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Abstract. A parallel communicating finite automata system is an accepting
device based on the communication between more finite automata working in par-
allel. It consists of several automata working independently but communicating
with each other by request. We survey several variants of parallel communicat-
ing finite automata systems with respect to their computational power. Other
aspects like decidability and complexity matters are also briefly discussed. Some
open problems and directions for future research are finally pointed out.

1 Introduction
In many areas of computer science (parallel computers, computer networks, DNA com-
puting, artificial intelligence) many models based on cooperation and communication
among agents have been considered. The formal language theory has been involved in
most of these circumstances e.g. for modelling aspects whose essence can be captured
at the level of abstract symbol systems, see, e.g., [5], [8], [21], etc. Thus, [4] introduced
the concept of system of grammars, motivated by the so called ”blackboard model” in
problem solving theory [8]. More grammars working together, following a prescribed
strategy is a grammar system. The same architecture is proposed in [1] with moti-
vations coming from regulated rewriting area. Two essentially different architectures
are known depending on the protocols of cooperation and communication among the
components of the system, see, e.g, [5]. In the case of cooperating distributed gram-
mar systems the cooperation is done by means of the sentential form; all components
may rewrite, in turn, the sentential form accordingly to their own strategies. When a
component is active, all the others are inactive. Quite different is the cooperation in
parallel communicating grammar systems, where the components are working in par-
allel, and from time to time some components ask, by means of some query symbols,
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for the work of other ones. The contacted components have to send their current work
(sentential form) to those components which asked for it.

Systems of cooperating automata have also been considered as models for some
computing systems, but the strategies of coordinate their work in order to perform
some computation were very different than those considered in the grammar systems
theory. Without the aim of completeness, we briefly mention some important models.

A multiprocessor automaton consists of several finite automata, called processors
[2], which are coordinated by a central processing unit that decides which processor
is to become active or “frozen” at a given step. Each processor works independently
from the other ones according to its internal transition function which depends on the
internal state of the processor and the current input symbol. The central processing
unit inspects the current states of the processors (a frozen processor preserves its in-
ternal state and reading head position) and determines which processors will be active
or frozen at the next step. Note that the states achieved by the processors depend
exclusively on their current state and input symbol. The strategy of cooperation takes
into consideration all internal states at a given step being limited to timing through
which the central unit lets some processors proceed.

In another model each automaton is allowed to know the states of all automata.
The transition function of one automaton depends on the input symbol currently read
and the states of all automata determining a move of its reading head and a new
state. An equivalent form of this system is the multi-head automaton which reduces all
components to just reading heads controlled by a single processing unit $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h},\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{l}\mathrm{y}$

many internal states.
The first approach of considering automata systems working under similar strategies

to those defined for grammar systems can be found in [7], where the strategies con-
sidered for multistack pushdown automata are similar to those defined for cooperating
distributed grammar systems.

Parallel communicating finite automata systems are somewhere in between these
extremes. Their components are finite automata working independently but communi-
cating states to each other by request. These systems, whose components communicate
with each other under similar protocols to those considered for parallel communicating
grammar systems [20], [5], have been introduced in [18]. Every component is entitled
to request the state of any other component; the contacted component communicates
its current state and remains in the same state (in the non-returning strategy) or enters
again the initial state (in the returning strategy). In centralized systems only one com-
ponent (the master of the system) is allowed to ask a state from the others. We want
to stress that each step in an automata system is either a usual accepting step or a
communication one; moreover, the communication steps have priority to the accepting
ones. We also mention that whenever a component requests $\mathrm{a}$. state, the state must be
communicated.

The investigation of the effect of these strategies of communication for systems of
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automata whose components are pushdown automata was continued in [6]. Thus, one
distinguished two possible directions: communication by states or by stacks. Since one
can easily observe that every two-stack pushdown automaton [12] can be simulated by a
parallel communicating pushdown automata system whose components communicate
states to each other, [6] focused its attention on the other way of communication,
namely, communication by stacks.

The paper is organized as follows. The next section starts with the definitions
of parallel communicating finite automata systems and their cooperation protocols,
illustrated by a few examples. Then, we recall the main results known concerning the
computational power of these devices, some decidability problems and a brief discussion
related to mildly context-sensitive formalisms. Afterwards, we introduce a complexity
measure for these systems called the degree of communication and investigate some
computational aspects of this measure. Each section ends by briefly discussing some
open problems and directions for future research.

2 Definitions and examples
We shall assume the reader familiar with the fundamental concepts of formal language
theory and automata theory, particularly the notions of grammars and finite automata
[22].

An alphabet is always a finite set of letters. The set of all words over an alphabet $V$

is denoted by $V^{*}$ . The empty word is written $\epsilon$ ; moreover, $V^{+}=V^{*}-\{\epsilon\}$ . For a finite
set $A$ we denote by card$(A)$ the cardinality of $A$ . Sometimes, for a given alphabet
$V$ and a word $x=a_{1}a_{2}\ldots a_{n},$ $a_{i}\in V,$ $1\leq i\leq n$ , we write $\overline{V}=\{\overline{a}|a\in V\}$ and
$\vec{x}=\vec{a}_{1}a_{2}^{-}\ldots a_{n}^{-}$ .

A parallel communicating finite automata system of degree $n$ is a construct

$A=(V, A_{1}, A_{2}, \ldots, A_{n}, K)$ ,

where

$\bullet$ $V$ is the input alphabet,

$\bullet$ $A_{i}=(Q_{i}, V’, f_{i}, q_{i}, F_{i}),$ $1\leq i\leq n$ , are finite automata with the set of states $Q_{i}$ ,
$q_{i}\in Q_{i}$ (the initial state of the automaton $i$ ), $F_{i}\subseteq Q_{i}$ (the set of final states),
and $f_{i}$ is the transition mapping of the automaton $i$ defined as follows

$f_{i}$ : $Q_{i}\cross V\cup\{\epsilon\}arrow 2^{Q_{i}}$ .

$\bullet$ $K= \{K_{1}, K_{2}, \ldots, K_{n}\}\subseteq\bigcup_{i=1}^{n}Q_{i}$ is the set of querry states.
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The automata $A_{1},$ $A_{2},$
$\ldots$ , $A_{n}$ are called the components of the system $A$ . If there

exists just one $1\leq i\leq n$ such that $K\subseteq Q_{i}$ , then the system is said to be centralized,
the master of this system being the component $i$ . For sake of simplicity, whenever a
system is centralized, the first component is its master. If the following conditions

(i) card$(f_{i}(s, a))\leq 1$ for all $s\in Q_{i}$ and $a\in V\cup\{\epsilon\}$ ,
(ii) if card $(f_{i}(s, \epsilon))\neq 0$ for some $s\in Q_{i}$ , then

card$(f_{i}(s, a))=0$ for all $a\in V$,

are fulfilled for all $1\leq i\leq n$ , then the automata system is deterministic.
By a configuration of a parallel communicating automata system as above, we mean

an $2n$-tuple
$(s_{1}, x_{1}, s_{2}, x_{2}, \ldots, s_{n}, x_{n})$

where

$-s_{i}$ is the current state of the component $i$ ,
- $x_{i}$ is the $\mathrm{r}\mathrm{e}\mathrm{I}\mathrm{n}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}$ part of the input word which has not been read

yet by the component $i,$ $1\leq i\leq n$ .

We define two binar.$\mathrm{v}$ relations on the set of all configurations of $A$ in the following
way:

$(s_{1}, x_{1}, .\mathrm{s}_{2}, x_{2}, \ldots, s_{n}, x_{n})\vdash(p_{1}, y_{1},p_{2}, y_{2}, \ldots,p_{n}, y_{n})$

iff one of the following two conditions holds:

(i) $K\cap\{s_{1}, s_{2}, \ldots, s_{n}\}=\emptyset$ and
$x_{i}=a_{i}y_{i},$ $a_{i}\in V\cup\{\epsilon\},$ $p_{i}\in f_{i}(s_{i}, a_{i}),$ $1\leq i\leq n$

(ii) for all $1\leq i\leq n$ such that $s_{i}=K_{j_{i}}$ and $s_{j_{i}}\not\in K$ put $p_{i}=s_{j_{i}}$ ,

$p_{r}=s_{r}$ , for all the other $1\leq r\leq n$ , and $y_{t}=x_{t},$ $1\leq t\leq n$ .

$(S_{1}, X_{1},6_{2}^{\cdot}, x_{2}, \ldots, s_{n}, x_{n})\vdash_{r}(p_{1}, y_{1},p_{2}, y_{2}, \ldots,p_{n}, y_{n})$

iff one of the following two conditions holds:

(i) $K\cap\{s_{1}, s_{2}, \ldots , s_{n}\}=\emptyset$ and
$x_{i}=a_{i}y_{i},$ $a_{i}\in V\cup\{\epsilon\},$ $p_{i}\in f_{i}(s_{i}, a_{i}),$ $1\leq i\leq n$

(ii) for all $1\leq i\leq n$ such that $s_{i}=K_{j_{i}}$ and $s_{j_{i}}\not\in K$ put $p_{i}=s_{j_{i}},$ $p_{j_{\mathrm{t}}}=q_{j_{i}}$ ,

$p_{r}=s_{r}$ , for all the other $1\leq r\leq n$ , and $y_{t}=x_{t},$ $1\leq t\leq n$ .

The difference between the two relations defined above may be easily noticed when
the current states of some components are querry states: these components get into
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communication with those components identified by the query states, which are forced
to send their current states, providing they are not query states, these states becoming
the new states of the receiver components. The next states of the sender components
remain the same in the case of $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\vdash \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{s}$ they become the initial states when
$\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\vdash_{r}$ has been applied.

A parallel communicating automata system whose all moves are based on the rela-
$\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\vdash_{r}$ is said to be returning.

Informally, the language accepted by a PCFAS $A$ , consists of all strings $x\in V^{*}$

such that the system starts in an initial configuration $(q_{1}, x, q_{2}, x, \ldots, q_{n}, x)$ and reaches
a final configuration, that is a configuration of the form $(s_{1}, \in \mathrm{i}, s_{2}, \epsilon, \ldots , s_{n}, \epsilon)$ , with
$s_{i}\in F_{i}$ . Formally

$Rec(A)$ $=$ $\{x\in V^{*}|(q_{1}, x, q_{2}, x, . ‘. , q_{n}, x)\vdash*(s_{1}, \epsilon, s_{2}, \epsilon, \ldots, s_{n}, \epsilon)$ ,
$s_{i}\in F_{i},$ $1\leq i\leq n\}$ ,

$Rec_{r}(A)$ $=$ $\{x\in V^{*}|(q_{1}, x, q_{2}, x, \ldots, q_{n}, x)\vdash_{r}*(s_{1}, \epsilon, s_{2}, \epsilon, \ldots, s_{n}, \epsilon)$ ,
$s_{i}\in F_{i},$ $1\leq i\leq n\}$ .

We shall denote by:
-rcpcfa $(n)- \mathrm{a}$ returning centralized parallel communicating finite automata system

of degree $n$ ;
-rpcfa$(n)$ -a returning parallel communicating finite automata system of degree

$n$ ;
$-cpcfa(n)$ -a centralized parallel communicating finite automata system of degree

$n$ ;
-pcfa$(n)-\mathrm{a}$ parallel communicating finite automata system of degree $n$ .
We add the prefix $d$ in order to denote deterministic variants. If $x(n)$ is a type

of automata system, then $X(n)$ is the class of all languages accepted by automata
systems of type $x$ . For example, RCPCFA$(n)$ is the class of all languages accepted
by rcpcfa$(n)$ automata systems.

Example 1. Consider the cpcfa $(2)$

$A=(\{a, b, c\}, A_{1}, A_{2}, \{K_{1}, K_{2}\})$ ,

where $A_{1}$ and $A_{2}$ are two deterministic finite automata with $\epsilon$ -moves whose transition
mappings are listed below

$f_{1}(q_{1}, \epsilon)=K_{2}$ $f_{2}(q_{2}, a)=q_{2}$ ,
$f_{1}(s_{1}, a)=K_{2}$ $f_{2}(q_{2}, b)=s_{1}$ ,
$f_{1}(q_{2}, \epsilon)=K_{2}$ $f_{2}(s_{1}, b)=s_{1}$ ,
$f_{1}(s_{2}, b)=K_{2}$ $f_{2}(s_{1}, c)=s_{2}$ ,
$fi(s_{f}, c)=q_{f}$ $f_{2}(s_{2}, c)=s_{2}$ ,
$f_{1}(q_{f}, c)=q_{f}$ $f_{2}(s_{2}, \epsilon)=s_{f}$ ,

$f_{2}(s_{f}, \epsilon)=s_{f}$ .
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By taking the sets of final states as bning $F_{1}=\{q_{f}\}$ and $F_{2}=\{s_{f}\}$ we get $L(A)=$
$\{a^{n}b^{n}c^{n}|n\geq 1\}$ , which is a non-context-free language.

Note that, directly from definitions it follows:

Lemma 1. 1. RCPCFA$(n)\subseteq RPCFA(n)$ and CPCFA$(n)\subseteq PCFA(n)$ , for all
$n\geq 1$ . Moreover, every family $X(1),$ $X\in$ {RCPCFA, RPCFA, CPCFA, PCFA},
equals the family of regular languages.

2. $X(n)\subseteq X(n+1)$ for all $X\in$ {RCPCFA, RPCFA, CPCFA, PCFA}.
3. All the above relations hold for deterministic variants as well.

3 Computational power
In the first part of this section we compare the computational power of the automata
systems previously introduced with the computational power of multi-head finite au-
tomata. For technical reasons, we shall use here the following definition of multi-head
finite automata.
A (nondeterministic) $k$-head finite automaton is a quintuple

$A=(k, Q, V, f, q_{0}, F)$ ,

where $Q,$ $\mathrm{V}^{r},$

$q_{0},$ $F$ have the same meaning as for a usual finite automaton, and $f$ is a
mapping from $Q\cross(V\cup\{\epsilon\})^{k}$ into the subsetes of $Q$ . The above definition is essentially
similar to that found in [11] and [13]. Thus, $q\in f(s, a_{1}, a_{2}, \ldots, a_{k})$ indicates that
the automaton in state $s$ each head $i$ reading $a_{i}$ may enter state $q$ . The input heads
are idealized in the sense that they may pass over one another freely and they are
prevented from going off the right end of the input. Moreover, if a head reads $\epsilon$ , it
does not move to the right and if it reads a symbol in $V$ , it moves to the right one
square. Acceptance is defined as follows: a string is accepted if the automaton starts
in the initial state with the string on the input tape, all heads being positioned on the
leftmost symbol of the input, and enters, after finitely many moves, in a final state,
the input being completely read by all heads. In all the other cases, the input string
is rejected. For a multi-head finite automaton $A$ as above denote by $Rec(A)$ the set of
all strings accepted by $A$ .

Theorem 1 [18] 1. $X(n)$ is included in the class of lanaguages accepted by n-head
finite automata for all $X\in$ {RCPCFA, RPCFA, CPCFA, PCFA}.

2. A language is accepted by a $n$-head finite automaton if and only if it belongs to
PCFA $(n)$ .

3. $X(n)$ is included in the class of lanaguages accepted by deterministic n-head
finite automata for all $X\in$ {DRCPCFA,DRPCFA, DCPCFA, DPCFA}.

4. A language is accepted by a deterministic $n$-head finite automaton if and only if
it belongs to DPCFA$(n)$ .
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In the sequel we define two operations on words and languages useful in our con-
siderations. A homomorphism which erases some symbols and leaves unchanged the
others is said to be a projection. A projection $h$ : $(V\cup V’)^{*}arrow V^{*}$ that erases the
symbols in $V’$ only is denoted by $pr_{V}$ . The other operation is a wellknown operation
in formal language theory and in parallel programming theory, called shuffle. A shuffle
of two strings is an arbitrary interleaving of the substrings of the original strings, like
shuffling two decks of cards. More precisely, for two strings $x,$ $y\in V^{*}$ and two symbols
$a,$ $b\in V$ ,

(i) $x\mathrm{U}\rfloor\epsilon=\epsilon 1\mathrm{U}x=x$,
(ii) $ax$ $1\mathrm{U}$ $by=a$ ( $x$ 1L1 $by$ ) $\cup b(ax\coprod\rfloor y)$ .

For two languages $L_{1},$ $L_{2}$ we define

$L_{1}111L_{2}= \bigcup_{x\in L_{1y\in}L_{2}},x111y$
.

It is known the following representation of recursively enumerable languages, see, $\mathrm{e}.\mathrm{g}.$ ,
[9]:

Theorem 2. Each recursively enumerable language $L\subseteq\tau*$ can be written as $L=$

$pr_{T}(TS(V)\cap R)$ , where $V$ is an alphabet including $T,$ $R$ is a regular language and $TS(V)$

is the twin shuffle language over the alphabet $V$ defined by $TS(V)= \bigcup_{x\in V^{*}}x111\overline{x}$ .

Based on this result, the following characterizations of the recursively $\mathrm{e}\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}$) $\mathrm{l}\mathrm{e}$

languages class is given in [18].

Theorem 3. 1. A language $L\subseteq\tau*$ is recursively enumerable if and only if $L=$

$pr_{T}(Rec_{r}(A))$ , where $A$ is an automata system in {rcpcfa (3), $rpcfa(3)$ }.
2. A language $L\subseteq\tau*$ is recursively enumerable iff $L=pr_{T}(Rec(A))$ , where $A$ is

a cpcfa(3).
3. A language $L\subseteq\tau*$ is recursively enumerable iff $L=pr_{T}(Rec(A))$ , where $A$ is

a pcfa(2).

4 Some undecidable problems
In this section we investigate the decidability status of some $\mathrm{t}$‘classical” problems for
the automata systems previously introduced. One of the most important matters is the
membership problem. This problem is decidable in polynomial time since all automata
systems defined in the previous section can be effectively simulated by multi-head finite
automata, as Theorem 1 claims, for which the membership problem is polynomially
time solvable $[3, 23]$ .
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In the sequel, we shall consider the equivalence and inclusion problems which will
turn out to be undecidable via the undecidability of other problems. We start with
some lemmata which the undecidability results are based on; we prefer to recall them
because they prove also some closure properties of the language families defined by
finite automata systems.

Lemma $2.[16]\mathit{1}$ . Both families CPCFA and PCFA are effeciively closed under
union.

2. Both families RPCFA and PCFA are effectively closed under intersection.

The universe problem for an automata system $A$ over an alphabet $V$ asks whether
$A$ accepts all words in $V^{*}$ . The emptiness problem asks whether or not the system
rejects all words. Now we are able to prove the main result of this paper.

Theorem $4.[16]\mathit{1}$ . The universe problem is undecidable for pcfa $(n)’ s$ and cpcfa$(n)’ s$

for all $n\geq 5$ .
2. The emptiness problem is undecidable for pcfa $(n)’ s$ and rpcfa $(n)’ s$ for all $n\geq 4$ .

Based on these theorems, and a bit different reduction to the Post Correspondence
Problem the next result is proved in [16]:

Theorem 5. The equivalence and inclusion problems are undecidable for pcfa $(n)’ s$,
rpcfa $(n)’ s$ and cpcfa $(k)’ s$ , for all $n\geq 4$ and $k\geq 5$ .

As any pcfa $(n)$ can be effectively simulated by a $n$-head finite automaton (see
Theorem 1) one may easily infer that the problems considered here are decidable neither
for $n$-head automata for all $n\geq 4$ .

Along the same lines there are plenty of questions whose answers are not known by
us. We list here some of them.

1. Which of the problems investigated in this paper are decidable for rpcfa $(k)’ \mathrm{s}$

and pcfa $(k)’ \mathrm{s}$ for $k=2,3$?
2. The same question for cpcfa $(k)’ \mathrm{s}$ for $k=2,3,4$?
3. What one can say about the decidability status of these problems for rcpcfa’s

or for the deterministic variants of all systems considered here?

5 Automata systems as mildly context-sensitive ac-
ceptors

This part is dedicated to a brief discussion regarding a possible connection between
the classes of languages accepted by the parallel communicating automata systems
defined in this paper and the so-called mildly context-sensitive class [15]. This class
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contain the context-free languages, covers the specific non-context-free constructions
in natural languages, but are parsable in polynomial time and have the “bounded
growth property” (the length difference between two words, so that no word of an
intermediate length is in the language, is bounded). The last property is sometimes
replaced by semilinearity which is a much stronger property.

The reason that all classes RCPCFA$(k),$ $RPCFA(k),$ $CPCFA(k),$ $PCFA(k)$ con-
tains only semilinear languages is that Ibarra showed that the languages accepted by
multihead nondeterministic pushdown automata satisfy the semilinearity property [14].
By Theorem 1 this property is extended to all classes mentioned above.

It is known that every nondeterministic $k$-head pushdown automata language can
be recognized by a deterministic Turing machine in $n^{2.81k}$ time, see, e.g., [23] or [3]. By
the translation provided by Theorem 1 we conclude that all classes defined here are
polynomially parsable.

As far as some specific non-context-free constructions in natural languages the
reader is refered to [10] and [17] for a detailed discussion. We present here three of them
which linguists seemed to finally agree on: replication (modelled by the formal language
$L_{1}=\{x\# x|x\in\{a, b\}^{+}\})$ , multiple agreements (ilustrated by $L_{2}=\{a^{n}b^{n}c^{n}|n\geq 1\}$ ),
and crossed dependencies (as in $L_{3}=\{a^{n}b^{m}c^{n}d^{m}|n,$ $m\geq 1\}$ ). The next result show$s$

that parallel communicating finite automata systems having just two components are
able to recognize the the languages $L_{1},$ $L_{2},$ $L_{3}$ under all strategies of communication.

Proposition 1. 1. The languages $L_{2},$ $L_{3}$ lie in any of the families RCPCFA(2)
$CPCFA(2),$ $RPCFA(2),$ $PCFA(2)$ .

2. The languages $L_{1}$ lies in any of the families RCPCFA(2), $CPCFA(3)$ ,
RPCFA(2), $PCFA(2)$ .

We point out some natural questions refering the results in the previous section.
1. Do the first two items of Theorem 3 remain still valid for automata systems with

two components?
2. By Theorem 1 and [24] we infer that $n+1$ components can do more than $n$

components in a pcfa. In the aforementioned paper, Yao and Rivest consider the
languages

$L_{m}=$ { $w_{1}\# w_{2}\#\ldots w_{2m}|w_{i}\in\{a,$ $b\}^{*}$ , and $w_{i}=w_{2m-i+1},1\leq i\leq m$ }.
They show that $L_{(_{2}^{k})}$ can be recognized by a $k$-head finite automaton but there is no
$k-1$-head finite automaton able to recognize it. Each language $L_{m}$ is in both families
RCPCFA$(m+1)$ and RPCFA$(m+1)$ , consequently

$X(k-1)\subset X(+1)$ ,

holds for $X\in$ {RCPCFA, RPCFA}. However we were not able to prove a hierarchy
result

$X(k)\subset X(k+l)$
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for some constant $l$ . Does such a hierarchy exist?

6 The degree of communication
In this section, we define a dynamical measure of descriptional complexity for parallel
communicating finite automata systems, following [19]. This criterion appears to be
quite appropriate for investigating some complexity aspects of these automata systems.

As we have seen, a configuration may contain several query states which can be
satisfied in one or more communication steps. For each $\mathrm{a}\mathrm{c}\mathrm{c}\mathrm{e}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}/\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$

step we count the number of query states satisfied in that step. Thus, for a given
configuration $(q_{1}, x_{1}, q_{2}, x_{2}, \ldots , q_{n}, x_{n})$ we define the number

$C(q_{1}, q_{2}, \ldots, q_{n})=\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}$({ $q_{i}|q_{i}=K_{j_{i}}$ for some $1\leq j_{i}\leq n$ and $q_{j_{i}}\not\in K,$ $1\leq i\leq n$ }.
Let $A=(V, A_{1}, A_{2}, \ldots, A_{n}, K)$ be a parallel communicating finite automata system

and $P$ be a path in $A$ :
$P:(q_{1}, x, q_{2}, x, \ldots, q_{n}, x)\vdash(q_{1}^{1}, x_{1}^{1}, q_{2}^{1}, x_{2}^{1}, \ldots, q_{n}^{1}, x_{n}^{1})\vdash\ldots\vdash(q_{1}^{k}, \epsilon, q_{2}^{k}, \epsilon, \ldots, q_{n}^{k}, \epsilon)$ ,

for some $k\geq 1$ and $q_{i}^{k}\in F_{i},$ $1\leq i\leq n$ . We define the degree of communication of $A$

for $x$ in $P$ as the number

Comm$(x, P)= \sum_{i=1}^{k}C(q_{1}^{i}, q_{2}^{i}, \ldots, q_{n}^{i})$ .

Moreover, the degree of communication of $A$ for $x$ is defined by

Comm$(x)= \min${$Comm(x,$ $P)|P$ is an accepting path for $x$ in $A$}.
The degree of communication of $A$ is

Comm$(A)– \sup\{Comm(x)|x\in Rec(A)\}$ .

For a language $L$ and a class $X$ of parallel communicating finite automata systems,
$X\in$ {rcpcfa, cpcfa, rpcfa, pcfa}, we define

$Comm_{X}(L)= \inf\{Comm(A)|L=Rec(A)\}$ .

Example 2 Let us consider again the cpcfa (2) given in Example 1. For each word
$x=a^{k}b^{k}c^{k}$ in $Rec(A)$ we have Comm$(x)=2k$ . $Consequently_{f}Comm(A)=\infty$ .
However, Comm$(Rec(A))=0$ as shown by the following deterministic cpcfa(3):

$f_{1}(q_{1}, \epsilon)=s_{1}$ $f_{2}(q_{2}, a)=r_{1}$ $f_{3}(q_{3}, a)=t_{1}$ ,
$f_{1}(s_{1}, a)=s_{2}$ $f_{2}(r_{1}, a)=r_{1}$ $f_{3}(t_{1}, a)=t_{1}$ ,
$f_{1}(s_{2}, \epsilon)=s_{1}$ $f_{2}(r_{1}, \epsilon)=r_{2}$ $f_{3}(t_{1}, b)=t_{2}$ ,
$f_{1}(s_{1}, b)=s_{3}$ $f_{2}(r_{2}, b)=r_{3}$ $f_{3}(t_{2}, b)=t_{2}$ ,
$f_{1}(s_{3}, b)=s_{3}$ $f_{2}(r_{3}, \epsilon)=r_{2}$ $f_{3}(t_{2}, \epsilon)=t_{3}$ ,
$f_{1}(s_{3}, c)=s_{4}$ $f_{2}(r_{2}, c)=r_{4}$ $f_{3}(t_{3}, c)=t_{4}$ ,
$f_{1}(s_{4}, c)=s_{4}$ $f_{2}(r_{4}, c)=r_{4}$ $f_{3}(t_{4}, \epsilon)=t_{3}$ ,
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with $F_{1}=\{s_{4}\},$ $F_{2}=\{r_{4}\},$ $F_{3}=\{t_{4}\}$ . One can easily check that this auiomata system
recognizes the language $\{a^{n}b^{n}c^{n}|n\geq 1\}$ . Indeed, the system recognizes words of the
form $a^{i}\dot{\mathcal{U}}c^{k}$ only, with

$2i+j+k=i+2j+k=i+j+2k$

that is $i=j=k$ . Moreover, the accepting process for each word requires no communi-
cation step.

The next result is based on a simple construction involving multi-head automata.

Theorem 6 Let $A$ be an automata system of any type in {rcpcfa, cpcfa, rpcfa, pcfa},
and $x$ be a word recognized by A. Then, one can compute Comm $(x)$ .

A natural problem concerns the computability of this measure for an automata
system and for a language accepted by a given automata system. We cannot provide
here a complete answer to this problem.

Theorem 7 Comm$(Rec(A))$ cannot be algorithmically computed for an arbitrarily
given automata system $A$ of type cpcfa or pcfa.

We believe that the degree of communication can be algorithmically computed
neither for automata systems of any type nor for the languages recognized by them.

There are plenty of open problems; we list here some of those that appear quite
attractive to us:

1. Given an arbitrary positive integer $n$ , do a language $L$ and an automata system
of type $X$ exist such that $Comm_{X}(L)=n$ ?

2. Can we compute the degree of communication of any of the four variants of
automata systems?

3. What can one say about the computability status of the degree of communication
for languages recognized by the other two variants of automata systems?
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