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Abstract

We consider syntactic congruences of some codes. As a main result, for
an infix code $L$ , it is proved that the following (i) and (ii) are equivalent and
that (iii) implies (i), where $P_{L}$ is the syntactic congruence of $L$ .

(i) $L$ is a $P_{L^{2}}$ -class.
(ii) $L^{m}$ is a $P_{L^{k}}$ -class, for two integers $m$ and $k$ with $1\leq m\leq k$ .
$(\mathrm{i}\mathrm{i}\mathrm{i})L^{*}$ is a $P_{L}$.-class.
Next we show that every (i), (ii) and (iii) holds for a strongly infix code $L$ .

Moreover we consider properties of syntactic conguences of a residue $W(L)$

for a strongly outfix code $L$ .
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1 Introduction

The theory of codes has been studied in algebraic direction in connection to au-
tomata theory, combinatorics on words, formal languages, and semigroup theory. A

lot of classes of codes have been defined and studied ([1], [2]). Among those codes,
prefix codes, suffix code, bifix codes, infix codes and outfix codes have many remark-
able algebraic properties ([2], [3], [4]). Recently a strongly infix code and a strongly
outfix code were defined and the closure property under composition operation for
these code was proved $([5][6])$ .

In this paper we study syntactic congruences of some codes, especially, (strongly)
infix codes and (strongiy) outfix codes. Several properties of the syntactic congru-
ence $P_{L}$ of $L$ , for $L$ infix or outfix, have been presented in [2] and [3] and moreover
some interesting characterizations have been presented on the syntactic monoid and
the syntactic congruence $P_{L}$ of $L$ for an infix code $L([7])$ . We mainly deal with the
syntactic congruence $P_{L^{n}}$ of $L^{n},$ $n>1$ , and $P_{L}$. of $L^{*}$ in this paper below.

In section 2 some basic definitions and results are presented.

In section 3, first we prove that the following (i) and (ii) are equivalent for an
infix code $L$ , and that (iii) implies (i), where $P_{L}$ is the syntactic congruence of $L$ .

(i) $L$ is a $P_{L^{2}}$ -class.
(ii) $L^{m}$ is a $P_{L^{k}}$ -class, for two integers $m$ and $k$ with $1\leq m\leq k$ .
$(\mathrm{i}\mathrm{i}\mathrm{i})L^{*}$ is a $P_{L^{*}}$-class.
Next we show that every (i), (ii) and (iii) holds for a strongly infix code $L$ , and

moreover we show that $L^{*}$ is contained im a $P_{W(L^{*})}$-class, where $W(L)$ is a residue
of $L$ . Last we consider a relation between $P_{L^{\hslash}}$ -class and $W(L)$ for a strongly outfix
code $L$ .

2 Preliminaries

Let $\Sigma$ be an alphabet. $\Sigma^{*}$ denotes the free moniod generated by $\Sigma$ , that is, the set
of all finite words over $\Sigma$ , including the empty word 1, and $\Sigma^{+}=\Sigma^{\mathrm{r}}-1$ . For $w$ in
$\Sigma^{*},$ $|w|$ denotes the length of $w$ .

A word $x\in\Sigma^{*}$ is a factor or an infix of a word $w\in\Sigma^{*}$ if there exists $u,$ $v\in\Sigma^{*}$

such that $w=uxv$ . A factor $x$ of $w$ is proper if $w\neq x$ . A catenation $xy$ of two words
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$x$ and $y$ is an outfix of a word $w\in\Sigma^{*}$ if $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\circ$, exists $u\in\Sigma^{*}$ such that $w=xuy$ .
A word $u\in\Sigma^{*}$ is a left factor of a word $w\in\Sigma^{*}$ if there exists $x\in\Sigma^{*}$ such that
$w=ux$ . A left factor $u$ of $w$ is called proper if $u\neq w$ . A right factor is defined $\cdot$

symmetrically. An outfix $xy$ of $w$ is proper if $xy\neq w$ . The set of all left factors
(resp.right factors) of a word $x$ is denoted by Pref$(x)(suf(X))$ .

A language over $\Sigma$ is a set $L\subseteq\Sigma^{*}$ . A language $L\subseteq\Sigma^{*}$ is a code if $L$ freely
generates the submonoid $L^{*}$ of. $\Sigma^{*}$ (See [1] about the definition.). A language $L\subseteq$

$\Sigma^{+}$ is a prefix code (resp. suffix code) if no word in $L$ has a proper left factor (a proper
right factor) in $L$ . A language $X\subseteq\Sigma^{+}$ is a bifix code if $L$ is both a prefix code and a
suffix code. A language $L\subseteq\Sigma^{+}$ is an infix code (resp. outfix code) if no word $x\in X$

has a proper infix (a proper outfix) in L. .

A language $L\subseteq\Sigma^{+}$ is in-catenatable (resp. out-catenatable) if a catenation of
two words in $L$ has a proper infix (proper outfix) in $L$ which is neither a proper
prefix nor a proper suffix. Formally, $L$ is in-catenatable if there exist $u_{1},$ $u_{2},$ $u3,$ $u_{4}\in$

$\Sigma^{+}-X$ such that $u_{1}u_{2},$ $u_{3}u_{4}$ and $u_{2}u_{3}$ is in $L$ , and $L$ is out-catenatable if there exist
$u_{1,2,3}uu,$ $u_{4}\in\Sigma^{+}-X$ such that $u_{1}u_{2},$ $u3u4$ and $u_{1}u_{4}$ is in $L$ with $u_{1}u_{2}\neq u_{3}u_{4}$ .
A language $L\subseteq\Sigma^{+}$ is a strongly infix code (resp. strongly outfix code) if $L$ is an
infix code (outfix code) and is not in-catenatable (out-catenatable). A strongly infix
(resp.outfix) code may be abbreviated to an $s$-infix ($s$-outfix) code.

Let $M$ be a monoid and let $N$ be a submonoid of $M$ . Then $N$ is right unitary
(resp. left unitary) in $M$ if for all $u,$ $v\in M,$ $u\in N$ and $uv\in N$ $(vu\in N)$ together
imply $v\in N$ . The submonoid $N$ is biunitary if it is both left and right unitary. The
submonoid $N$ is double unitary in $M$ if for all $u,$ $x,$ $y\in M,$ $u\in N$ and $xuy\in N$

together imply $x$ and $y\in N$ . The submonoid $N$ is mid-unitary in $M$ if for all
$u,$ $x,$ $y\in M,$ $xy\in N$ and $xuy\in N$ together imply $u\in N$ .

Proposition 1 [1] Let $L\subseteq\Sigma^{+}$ be a code. A language $L$ is a prefix code (resp.,
suffix $code_{j}$ bifix code, $s$-infix code) iff $L^{*}$ is right unitary (lefl unitary, biunitary,
double unitary).

Proposition 2 [6] Let $L\subseteq\Sigma^{+}$ be a code. If a language $L$ is a strongly outfix code,
then $L^{*}$ is mid-unitary.

Proposition 3 Let $L\subseteq\Sigma^{+}$ be a code. If $L^{*}$ is mid-unitary, then $L$ is an outfix
code.
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$\mathrm{P}\mathrm{r}o$ of. Suppose that $L$ would not be outfix with $L^{*}$ mid-unitary. There exist
$x,$ $y\in\Sigma^{*}$ and $u\in\Sigma^{+}$ such that both $xuy$ and $xy$ are in $L$ . Since $L^{*}$ is mid-

unitary, we have that $u\in L^{*}$ , and thus $u\in L^{+}$ . It is easily obtained that both

$uyx$ and $yxu$ are in $L^{*}$ , since both $xuy$ and xuyxuy are in $L^{*}$ . Thus uyxu has two

factorization. This contradicts the fact that $L$ is a code. $\square$

For a language $L$ over $\Sigma$ and $u$ in $\Sigma^{*}$ , let

$L..u=$ { $(x,y)|x,$ $y\in\Sigma^{*}$ and $xuy\in L$}.

The syntactic congruence $P_{L}$ is defined by

$\mathrm{u}\equiv v(P_{L})$ iff $L..u=L..v$ .

The syntactic monoid $Syn(L)$ of $L$ is the quotient monoid $\Sigma^{*}/P_{L}$ . For any

language $L\subseteq\Sigma^{*}$ , let $W(L)$ denote the resudue of $L$ , that is,

$W(L)=\{u\in\Sigma^{*}|L..u=\phi\}$ .

3 Syntactic congruences of some codes

In this section we condider properties of syntactic congruences of some $\mathrm{c}o$ des.
Before discussing, we give some basic results.

Proposition 4 [3] Every infix code $L$ is a $P_{L}$ -class.

Proposition 5 [3] Let $L$ be an outfix code. Then every $P_{L}$ -class different from
$W(L)$ is an outfix code.

Lemma 6 For languages $L,$ $K\subseteq\Sigma^{*}$ , if $L$ is a $P_{K}- C\iota_{asS}$, then $P_{K}\subseteq P_{L}$ .

Proof. Suppose that $L$ is a $P_{K}$-class, and that $u\equiv v(P_{K})$ . Then one has that
$xuy\equiv xvy(P_{K})$ for every $x,y$ . If $xuy$ is in $L$ , then it is in a class of $P_{K}$ . Thus $xvy$ is
in the same class of $P_{K}$ , that is, in $L$ . Similarly we can easily obtained that $xvy\in L$

implies $xuy\in L$ . Hence $u\equiv v(P_{L})$ . $\square$
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Lemma 7 Let $L$ be a code, and let $m$ and $k$ be integers with $1\leq m\leq k$ . If $u\in L^{m}$ ,
$xuy\in L^{k}$ and $x,y\in L^{*}$ , then $x\in L^{i}$ and $y\in L^{i}$ for integers $i,j\geq 0$ such that
$i+j=k-m$ .

Proof. Let $u=u_{1}\ldots u_{m};u_{1,\ldots,m}$$u\in L,$ $xuy=v_{1}\ldots v_{k};v_{1},$ $\ldots,$
$v_{k}\in L$ ,

$x=a_{1}\ldots a.;a1,$ $\ldots,$
$a_{i}\in L$ , and $y=b_{1}\ldots b_{\mathrm{j}_{1}}\cdot b_{1},$

$\ldots,$
$b_{j}\in L$ . Since $L$ is a code,

$a_{1}=v_{1},$ $\ldots,a_{i}=v_{1}.;u_{1}=v:+1,$ $\ldots,u_{m}=v_{+m-1_{1}}.\cdot b_{1}=v_{i+m},$
$\ldots,$

$b_{j}=v_{+m+j}.$ . It is
obvious that $i+m+j=k$ . Thus the result holds. $\square$

Lemma 8 For a languages $L$ and $K_{!}$ if $P_{L}\subseteq P_{K}$ and $K$ is contained in a $P_{L}$ -class,

then $K$ is equal to a $P_{L}- ClasS’$ .

Proof. It is obvious from the fact that $L$ is a union of $P_{L}$-classes. $\square$

Now we consider properties of a syntactic congruence $P_{L^{n}}$ of $L^{n}$ and a syntactic

congruence $P_{L}$. of $L^{*}$ for an infix code $L$ and a positive integer $n$ . The first result

holds for a prefix code or a suffix code.

Proposition 9 Let $L$ be a prefix code or a suffix code. For an integer $n\geq 2$ ,
$P_{L^{\hslash}}\subseteq P_{L^{n-}}1$ .

Proof. Let $L$ be a prefix code. Suppose that $u\equiv v(P_{L^{n}})$ and $xuy\in L^{n-1}$ . Taking
an arbitrary word $w\in L$ , we have that $wxuy\in L^{n}$ . It follows that $wxvy\in L^{n}$ , by
$u\equiv v(P_{L^{n}})$ . Hence $xvy$ is in $L^{*}$ since $L^{*}$ is right unitary. By Lemma 7, $xvy$ is in
$L^{n-1}$ . Similarly we have that $xvy\in L^{n-1}$ implies $xuy\in L^{n-1}$ . Thus $u\equiv v(P_{L^{\hslash}}-\iota)$ .
In the case of a suffix code, we can similarly prove the result. $\square$

Proposition 10 Let $L$ be an infix code. Then the following conditions are $e\grave{q}_{uiva}-$

lent:
(i) $L$ is a $P_{L^{2}}$ -class.
$(ii)L^{m}$ is a $P_{L^{k}}$ -class, for two integers $m$ and $k$ with $1\leq m\leq k$ .

Proof. $(i)==>(ii)$ : Suppose that $L$ is a $P_{L^{2}}$ -class. First we prove that $L$ is a
$P_{L^{k}}$ -class for every $k\geq 2$ . Let $u$ and $v$ be in $L$ and $xuy\in L^{k}$ for $x,$ $y\in\Sigma^{*}$ . If one of
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the two words $x$ and $y$ is in $L^{*}$ , then the other is also in $L^{*}$ , since $L$ is an infix code.

Then $xvy$ is in $L^{k}$ by Lemma 7. So assume that neither $x$ nor $y$ is in $L^{*}$ . Since $L$

is infix, the word $u$ has no proper factor in $L$ . Then there exist $u_{1},$ $u_{2},$ $z,$
$w\in\Sigma^{+}$

such that $wu_{1},u_{2}z\in L,$ $u=u_{1}u_{2},$ $w\in Suf(x),$ $z\in Pre(y)$ . We have that $wvz$ is in
$L^{2}$ , so $xvy$ is in $L^{k}$ since $L$ is a $P_{L^{2}}$ -class. Similarly we have that $xvy\in L^{k}$ implies
$xuy\in L^{k}$ . Hence $L$ is contained in a $P_{L^{k}}$ -class for $k\geq 2$ . Since $P_{L^{k}}\subseteq P_{L},$ $L$ is a
$P_{L^{k}}$ -class by Lemma 8.

Next suppose that $u,$ $v\in L^{m}$ and $xuy\in L^{k}$ with $m\leq k$ for $x,$ $y\in\Sigma^{*}$ . Let

$u=u_{1}\ldots u_{m}$ for $u_{1},$ $\ldots,u_{m}\in L$ and $v=v_{1}\ldots v_{m}$ for $v_{1},$
$\ldots,$

$v_{m}\in L$ . Since $L$ is a $P_{L^{k}}-$

class, $xv_{1}u_{2}\ldots u_{m}y$ is in $L^{k}$ for $v_{1}\in L$ . Furthermore, for $v_{2}\in L,$ $xv_{1}v_{2\mathrm{s}}u\ldots u_{m}y\in L^{k}$ .
Continueing this process, we can prove that for $v\in L^{m},$ $xvy\in L^{k}$ . Similarly as

above, we have that $L^{m}$ is contained in a $P_{L^{k}}$ -class. By Lemma 8, $L^{m}$ is a $\dot{P}_{L^{k}}$ -class

since $P_{L^{k}}\subseteq P_{L^{m}}$ .
$(ii)==>(i)$ : trivial. $\square$

Proposition 11 For an infix code $L,$ if $L^{*}$ is a $P_{L}*$ -class, then $L$ is a $P_{L^{2}}$ -class.

Proof. Let $u,v\in L$ , and $xuy\in L^{2}$ . There exist $u_{1}$ and $u_{2}\in\Sigma^{+}$ such that $u_{1}u_{2}=u$ ,
$xu_{1},$ $u_{2y}\in L$ . By the hypothesis, we have that $xvy\in L^{*}$ . Suppose that $xvy\in L^{k}$

for $k>2$ . Let $xvy=w_{1}\ldots w_{k}$ for $w_{1},$ $\ldots,$
$w_{k}\in L$ . Since $L$ is infix, we have that

$|x|<|w_{1}|<|xv|$ and $|y|<|w_{k}|<|vy|$ . Hence $w_{2}\ldots w_{k-1}$ is a proper factor of $v$ . This
is a contradiction. Thus $xvy\in L^{2}$ . By symmetry, we have that $xvy\in L^{2}$ implies
$xuy\in L^{2}$ , and thus $L$ is contained in a $P_{L^{2}}$-class. By Lemma 8 and the fact that
$P_{L^{2}}\subseteq P_{L}$ , the result holds. $\square$

Unfortunately, the converse of Proposition 11 does not holds. For an alphabet
$\Sigma=\{a_{1’ 1’ 2}^{()\mathrm{t}}aa, b_{1}, b2, c1’ C_{1}, c_{2,1,2}d(1)(2)d12)\}$ , consider the infix code $L=xx_{2}\Sigma\cup x\Sigma y_{1}$

$\cup x\langle 1$

)
$\{X_{1}, u, v_{1}\}\langle 2$

)

$\cup x_{2}x_{2}\Sigma y\cup x_{2}\Sigma y1y\cup x_{2}\{x_{1}, u, v1\}y\cup\Sigma yy\cup\{uv, vy\}$, where $x_{1}=$

$a_{1}a_{1}$ , $x_{2}=a_{2},$ $u=b_{1}b_{2},$ $v_{1}=C_{1}c^{(2}(1)1)$ , $v_{2}=c_{2},$ $y=d_{1}d_{2},$ $x=x_{1}x_{2}$ . It can be easily
checked that $L$ an infix code, and $L$ is $\mathrm{a}\cdot P_{L^{2}}$-class. Although both uvuv and xuvy
are in $L^{2}$ , xuvuvy is not in $L^{3}$ since $vu$ is not in $L$ . Alternatively, xuvy and xuvuvy
arenot in the same class of $P_{L}\cdot$ .

Next we consider $P_{L^{\hslash}},$ $n\geq 1$ , and $P_{L}$. for $\mathrm{s}$-infix code $L$ .
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Proposition 12 For every $s$-infix code $L,.L$ is a $P_{L^{2}}$ -class.

Proof. Let $u,$ $v\in L$ . Suppose that $xuy\in L^{2}$ . Since $L^{*}$ is double unitary, one has

that both $x$ and $y$ are in $L^{*}$ . Then it follows that $x\in L^{i}$ and $y\in L^{j}$ with $i+j=1$

by Lemma 7. That is, eithet $x=1$ and $y\in L$ , or $y=1$ and $x\in L$ . Thus $xvy\in L^{2}$ .

Similarly, it is easily obtained that $xvy\in L^{2}$ implies $xuy\in L^{2}$ . Thus $u\equiv v(P_{L^{2}})$ .

Hence $L$ is contained in a $P_{L^{2}}$ -class. By Lemma 8 and Proposition 9, $L$ is a $P_{L^{2}}$ -class.
$\square$

Corollary 13 For every $s$-infix code $L$ , and two integers $m$ and $k$ with $1\leq m\leq k$ ,
$L^{m}$ is a $P_{L^{k}}$ -class.

Proof. It is obvious by Propositions 12 and 14. $\square$

Proposition 14 Let $L$ be a $s$-infix code over $\Sigma$ . Then $L^{*}$ is a $P_{L^{*}}$ -class.

Proof. Let $u,$ $v\in L^{*}$ . Suppose that $xuy$ is in $L^{*}$ for $x,$ $y\in\Sigma^{*}$ . Since $L^{*}$ is double-

unitary, both $x$ and $y$ are in $L^{*}$ . Hence $xvy$ is in $L^{*}$ . Similarly we have that $xvy\in L^{*}$

implies $xuy\in L^{*}$ . Thus $u\equiv v(P_{L}\cdot)$ , and so $L^{*}$ is contained in a $P_{L}\cdot-$ class. Since
$L^{*}$ is a union of $P_{L}$.-classes, the result holds. $\square$

Proposition 15 Let $L$ be a $s$-infix code over $\Sigma$ . Then $L^{*}$ is contained in a $P_{W(L)^{-}}$.
class.

Proof. Let $u,$ $v\in L^{*}$ . Suppose that $xuy\not\in W(L^{*})$ , that is, $L^{*}..xuy\neq\phi$ . Then

immediately we have that $\Sigma^{*}x\cap L^{*}\neq\phi$ and $y\Sigma^{*}\cap L^{*}\neq\phi$ since $L^{*}$ is double

unitary. Hence $xvy\not\in W(L^{*})$ . Similarly we can obtained that $xvy\not\in W(L^{*})$ implies

$xuy\not\in W(L^{*})$ . Thus the result holds. $\square$

Remark 1 The result such as Proposition 12 does not hold in general for an infix
code: For an infix code $L=\{aba,bab\}$ , which is not a strongly infix code, we have

that $P_{L^{n}}\subseteq P_{L^{n-1}}$ . However $L$ is not a $P_{L^{2}}$ -class since the two words $aba$ and $bab$

are not in the same class of $P_{L^{2}}$ .
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Last we consider the syntactic congruence $P_{L^{n}}$ of $L^{n}$ for a strongly outfix code

$L$ .

Proposition 16 Let $L$ be a $s$-outfix code over $\Sigma$ . Then every $P_{L^{n}}$ -class $(1 \leq n)$ not

contained in $W(L)$ is a $s$-outfix code.

Proof. Since the class of outfix codes is closed under concatenation [2], we have

that $P_{L^{n}}$ -class different from $W(L^{n})$ is an outfix code by Proposition 5. Moreover

it follows that $P_{L^{n}}$ -class not contained in $W(L)$ is an outfix code by that $W(L^{n})\subseteq$

$W(L)$ .
Suppose that such a $P_{L^{n}}$-class is not $\mathrm{s}$-outfix, that is, there exist $x1,$ $x2,Z1,$ $z2\in\Sigma^{+}$

such that $x_{1}z_{1}\equiv x_{2}z_{2}\equiv x_{1}z_{2}(PL\hslash)$ and $x_{1}z_{1}\neq x_{2}z_{2}$ . Since $P_{L^{n}}\subseteq P_{L}$ , these three

words are in the same $P_{L}$-class different from $W(L)$ . So there exist $w_{1},w_{2}\in\Sigma^{*}$

such that $w_{1}x_{1}Z_{1}w_{2}\in L,$ $w_{1}x_{2}Z_{2}w_{2}\in L$ and $w_{1}x_{1}Z_{2}w_{2}\in L$ . Then we have that

$w_{1}x_{11}zw2w1x2z2w_{2}\in L^{2},$ $w_{1^{X_{1},z_{1}}}w2,$
$z2w_{2}\in\Sigma^{+}$ and $w_{1}x_{112}zw\neq w_{1}x_{22}zw_{2}$ . This

contradicts the fact that $L$ is $\mathrm{s}$-outfix. Thus the result holds. $\square$

Remark 2 In Proposition $\mathit{1}\theta$, a similar result as Proposition 5 for an $s$-outfix code
$L$ does not hold. That is, $P_{L^{\mathfrak{n}}}$ -class different from $W(L^{n})$ , but contained in $W(L)$ ,

is not $necessa\dot{n}ly_{S}$-outfix. For an $s$-outfix code $L=$ {abbba, baaab, caaac}, let $w_{1}=$

abbbabaa, $w_{2}=caaa$cbaa, and $w_{3}=baaabaa$ . Then $w_{1}\equiv w_{2}\equiv w_{3}(P_{L^{2}})$ , but $w_{1}w_{2}$

has a proper outfix abbbabaa $=w_{1^{\backslash }}^{\mathrm{t}}in$ L. Thus the class which contains $w_{1},$ $w_{2}$ and

$w_{3}$ is not s-outfix.
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