Feasibly constructive analysis

Hajime Ishihara
School of Information Science
Japan Advanced Institute of Science and Technology
Tatsunokuchi, Ishikawa 923-1292, Japan.

1 Introduction

In the constructive theory of real numbers developed, for example in [4, Chapter 5], we assume that a universe $\mathcal U$ of functions on natural numbers satisfies certain closure conditions; a very weak axiom of choice QF-AC₀₀:

$$\forall \vec{m} \exists n A(\vec{m}, n) \implies \exists \alpha \in \mathcal{U} \forall \vec{m} A(\vec{m}, \alpha(\vec{m})) \quad (A \text{ quantifier-free})$$

expressing the fact that \mathcal{U} is closed under recursive in is assumed in [4, Chapter 5].

On the other hand, various classes of functions on natural numbers have been defined as function algebras [1]; a function algebra is the smallest class of functions containing certain initial functions and closed under certain operations (especially composition and recursion scheme). For example, A. Cobham [2] characterized the polynomial time computable functions as the smallest class closed under bounded recursion on notation; see [3] for other characterizations of the polytime functions.

We give some elementary results and problems on the constructive theory of real numbers and analysis with a universe \mathcal{U} which contains zero-function 0(m)=0, projection $P_k^n(m_1,\ldots,m_n)=m_k$, the binary successor functions $s_0(m)=2\cdot m, s_1(m)=2\cdot m+1$, the length in binary function $|m|=\lceil\log_2(m+1)\rceil$, addition +, cut-off subtraction $\div (m \div n=m-n)$ if $m\geq n$ 0 otherwise) and $pad(m,n)=2^{|n|}\cdot m$, and closed under composition: if $g_1,\ldots,g_k,h\in\mathcal{U}$, then there is an $f\in\mathcal{U}$ such that

$$f(\vec{m}) = h(g_1(\vec{m}), \ldots, g_k(\vec{m})).$$

Furthermore we assume that a universe \mathcal{U} contains a pairing function $\langle \cdot, \cdot \rangle$ and its inverses π_1, π_2 such that

$$\pi_1(\langle m, n \rangle) = m, \quad \pi_2(\langle m, n \rangle) = n;$$

for then $\langle m, n \rangle$ code the integer m - n, $\langle m, n \rangle =_{\mathbb{Z}} \langle m', n' \rangle$ if m + n' = m' + n,

$$\langle m, n \rangle +_{\mathbb{Z}} \langle m', n' \rangle := \langle m + m', n + n' \rangle,$$

$$-\langle m, n \rangle := \langle n, m \rangle,$$

$$|\langle m, n \rangle| := (m - n) + (n - m),$$

$$pad_{\mathbb{Z}}(\langle m, n \rangle, l) := \langle (pad(m, l), pad(n, l))$$

etcetc; and then $\langle i, m \rangle$ code the dyadic rationals $i/2^{|m|}$ where i is an integer, $\langle i, m \rangle =_{\mathbb{Q}} \langle j, n \rangle$ if $pad_{\mathbb{Z}}(i, n) =_{\mathbb{Z}} pad_{\mathbb{Z}}(j, m)$,

$$\langle i, m \rangle +_{\mathbb{Q}} \langle j, n \rangle := \langle pad_{\mathbb{Z}}(i, n) + pad_{\mathbb{Z}}(j, m), pad(m, n) \rangle,$$

 $-\langle i, m \rangle := \langle -i, m \rangle,$
 $|\langle i, m \rangle| := \langle |i|, m \rangle$

etcetc.

2 Real numbers

Definition 1. A real number is a sequence $\{p_n\}_n$ of dyadic rationals such that

$$\forall mn (|p_m - p_n| < 2^{-|m|} + 2^{-|n|}).$$

We shall use a notation $\{p_n\}_n \in \mathbb{R}$ to mean $\{p_n\}_n$ is a real number.

Definition 2. Let $x := \{p_n\}_n, y := \{q_n\}_n \in \mathbb{R}$, and put

$$x < y := \exists n (q_n - p_n > 2^{-|n|+2}).$$

Lemma 3. Let $x, y, z \in \mathbb{R}$. Then

1.
$$\neg (x < y \land y < x)$$
,

$$2. \ x < y \implies x < z \lor z < y.$$

Proof. (1). Let $x = \{p_n\}_n$ and $y = \{q_n\}_n$, and suppose that $x < y \land y < x$. Then there exist n, n' such that

$$q_n - p_n > 2^{-|n|+2}$$
 and $p_{n'} - q_{n'} > 2^{-|n'|+2}$,

and hence

$$0 = (q_{n} - p_{n}) + (p_{n'} - q_{n'}) - (p_{n'} - p_{n}) - (q_{n} - q_{n'})$$

$$> 2^{-|n|+2} + 2^{-|n'|+2} - (2^{-|n'|} + 2^{-|n|}) - (2^{-|n|} + 2^{-|n'|})$$

$$= 2^{-|n|+1} + 2^{-|n'|+1}$$

$$> 0,$$

a contradiction.

(2). Let $x = \{p_n\}_n$, $y = \{q_n\}_n$ and $z = \{r_n\}_n$, and suppose that x < y. Then there exists n such that

$$q_n - p_n > 2^{-|n|+2}.$$

Letting N := 8n + 7, either $(p_n + q_n)/2 < r_N$ or $r_N \le (p_n + q_n)/2$. In the former case, we have

$$r_N - p_N > \frac{p_n + q_n}{2} - p_N$$

$$= \frac{p_n + q_n}{2} - p_n - (p_N - p_n)$$

$$= \frac{q_n - p_n}{2} - (p_N - p_n)$$

$$> 2^{-|n|+1} - (2^{-|n|-3} + 2^{-|n|})$$

$$= 7 \cdot 2^{-|n|-3} > 2^{-|N|+2},$$

and hence, x < z. In the latter case, we have

$$q_N - r_N \ge q_N - \frac{p_n + q_n}{2}$$

$$= (q_N - q_n) + q_n - \frac{p_n + q_n}{2}$$

$$= (q_N - q_n) + \frac{q_n - p_n}{2}$$

$$> -(2^{-|n|-3} + 2^{-|n|}) + 2^{-|n|+1}$$

$$> 2^{-|N|+2},$$

and hence z < y.

Definition 4. For $x, y \in \mathbb{R}$, define

1.
$$x \# y := (x < y \lor y < x),$$

2.
$$x = y := \neg(x \# y)$$
,

3.
$$x \le y := \neg (y < x)$$
.

Lemma 5. Let $x, y, z \in \mathbb{R}$. Then

1.
$$x \# y \iff y \# x$$
,

2.
$$x \# y \implies x \# z \lor z \# y$$
.

Proof. Straightforward.

Proposition 6. Let $x, y, z \in \mathbb{R}$. Then

1.
$$x = x$$
,

$$2. \ x = y \implies y = x,$$

3.
$$x = y \land y = z \implies x = z$$
.

Proof. (1), (2). Trivial

(3). If $x = y \land y = z$, then $\neg(x \# y) \land \neg(y \# z)$, and hence $\neg(x \# y \lor y \# z)$. Therefore $\neg(x \# z)$ by Lemma 5 (2), and so x = z.

Proposition 7. Let $x, x', y, y' \in \mathbb{R}$. Then

1.
$$x = x' \land y = y' \land x < y \implies x' < y'$$

2.
$$\neg \neg (x < y \lor x = y \lor y < x)$$
,

$$3. \ x < y \land y < z \implies x < z.$$

Proof. (1). Suppose that $x = x' \wedge y = y' \wedge x < y$. Then either x < x' or x' < y by Lemma 3 (2). In the former case, we have x # x', and hence $\neg (x = x')$, a contradiction. In the latter case, we have $x' < y' \vee y' < y$; if y' < y, then $\neg (y' = y)$, a contradiction, and hence x' < y'.

- (2). Trivial.
- (3). Suppose that $x < y \land y < z$ Then either x < z or z < y. In the latter case, we have a contradiction by Lemma 3 (1). Thus the former must be the case.

Corollary 8. Let $x, x', y, y', z \in \mathbb{R}$. Then

1.
$$x = x' \land y = y' \land x \# y \implies x' \# y'$$
,

2.
$$x = x' \land y = y' \land x \le y \implies x' \le y'$$
,

3.
$$x \le y \iff \neg \neg (x < y \lor x = y),$$

4.
$$\neg \neg (x \leq y \lor y \leq x)$$
,

$$5. \ x \le y \land y \le x \implies x = y,$$

6.
$$x < y \land y \le z \implies x < z$$
,

7.
$$x < y \land y < z \implies x < z$$

8.
$$x \le y \land y \le z \implies x \le z$$
.

Proof. (1), (2), (3), and (4) are straightforward.

- (5). Suppose that $x \leq y \wedge y \leq x$ Then $\neg (y < x \vee x < y)$, and hence $\neg (x \# y)$. Thus x = y.
- (6). Suppose that $x < y \land y \le z$ Then either x < z or z < y. In the latter case, we have a contradiction. Thus the former must be the case.
 - (7). Similar to (6).
- (8). Suppose that $x \le y \land y \le z$ and z < x. Then either z < y or y < x. In the former case, we have y < y by (7), a contradiction. In the latter case, we have x < x, a contradiction. Thus $x \le z$.

Lemma 9. For each $x := \{p_n\}_n \in \mathbb{R}$, we have

$$\forall n \left(|p_n - x| \le 2^{-|n|} \right).$$

Proof. Suppose that $|p_n - x| > 2^{-|n|}$. Then there exists m such that

$$2^{-|m|+2} < |p_n - p_{2m+1}| - 2^{-|n|} < 2^{-|m|-1},$$

a contradiction.

3 Completeness

Definition 10. A sequence of real numbers $\{x_m\}_m$ is a double sequence $\{\{p_n^m\}_n\}_m$ of dyadic rationals such that $\{p_n^m\}_n \in \mathbb{R}$ for each m.

Definition 11. A sequence $\{x_n\}_n$ of reals is said to *converge* to x with *modulus* $\beta \in \mathbb{N} \to \mathbb{N}$ if

$$\forall k n(|x - x_{\beta k + n}| < 2^{-|k|}).$$

Then x is said to be the *limit* of $\{x_n\}_n$.

Definition 12. A sequence $\{x_n\}_n$ of reals is said to be a *Cauchy sequence* with $modulus \ \alpha \in \mathbb{N} \to \mathbb{N}$ if

$$\forall kmn(|x_{\alpha k+m} - x_{\alpha k+n}| < 2^{-|k|}).$$

Theorem 13. Each Cauchy sequence of reals converges to a limit.

Proof. Let $\{x_m\}_m := \{\{p_n^m\}_n\}_m$ be a Cauchy sequence of reals with modulus α , i.e.

$$\forall kmn(|x_{\alpha k+m} - x_{\alpha k+n}| < 2^{-|k|}),$$

and define a sequence $\{q_n\}_n$ of dyadic rationals by

$$q_n := p_{2n+1}^{\alpha(2n+1)}.$$

Then since $|q_n - x_{\alpha(2n+1)}| \leq 2^{-|n|-1}$ for all n, we have

$$|q_m - q_n| \le |q_m - x_{\alpha(2m+1)}| + |x_{\alpha(2m+1)} - x_{\alpha(2n+1)}| + |x_{\alpha(2n+1)} - q_n|$$

$$\le 2^{-|m|-1} + 2^{-|m|-1} + 2^{-|n|-1} + 2^{-|m|-1} = 2^{-|m|} + 2^{-|n|}.$$

Therefore $x:=\{q_n\}_n$ is a real number. Furthermore we have

$$|x - x_{\alpha(4k+3)+m}| \le |x - q_{2k+1}| + |q_{2k+1} - x_{\alpha(4k+3)}| + |x_{\alpha(4k+3)} - x_{\alpha(4k+3)+m}|$$

$$< 2^{-|k|-1} + 2^{-|k|-2} + 2^{-|k|-2} = 2^{-|k|},$$

and hence $\{x_n\}_n$ converges to x with a modulus $\beta n := \alpha(4n+3)$.

4 Intermediate-value

In this section, we assume that our universe \mathcal{U} is closed under *full concate-nation recursion on notation* (FCRN) which is used in [3] to characterize the polytime functions: if $g, h_0, h_1 \in \mathcal{U}$ with $h_0(m, \vec{n}, l), h_1(m, \vec{n}, l) \leq 1$, then there is an $f \in \mathcal{U}$ such that

$$f(0, \vec{n}) = g(\vec{n}),$$

$$f(s_i(m), \vec{n}) = s_{h_i(m, \vec{n}, f(m, \vec{n}))}(f(m, \vec{n})) \quad (\text{if } i \neq 0 \text{ or } m \neq 0)$$

Theorem 14. Let $f \in [0,1] \to \mathbb{R}$ be continuous with $f(0) \leq 0 \leq f(1)$. Then

$$\forall k \exists x \in [0, 1] (|f(x)| < 2^{-|k|}.$$

Proof. Let $\lambda(n, k, m)$ be the characteristic function of the predicate

$$\left(f\left(\frac{2m+1}{2^{|n|+1}}\right)\right)_{2k+1} < 0,$$

define a function ϕ by FCRN

$$\begin{array}{rcl} \phi(0,k) & = & 0 \\ \phi(s_i(n),k) & = & s_{\lambda(n,k,\phi(n,k))}(\phi(n,k)), & (\text{if } i \neq 0 \lor n \neq 0) \end{array}$$

and let

$$p_{n,k} := rac{\phi(n,k)}{2^{|n|}}$$
 and $q_{n,k} := rac{\phi(n,k)+1}{2^{|n|}}$.

Then we can show, by induction, that for each n

$$(f(p_{n,k}))_{2k+1} \le 0$$
 and $(f(q_{n,k}))_{2k+1} \ge 0$.

They are trivial when n = 0. Suppose that $n = s_i(n')$ and $i \neq 0 \lor n' \neq 0$. Then either $\lambda(n', k, \phi(n', k)) = 0$ or $\lambda(n', k, \phi(n', k)) = 1$. In the former case, since

$$p_{n,k} = \frac{s_0(\phi(n',k))}{2^{|s_0(n')|}} = \frac{2\phi(n',k)}{2^{|n'|+1}} = p_{n',k},$$

we have

$$(f(p_{n,k}))_{2k+1} = (f(p_{n',k}))_{2k+1} \le 0$$

by the induction hypothesis, and since $\lambda(n', k, \phi(n', k)) = 0$, we have

$$(f(q_{n,k}))_{2k+1} = \left(f\left(\frac{2\phi(n',k)+1}{2^{|n'|+1}}\right)\right)_{2k+1} \ge 0.$$

Similarly, in the latter case, we have the inequalities. Therefore we have

$$f(p_{n,k}) \le (f(p_{n,k}))_{2k+1} + 2^{-|k|-1} \le 2^{-|k|-1}$$

and

$$f(q_{n,k}) \ge (f(q_{n,k}))_{2k+1} - 2^{-|k|-1} \ge -2^{-|k|-1}.$$

Letting $x := \{p_{n,k}\}_n$ and $y := \{q_{n,k}\}_n$, we have $x, y \in \mathbb{R}$ and x = y. Since $\{p_{n,k}\}_n$ and $\{q_{n,k}\}_n$ converge to x and f is continuous, we have $|f(x)| \le 2^{-|k|-1} < 2^{-|k|}$.

References

- [1] P. Clote, Computational models and functional algebras, in E.R. Griffor ed., Handbook of Computability Theory, North-Holland, forthcomming.
- [2] A. Cobham, *The intrinsic computational difficulty of functions*, in Y. Bar-Hillel ed., Logic, Methodology and Philosophy of Science II, North-Holland, 1965, 24-30.
- [3] H. Ishihara, Function algebraic characterizations of the polytime functions, Computational Complexity, to appear.
- [4] A. S. Troelstra and D. van Dalen, *Constructivism in Mathematics*, Vol. 1, North-Holland, 1988.