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Abstract

We consider syntactic congruences of some codes. As a main result, for
an infix code L, it is proved that the following (i) and (ii) are equivalent and
that (iii) implies (i), where Py, is the syntactic congruence of L.

(i) L is a Prz-class. ,

(ii) L™ is a Ppx-class, for two integers m and k with 1 < m < k.

(iii)L* is a Prs-class. . _

Next we show that every (i), (ii) and (iii) holds for a strongly infix code L.

Moreover we consider properties of syntactic conguences of a.residue W (L)

for a strongly outfix code L.
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1 Introduction

The theory of codes has been studied in algebraic direction in connection to au-
tomata theory, combinatorics on words, formal languages, and semigroup theory. A
lot of classes of codes have been defined and studied ([1], {2]). Among those codes,
prefix codes, suffix code, bifix codes, infix codes and outfix codes have many remark-
able algebraic properties ([2], [3], [4]). Recently a strongly infix code and a strongly
outfix code were defined and the closure property under composition operation for
these code was proved ([5][6]).

In this paper we study syntactic congruences of some codes, especially, (strongly)
infix codes and (strongly) outfix codes. Several properties of the syntactic congru-
ence Pp of L, for L infix or outfix, have been presented in [2] and [3] and moreover
some interesting characterizations have been presented on the syntactic monoid and
the syntactic congruence P, of L for an infix code L([7]). We mainly deal with the
syntactic congruence Pr» of L”, n > 1, and Pr. of L* in this paper below.

In section 2 some basic definitions and results are presented.

In section 3, first we prove that the following (i) and (ii) are equivalent for an
infix code L, and that (iii) implies (i), where Py is the syntactic congruence of L.

(1) L is a Pra-class.

(if) L™ is a Prx-class, for two integers m and k with 1 < m < k.

(ii)L* is a Pp.-class.

Next we show that every (i), (ii) and (iii) holds for a strongly infix code L, and
moreover we show that L* is contained in a Py(z.)-class, where W(L) is a residue
of L. Last we consider a relation between Pps-class and W(L) for a strongly outfix
code L.

2 Preliminaries

Let ¥ be an alphabet. £* denotes the free moniod generated by ¥, that is, the set
of all finite words over X, including the empty word 1, and £* = £* — 1. For w in
L* , |w| denotes the length of w.

A word z € I* is a factor or an infiz of a word w € X* if there exists u,v € I*

such that w = uzv. A factor z of w is proper if w # z. A catenation Ty of two words
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z and y is an outfir of a word w € I* if thers exists u € I* such that w = zuy.
A word u € ¥* is a left factor of a word w € L* if there exists £ € £* such that
w = uz. A left factor u of w is called proper if u # w. A right factor is defined-
symmetrically. An outfix zy of w is proper if zy # w. The set of all left factors
(resp.right factors) of a word z is denoted by Pref(z)(Suf(z)).

A language over ¥ is a set L C X*. A language L C T* is a code if L freely
generates the submonoid L* of £* (See 1] about the definition.). A language L C
T+ is a prefiz code (resp.suffiz code) if no word in L has a proper left factor (a proper
right factor) in L. A language X C Z* is a bifiz code if L is both a prefix code and a
suffix code. A language L C Lt is an infiz code (resp.outfiz code) if no word z € X
has a proper infix (a proper outfix) in L. |

A language L C Xt is in-catenatable (resp. out-catenatable) if a catenation of
two words in L has a proper infix (proper outfix) in L which is neither a proper
prefix nor a proper suffix. Formally, L is in-catenatable if there exist u1,uy, us, uq €
X+ — X such that ujuy, uzus and usus is in L, and L is out-catenatable if there exist
Uy, Ug, Uz, ug € It — X such that uyuy, uzuy and uyug is in L with ujuy # uguy,.
A language L C X% is a strongly infiz code (resp. strongly outfiz code) if L is an
infix code (outfix code) and is not in-catenatable (out-catenatable). A strongly infix
(resp.outfix) code may be abbreviated to an s-infiz (s-outfiz) code.

Let M be a monoid and let N be a submonoid of M. Then N is right unitary
(resp. left unitary) in M if for all u,v € M, u€ N and wv € N (vu € N) together
imply v € N. The submonoid N is biunitary if it is both left and right unitary. The
- submonoid N is double unitary in M if for all u,z,y € M, u € N and zuy € N
together imply z and y € N. The submonoid N is mid-unitary in M if for all
u,z,y € M, zy € N and zuy € N together imply u € N.

Proposition 1 [1] Let L C T* be a code. A language L is a prefiz code (resp.,
suffiz code, bifiz code, s-infiz code) iff L* is right unitary (left unitary, biunitary,
double unitary).

Proposition 2 [6] Let L C X% be a code. If a language L is a strongly outfiz code,
then L* is mid-unitary.

Proposition 3 Let L C £* be a code. If L* is mid-unitary, then L is an outfiz
code.



Proof. Suppose that L would not be outfix with L* mid-unitary. There exist
z,y € L* and u € It such that both zuy and zy are in L. Since L* is mid-
unitary, we have that v € L*, and thus v € L*. It is easily obtained that both
uyz and yru are in L*, since both zuy and ruyzuy are in L*. Thus uyzru has two

factorization. This contradicts the fact that L is a code. a

For a language L over £ and u in ¥*, let

L.u = {(z,y)|z,y € &* and zuy € L}.
The syntactic congruence Pr is defined by
u=v(P) ff L.u=L.w.

The syntactic monoid Syn(L) of L is the quotient monoid £*/Pr. For any
language L C X*, let W(L) denote the resudue of L, that is,

W(L) = {u € Z*|L..u = ¢}.

3 Syntactic congruences of some codes

In this section we condider properties of syntactic congruences of some codes.

Before discussing, we give some basic results.
Proposition 4 [3] Every infiz code L is a Pr-class.

Proposition 5 [8] Let L be an outfix code. Then every Pp-class different from
W(L) is an outfiz code.

Lemma 6 For languages L, K C ¥*, if L is a Pk-class, then Px C Pr.

Proof. Suppose that L is a Pk-class, and that u = v(Pg). Then one has that
zuy = zvy(Pg) for every z,y. If zuy is in L, then it is in a class of Px. Thus zvy is
in the same class of Pk, that is, in L. Similarly we can easily obtained that zvy € L

implies zuy € L. Hence u = v(Py). » |
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Lemma 7 Let L be a code, and let m and k be integers with1 <m < k. Ifue L™,

zuy € LF and z,y € L*, thenz € L' and y € L’ for integers i,j > 0 such that
14+j=k—m.

Proof. Let u = u;...upn; Uy, ..., Um € L, zUY = v1...0; vy, ...,V € L,
T = @y..4;01,..,8; € L, and y = by..b;; by,...,b; € L. Since L is a code,

A1 = Vlyeey @ = U3 U] = Vigl,y ooy Um = Vigme1} 01 = Vigmyoory 0j = Vigmej. It is
obvious that : + m 4+ j = k. Thus the result holds. (]

Lemma 8 For a languages L and K, if PL C Pk and K is contained in a Pp-class,

then K tis equal to a Pr-class.

Proof. It is obvious from the fact that L is a union of Pr-classes. 0

Now we consider properties of a syntactic congruence Pr» of L™ and a syntactic
congruence Pr. of L* for an infix code L and a positive integer n. The first result

holds for a prefix code or a suffix code.

Proposition 9 Let L be a prefiz code or a suffit code. For an integer n > 2,
PLn g PLn—l .

Proof. Let L be a prefix code. Suppose that u = v(Pr») and zuy € L*!. Taking
an arbitrary word w € L, we have that wzuy € L™. It follows that wzvy € L™, by
u = v(Prn). Hence zvy is in L* since L* is right unitary . By Lemma 7, zvy is in
L™=1. Similarly we have that zvy € L*~! implies zuy € L™!. Thus u = v(Pra-1).

In the case of a suffix code, we can similarly prove the result. 0

Proposition 10 Let L be an infiz code. Then the following conditions are equiva-

lent:
(i) L is a Pra-class.
(1i)L™ is a Ppx-class, for two integers m and k with 1 < m < k.

Proof. (i) ==> (ii) : Suppose that L is a Pr.-class. First we prove that L is a
Ppr-class for every k > 2. Let u and v be in L and zuy € L* for z,y € £*. If one of



the two words z and y is in L*, then the other is also in L*, since L is an infix code.
Then zvy is in L* by Lemma 7. So assume that neither z nor y is in L*. Since L
is infix, the word u has no proper factor in L. Then there exist uy,.uz, z, w € &
such that wu,,usz € L, u = uyuy, w € Suf(z),z € Pre(y). We have that wvz is in
L2, so zvy is in L* since L is a Pr2-class. Similarly we have that zvy € L¥ implies
zuy € L*. Hence L is contained in a Prx-class for k > 2. Since Ppx C Pr, L is a
Ppx-class by Lemma, 8. |

Next suppose that u,v € L™ and zuy € L*¥ with m < k for z,y € £*. Let
U = Up..Upy fOT Uy, .o, U € L and v = v;...0,, for vy,...,v, € L. Since L is a Ppx-
class, v Us...upy is in L* for v; € L. Furthermore, for v € L, zvyvus...uny € L.
Continueing this process, we can prove that for v € L™, zvy € LF. Similarly as
above, we have that L™ is contained in a Prs-class. By Lemma 8, L™ is a PLk-ClaSS
since Prx C Prm.
(23) ==> () : trivial. =]

Proposition 11 For an infiz code L, if L* is a Prs-class, then L is a Pp2-class.

Proof. Let u,v € L, and zuy € L. There exist u; and ug € T+ such that U Uy = U,
zuy,uy € L. By the hypothesis, we have that zvy € L*. Suppose that zvy € L*
for k > 2. Let zvy = w;...w; for wy,...,wx € L. Since L is infix, we have that
|z] < |Jwi| < |zv| and |y| < |wk| < |vy|. Hence w,...wk— is a proper factor of v. This
is a contradiction. Thus zvy € L?. By symmetry, we have that zvy € L? implies
zuy € L%, and thus L is contained in a PLe class. By Lemma 8 and the fact that
PLz C Py, the result holds ' m

Unfortunately, the converse of Proposition 11 does not holds. For an alphabet
r= {agl), al? ,az,bl, bg,cg ),cl ,€3,d1,d;}, consider the infix code L= zz,X U zZy,
U z{z),u,v1} U 2,228y U 2,8y U a:z{ml,u vty U Zyy U {uv, vy}, where z; =
ail)ai ),9:2 = ag,u = byby, = cg )cg ),vz = €3,y = dydy,z = z17,. It can be easily
checked that L an infix code, and L is a. Pr2-class. Although both uvuv and xiwy
are in L2, zuvuvy is not in L? since vu is not in L. Alternatively, zuvy and zuvuvy

arenot in the same class of Pp..

Next we consider Prn, n > 1, and Py. for s-infix code L.
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Proposition 12 For every s-infiz code L, L is a Pr2-class.

Proof. Let u,v € L. Suppose that zuy € L% Since L* is double unitary, one has
that both z and y are in L*. Then it follows that z € L'andye I’ withi+j=1
by Lemma 7. That is, eithet z=1and y € L,ory = 1 and = € L. Thus zvy € L2.
Similarly, it is easily obtained that zvy € L? implies zuy € L?. Thus u = v(Pp).

Hence L is contained in a Pj2-class. By Lemma 8 and Proposition 9, L is a Pr2-class.
a

Corollary 13 For every s-infir code L, and two integers m and k with 1 <m <k,

L™ 1s a Prr-class.

Proof. It is obvious by Propositions 12 and 14. 0

Proposition 14 Let L be a s-infiz code over . Then L* is a Pr«-class .

Proof. Let u,v € L*. Suppose that zuy is in L* for z,y € £*. Since L* is double-
unitary, both z and y are in L*. Hence zvy is in L*. Similarly we have that zvy € L~
implies zuy € L*. Thus u = v(Pr+), and so L* is contained in a Pp.- class. Since

L* is a union of PL--élasses, the result holds. 0

Proposition 15 Let L be a s-infiz code over ©. Then L* is contained in a Py (-

class.

Proof. Let u,v € L*. Suppose that zuy ¢ W(L*), that is, L*..zuy # ¢. Then
immediately we have that Z*z N L* # ¢ and yI* N L* # ¢ since L* is double
unitary. Hence zvy ¢W(L*). Similarly we can obtained that zvy ¢W(L*) implies
zuy ¢ W(L*). Thus the result holds. o 0o

Remark 1 The result such as Proposition 12 does not hold in general for an infiz
code: For an infir code L = {aba,bab}, which is not a strongly infiz code, we have
that Pin C Ppa-i. However L is not a Prz-class since the two words aba and bab

are not in the same class of Pr:.
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Last we consider the syntactic congruence Pr» of L™ for a strongly outfix code

L.

Proposition 16 Let L be a s-outfiz code over £. Then every Pra-class (1 < n) not

contained in W(L) is a s-outfiz code.

Proof. Since the class of outfix codes is closed under concatenation [2], we have
that Prn-class different from W(L™) is an outfix code by Proposition 5. Moreover
it follows that Pps-class not contained in W(L) is an outfix code by that W(L") C
W(L).

Suppose that such a Pra-class is not s-outfix, that is, there exist z;, 22,2, 22 € E¥
such that z,2; = 2323 = 7,22(Prr) and 7121 # Z32;. Since Pr» C Py, these three
words are in the same Pr-class different from W(L). So there exist w;,w; € ¥*
such that wyz,z;wy € L, wiz2,w, € L and wyz 2wz € L. Then we have that
Wy Ty 21 WoWy TaZowy € L2, wiTy, 2Wq, zgwy € X1 and w2123, # w;ZTozowy. This

contradicts the fact that L is s-outfix. Thus the result holds. |

Remark 2 In Proposition 16, a similar result as Proposition 5 for an s-outfiz code
L does not hold. That is, Prn-class different from W (L"), but contained in W(L),

is not necessarily s-outfiz. For an s-outfiz code L = {abbba, baaab, caaac}, let wy =

198

abbbabaa, w; = caaacbaa, and ws = baaabaa. Then w, = w; = wa(Prz), but wyw;y

has a proper outfiz abbbabaa = w,“in L. Thus the class which contains wy,w; and

ws 1s not s-outfiz.
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