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Abstract

Following our algeb.$.\mathrm{r}$aic method for investigating information trans-
mission in $\mathrm{C}\mathrm{A}$ , the global dynamics of the extended $\mathrm{C}\mathrm{A}[X]$ is studied
in relation to that of $\mathrm{C}\mathrm{A}$ . Computer simulations of 1-D finite cyclic
CAs are also presented.

1 Preliminaries

The 1-D CA is defined as usual with the space $Z$ (the set of integers),
the neighborhood index $N$ , the state set $Q$ and the local function $f$ and
denoted as $\mathrm{C}\mathrm{A}=(z,N,Q,f)$ . Throughout this paper we assume the 1-D CA
with $N=(-1,\mathrm{o},+1)$ and denote simply as $\mathrm{C}\mathrm{A}=(Q,f)$ .

State Set
$Q$ is assumed to be a finite field. Thus $Q=\mathrm{G}\mathrm{F}(q)$ , where $q=p^{n}$ with prime $p$

and positive integer $n$ . Denote the cardinality of $Q$ as $|Q|$ . So $|Q|=q=p^{n}$ .

Local Function
The local function $f$ : $Q\cross Q\cross Qarrow Q$ can be expressed as follows:

$f(x,y, Z)=u_{1}x^{q1}-y-1q-\overline{1}uz+2X-y-Z-2+q1q1qu_{3^{X}y}-q-2z+qq1q-1\ldots$

$+u_{q^{\mathrm{s}_{-1^{Z}}}}+u_{q^{3}}$ , where $u_{i}\in Q(1\leq i\leq q^{3})$ . (1)

$x,$ $y$ and $z$ assume the state values of the neighboring cells -l(left),
O(center) and+l(right), respectively.

Global Map
The configuration set $C=Q^{Z}$ and the global map $F$ : $Carrow C$ are defined
as usual. When a CA is 1-D finite CA of length $n\geq 1$ , its configuration is a
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word $w\in Q^{n}$ . We confuse the terminologies word and configuration for the
finite and the infinite CAs.

2 Extension of CA

2.1 Information Expressed by $X$

Let $X$ be a symbol different from those used in equation (1). It stands for
an unknown state or the information of the cell in $\mathrm{C}\mathrm{A}$ . We explain first
the role of $X$ in the information transmission of the local function using an
example.

Example 1.
The binary set $Q=\{0,1\}=\mathrm{G}\mathrm{F}(2)$ and the function $f(x, y, z)=yZ+x$.

From the fact that $f(\mathrm{O}, 0,0)=0$ and $f(1,0,0)=1$ , we may write as
$f(X, 0,0)=X(\mathrm{i})$ . Similarly we write $f(X, 1,1)=X+1$ (mod 2) (ii),
which comes from the fact that $f(\mathrm{O}, 1,1)=1$ and $f(1,1,1)=0$ . Also
we have $f(X, 1,0)=1$ from $f(0,1,0)=1$ and $f(1,1, \mathrm{o})=1(\mathrm{i}\mathrm{i}\mathrm{i})$ . From
the information related point of view, we claim: in cases (i) and (ii) the
information $X$ is transmitted to the right, but in case (iii), it vanishes. Note
that from the function $X+1$ (a permutation of $Q$ ) we can restore the value
of $X$ without any loss of information.

In generalizing the above argument, we consider another polynomial
form, which will be called the information function.

$g(X)=a_{1}x^{q-}1+a_{2}X^{q-2}+\cdots+a_{q}$ , where $a_{i}\in Q(1\leq i\leq q)$ . (2)

$g$ defines a function $Qarrow Q$ and the set of such functions is denoted by
$Q[X]$ . Evidently $|Q[X]|=q^{q}$ . Note that $Q[X]\supset Q$ . The element of $Q[X]\backslash Q$

is called informative, while that of $Q$ constant.

The polynomial $g(X)\in Q[X]$ is uniquely expressed in the form of co-
efficent vector $(a_{1}, a_{2,\ldots,a_{q}})$ , which is particularly useful for the computer
simulation.

When $g$ is a permutaion function of $Q$ , its function value, say $a$ , has
a unique preimage $g^{-1}(a)$ in the domain $Q$ . Thus a permutation function
completely conserves the information of the domain. When $g$ is a constant,
however, we can not obatin any information about preimages from the func-
tion value. There are intermediate stages of information amount contained
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by the information function $g$ . The greater the cardinality of the value set
$g(Q)$ is, the greater the information amount is.

2.2 Ring $Q[X]$

The set of information functions $Q[X]$ is characterized as follows. Let $P[X]$

be the polynomial ring over a finite field $Q$ with an indeterminate X. $Q[X]$

be its factor ring by $X^{q}-X$ , i.e. $Q[X]=P[X]/(X^{q}-X)$ . Note that
$X^{q}-X=X(X^{q-1}-1)$ is a reducible polynomial in $P[X]$ . Therefore $Q[X]$

is not a field but a commutaitive ring with $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{y}[\mathrm{L}\mathrm{i}\mathrm{d}\mathrm{l}\mathrm{e},\mathrm{e}\mathrm{t}.\mathrm{a}\mathrm{l}.97]$ .

2.3 Extended CA

We define an extended $\mathrm{C}\mathrm{A}[X]=(Q[X], f)$ , where $Q[X]$ is the set of cell
states. The local function $f$ is expressed by the same polynomial form
$f$ as in $(Q, f)$ . The variables x,y and $\mathrm{z}$ , however, move in $Q[X]$ instead of
$Q$ . That is, $f$ : $Q[X]^{3}arrow Q[X]$ . The global map is $F$ : $Q[X]^{Z}arrow Q[X]^{Z}$ .
A configuration is called informative if a cell state of the configuration is
informative. Otherwise it is constant. When a $\mathrm{C}\mathrm{A}[\mathrm{X}]$ starts with a constant
configuration, its trajectory always behaves in $Q^{Z}$ .

3 Global Dynamics of $\mathrm{C}\mathrm{A}[X]$

3.1 Generalities

We investigate the dynamics of a $\mathrm{C}\mathrm{A}[X]$ in relation to that of $\mathrm{C}\mathrm{A}$ . Such no-
tions as injectivity, surjectivity, reversibility, limit sets and so on are defined
and analysed in $\mathrm{C}\mathrm{A}[X]$ as well.

Substitution
Let a configuration of $\mathrm{C}\mathrm{A}[X]$ be $w\in Q[X]^{Z}$ . For any $a\in Q$ , the word
obtained from $w$ by substituting $a$ for the variable $X$ of each cell state $g(X)$

is denoted by $w_{a}$ . If $w$ is a constant configuration, then by definition $w_{a}=w$ .
Substitution is expressed by the (many to one) mapping $\psi_{a}:w\vdash\Rightarrow w_{a}$ or
$\psi_{a}(w)=w_{a}$ for any $a$ $\in Q$ .

Example 2. $q=3$ . $\mathrm{G}\mathrm{F}(3)=\{\mathrm{o},1,2\}$ . $n=5$ .
If $w=X,$ $1,$ $X^{2}+1,0,0$ , then $w_{0}=0,1,1,0,0,$ $w_{1}=1,1,2,0,0$ and $w_{2}=$

$2,1,2,0,0$ .
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Proposition 1.
(1) $\mathrm{C}\mathrm{A}[X]$ is injective, if and only if CA is injective.
(2) $\mathrm{C}\mathrm{A}[X]$ is surjective, if and only if CA is surjective.

Proof.
(1) If CA is injective, then for any $a$ $\in Q$ and any pair of distinct configu-
rations $w$ and $v$ , we have $F(w_{a})\neq F(v_{a})$ . Therefore we have $F(w)\neq F(v)$ ,
i.e. $\mathrm{C}\mathrm{A}[\mathrm{X}]$ is injective. The only if part is obvious.
(2) Let $c_{X}$ be an arbitrary configuration of $Q[X]^{Z}$ . Since CA is surjective, for
any $a\in Q$ , there is a constant configuration $w$ such that $F(w)=c_{a}$ . There-
fore there is an informative configuration $c_{X}’\in Q[X]^{Z}$ such that $\psi_{a}(c_{x}’)=w$

and $F(c_{\mathrm{x}}’)=c_{X}$ . So we have the if part of (2). $\square$

In addition to the above mathematical properties pertaining to the global
map $F$ , we consider the informational properties of CA dynamics. Among
others we are interested in the information transmission ability of CAs.
When a $\mathrm{C}\mathrm{A}[X]$ starts with an initial configuration $vXw$ where $v$ and $w$ are
constants, the information of $X$ is generally transmitted to the right and left
or to the space direction. If the trajectory of a $\mathrm{C}\mathrm{A}[X]$ contains informative
configurations forever, then the information is called to be transmitted to
the time direction without end.

The following proposition is a consequence of Kari’s $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}\iota_{\mathrm{t}}\mathrm{s}[\mathrm{K}\mathrm{a}\mathrm{r}\mathrm{i}94]$ .

Propositon 2.
It is not decidable, whether or not a $\mathrm{C}\mathrm{A}[\mathrm{X}]$ enters a limit set consisting
of constant configurations after starting with an initial configuration $wXv$ ,
where $w$ and $v$ are constant.

The proposition means that as for an arbitrary 1-D CA $\dot{\mathrm{t}}\mathrm{h}\mathrm{e}$ ultimate ability
of information transmission to the time direction is $\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$[$\mathrm{s}\mathrm{e}\mathrm{e}$ Nishio99].

A local function $f$ is called permutive in $x$, if $f(Q, y, z)=Q$ for any values
of $\mathrm{y}$ and $\mathrm{z}$ . Similarly permutativity in $\mathrm{y}$ (and z) is $\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{d}[\mathrm{H}\mathrm{e}\mathrm{d}\mathrm{l}\mathrm{u}\mathrm{n}\mathrm{d}70]$[Fagnani,et.a1.98].
Then we have the following simple result.

Proposition 3.
If a CA is permutive in $x$ or $z$ , then the information is transmitted without
end to the space direction.

Proposition 4.
It is undecidable, whether or not a $\mathrm{C}\mathrm{A}[X]$ transmits the information $X$ to
the space direction without end.
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Proof.
It was proved undecidable for finite fixed boundary $\mathrm{C}\mathrm{A}\mathrm{s}$ [ $\mathrm{S}\mathrm{e}\mathrm{e}$ Nishio99]. Mod-
ification of the proof to fit with infinite CAs is easy.

3.2 Finite CA

Consider a finite $\mathrm{C}\mathrm{A}=(Q, f, n, B)$ where $n\geq 1$ is the number of cells and $B$

is the boundary condition, cyclic, fixed and others. Note that the following
discussion is not sensitive to the boundary condition.

Cycle and Transient
When a CA starts with a configuration $w$ , its trajectory consists of the finite
transient $t(w)$ and the cycle $p(w)$ , which follows the transient and repeates
itself forever. The lengths of the cycle and the transient are denoted by $\phi(w)$

and $\tau(w)$ , respectively.

Computer simulations are shown in Appendix for a three state cyclic
$\mathrm{C}\mathrm{A}[X]$ . The system starts with an informative configuration $w=X11111$

in (A) and enters the cycle of length 12 after the tansient of lenght 2. In
$(\mathrm{B}),(\mathrm{C})$ and (D) it starts with constants $\psi \mathrm{o}(w),$ $\psi_{1}(w)$ and $\psi_{2}(w)$ , respec-
tively. Note that $\phi(w)=12=LCM\{4,1,3\}$ .

Proposition 5.
(1) $\phi(w)=LoM\{\phi(wa)|a\in Q\}$ .
(2) $\tau(w)=MAx\{\tau(w_{a})|a\in Q\}$ .

Proof.
The information function $g(X)$ can be represented by a $q$-tuple of constant
vectors $(0,0,0, \ldots, 0, b_{i}),$ $b_{i}\in Q,$ $1\leq i\leq q$ . In fact $b_{i}=g(a_{i})$ and conversely
from a set of $q$ values $b_{i},$ $1\leq i\leq q$ , one can uniquly compute the set
of coefficients $a_{i}\mathrm{s}$ which gives $g(X)$ . Consequently the dynamics of $\mathrm{C}\mathrm{A}[X]$

is faithfully simulated by computing separately each dynamics of CA and
considering their q-tuples.
(1) If the trajectory of CA starting with $w_{a}$ has the cycle length $\phi(w_{a})$ , then
the trajectory of $q$-tuples of the coefficent vectors has the cycle length of a
multiple of each $\phi(w_{a})$ . It is in fact equal to $LCM\{\phi(w_{a})|a\in Q\}$ .
(2) When every trajectoy of CAs enter the cycle, the $q$-tuples also become
cyclic. Therefore we have (2) of the proposition. $\square$

We state the following proposition without proof.

Proposition 6.
$\phi(w)=\phi(w_{a})$ for any $a\in Q$ , if and only if $\mathrm{C}\mathrm{A}[X$ } enters a cycle consiting
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of constant configurations.

Concluding Remarks
The idea has been presented for the basic 1-D $\mathrm{C}\mathrm{A}$ , though it works for
general CAs. The decision problems we treated above asks if or not any
information is transmitted. The problem asking how much information is
transmitted is left for further reseach. Thanks are due to Takashi Saito
for writing the simulation program of 1-D finite $\mathrm{C}\mathrm{A}[X]\mathrm{s}$ with the language
$\mathrm{D}\mathrm{r}\mathrm{S}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{e}$ .
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Appendix: Simulation of $\mathrm{C}\mathrm{A}[X]$

$Q=\mathrm{G}\mathrm{F}(3)$ , cyclic boundary, $n=6,$ $f=xz+y$ .

(A) $w=X11111$
time: cell 1 to 6.
$0$ : $((010)(001)(001)(001)(001)(001$
$1$ : $((011)(011)(002)(002)(002)(011$
$2$ : $((102)(000)(021)(000)(021)(000$
$3$ : $((102)(102)(021)(111)(021)(102$
$4$ : $((000)(201)(120)(222)(120)(201$
$5$ : $((201)(201)(222)(102)(222)(201$
$6$ : $((102)(000)(021)(210)(021)(000$
$7$ : $((102)(102)(021)(021)(021)(102$
$8$ : $((000)(201)(120)(102)(120)(201$
$9$ : $((201)(201)(222)(012)(222)(201$
$10$ : $((102)(000)(021)(120)(021)(00$10 : $((102)(000)(021)(120)(021)(000))$
垣: $((102)(102)(021)(201)(021)(102))$
12 : $((000)(201)(120)(012)(120)(201))$
13 : $((201)(201)(222)(222)(222)(201))$
14 : $((102)(000)(021)(000)(021)(000))$ $\tau=2,$ $\emptyset=12$

(B) $w_{0}=011111$

$0$ : $((000)(001)(001)(001)(001)(001))$
1 : $((001)(001)(002)(002)(002)(001))$
2 : $((002)(000)(001)(000)(001)(000))$
3 : $((002)(002)(001)(001)(001)(002))$
4 : $((000)(001)(000)(002)(000)(001))$
5 : $((001)(001)(002)(002)(002)(001))$ $\tau=1,$ $\phi=4$

(C) $w_{1}=111111$

$0$ : $((001)(001)(001)(001)(001)(001))$
1 : $((002)(002)(002)(002)(002)(002))$
2 : $((000)(000)(000)(000)(000)(000))$
3 : $((000)(000)(000)(000)(000)(000))$ $\tau=2,$ $\phi=1$

(D) $w_{2}=211111$

$0$ : $((002)(001)(001)(001)(001)(001))$
1 : $((000)(000)(002)(002)(002)(000))$
2 : $((000)(000)(002)(000)(002)(000))$
3 : $((000)(000)(002)(001)(002)(000))$
4 : $((000)(000)(002)(002)(002)(000))$ $\tau=1,$ $\phi=3$

For example coefficient vector (2,0,1) means $2X^{2}+1$ .
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