore quite easy to solve. A proof of tameness of $\mathrm{D}$ was obtained by Zeitoun and
the author [12].

Theorem 7. The pseudovariety $\mathrm{D}$ is $\kappa$ -tame.

Denote by $\mathrm{G}_{p}$ the pseudovariety of all finite p–groups. Since the free group is residually
a finite p–group [14], the relatively free $\kappa$-semigroup $\Omega_{A}^{\kappa}\mathrm{G}_{p}$ is an absolutely free group.
Steinberg and the author [8] had shown that this implies that $\mathrm{G}_{p}$ cannot be $\kappa$-tame.
On the other hand, extending Ash’s arguments, Steinberg [32] has shown that $\mathrm{G}_{p}$ is
weakly $\kappa$-reducible. More generally, after Ribes and Zalesskil [30], as in $[15, 32]$ , call
a pseudovariety $\mathrm{H}$ of groups an $\mathfrak{R}\mathrm{Z}$-pseudovariety (respectively an $\overline{\mathfrak{R}\mathrm{Z}}$ -pseudovariety)
if the product of finitely generated subgroups of $\Omega_{A}^{\kappa}\mathrm{H}$ is closed (respectively, if the
product of closed finitely generated subgroups of $\Omega_{A}^{\kappa}\mathrm{H}$ is closed and the closure of a
finitely generated subgroup of $\Omega_{A}^{\kappa}\mathrm{H}$ is itself finitely generated). Here the topology is the
induced topology from that $\mathrm{o}\mathrm{f}\overline{\Omega}_{A}\mathrm{H}$ and is called the pro-H topology. Call $\mathrm{H}$ arborescent
if $(\mathrm{H}\cap \mathrm{A}\mathrm{b})*\mathrm{H}\subseteq \mathrm{H}$ where Ab denotes the pseudovariety of all finite Abelian groups and
where the name arborescent comes from the fact that this property characterizes those
pseudovarieties of groups whose profinite Cayley graphs are profinite trees (see [4]).
Steinberg [32] proved more generally the following result.

Theorem 8. Every $arborescent\overline{\mathfrak{R}\mathrm{Z}}$-pseudova$r\cdot iety$ (in particular, every extension closed
pseudovariety) of groups is weakly $\kappa$-reducible.

Relying on this result as well on the methods developed by Ribes and Zalesskil [31]
and further explored by Margolis, Sapir and Weil [23], the author has shown that $\mathrm{G}_{p}$

is tame as a consequence of the following more general result.

Theorem 9. Every recursively enumerable extension closed pseudovariety of groups $\mathrm{H}$

for which there is an algorithm to test whether a finitely generated subgroup of a free
group is dense with respect to the pro-H topology is tame.

It remains an open problem whether say the pseudovariety $\mathrm{G}_{\mathrm{s}\mathrm{o}1}$ of all finite solvable
groups possesses the algorithmic property of Theorem 9. On the other hand, removing
the assumption that the pseudovariety of groups is extension closed seems to render the
problem harder. It remains for instance an open problem whether Ab and the pseu-
dovariety $\mathrm{G}_{\mathrm{n}\mathrm{i}1}$ of all finite nilpotent groups are tame although the algorithmic property
of Theorem 9 (understood with respect to the relatively free group) holds for both of
them (see [15, 23]).

Note that, by a simple counting argument, most pseudovarieties are not tame (in
fact, not even decidable). On the other hand every pseudovariety for which relatively
free profinite semigroups over finite sets are finite and computable are easily shown to
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be tame and so, in particular, Sl is tame. Hence, in view of Theorem 1, the Rhodes
pseudovariety [$\Sigma \mathrm{I}$ mentioned in Section 1 is decidable but not tame (see also [29]).
However, it seems reasonable to expect that “natural” pseudovarieties should be tame
and this is what Rhodes would call the natural conjecture [27].

Delgado and the author [7] have observed that, in the case of an $\mathfrak{R}\mathrm{Z}$-pseudovariety of
groups $H$ , denoting $F=\Omega_{A}^{\kappa}H,$ $\kappa$-tameness is equivalent to the following property: for
every system of equations of the form
(1) $x_{\alpha e}x_{e}=x_{\omega e}$ $(e\in E)$

which has no solution in $F$ satisfying constraints of the form
(2) $x_{z}\in g_{z}H_{1z}\ldots H_{n_{z}z}$ $(z\in\Gamma)$

with the $g_{z}\in F$ and the $H_{iz}$ closed finitely generated subgroups, the $H_{iz}$ may be replaced
by subgroups $K_{iz}$ of finite index containing them such that the system (1) remains
without solution for the weaker constraints. This property provides a surprising bridge
between this area and Model Theory which we proceed to present.

A class $\mathrm{C}$ of relational structures satisfies the finite extension property for partial auto-
morphisms (FEPPA) if, for every finite $S\in \mathrm{C}$ and every set $\mathrm{J}^{\mathrm{J}}$ of partial automorphisms
of $S$ , if there is some structure $T\in \mathrm{C}$ of which $S$ is a substructure such that every
element of $\varphi$ extends to a full automorphism of $T$ , then there exists such a structure
$T\in \mathrm{G}$ which is finite. A homomorphic extension of a structure $S$ is a structure $T$ for
which there is a mapping $\varphi$ : $Sarrow T$ which respects all the relations in the language;
we then write $T\leq_{h}S$ . The exclusion class of $\mathrm{C}$ is the class

Excl $(\mathrm{G})=\{S:(\neg\exists T\in \mathrm{G})T\leq_{h}S\}$ .
Herwig and Lascar [19] proved the following results by establishing the first by model
theoretic methods and showing the formal equivalence with the second.

Theorem 10. If $\mathrm{C}$ is a finite set offinite structures of a finite relational language, then
the class Excl$(\mathrm{G})$ has the FEPPA.

For a subgroup $H$ of a group $G$ and elements $g_{1},$ $g_{2}\in G$ , write $g_{1}\equiv_{H}g_{2}$ if the left
cosets $g_{1}H$ and $g_{2}H$ are equal.

Theorem 11. Consider a system of equations of the forms
$X\equiv_{H}\mathrm{Y}g$ and $X\equiv_{H}g$ ,

where the $H$ are finitely generated subgroups of $F=\Omega_{A}^{\kappa}\mathrm{G}$ and the $g\in F$; if the system
has no solution in $F$ in the variables $X,$ $\mathrm{Y},$

$,$ . . then one may replace each subgroup $H$

by a subgroup of $F$ of finite index containing $H$ such that the system remains without
solution in $F$ .

In turn, Delgado and the author $[6, 7]$ proved the formal equivalence of these results
with tameness of $\mathrm{G}$ by showing that Theorem 11 may be reformulated as stating that,
for every system of equations of the form (1) which has no solution in $F$ satisfying
constraints of the form
(3) $x_{z}\in g_{z}H_{z}$ $(z\in\Gamma)$

with the $g_{z}\in F$ and the $H_{z}$ finitely generated subgroups, the $H_{z}$ may be replaced by
subgroups $K_{z}$ of finite index containing them such that the system (1) remains without
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solution for the weaker constraints. Moreover, the equivalence between these two results
about systems of equations over a free group hold relative to any pseudovariety $H$ of
groups, replacing the absolutely free group by the corresponding relatively free group.

The reduction of the general constraints of the form (2) to the special form (3) also
provides a proof that an $\mathfrak{R}\mathrm{Z}$-pseudovariety of groups which is $\kappa$-tame for labelings of
finite graphs by finite inverse semigroups is in fact $\kappa$-tame [7]. The original proof by
Ash [13, Sections 8-10] for the case of $\mathrm{G}$ , although not explicitly using the fact that $\mathrm{G}$

is an $\mathfrak{R}\mathrm{Z}$-pseudovariety, was considerably longer.
It would be of interest to find model-theoretic formulations of tameness for other

pseudovarieties of groups and to further explore the connection between the two topics.
Also of interest would be to determine for which systems of equations instead of (1) the
above results hold.
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