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1 Introduction

In the constructive theory of real numbers developed, for example in 4,
Chapter 5], we assume that a universe U of functions on natural numbers
satisfies certain closure conditions; a very weak axiom of choice QF-AC,:

vmInA(m,n) = Ja € uvmA(m,a(m)) (A quantifier-free)

expressing the fact that U is closed under recursive in is assumed in [4,
Chapter 5).

On the other hand, various classes of functions on natural numbers have
been defined as function algebras [1]; a function algebra is the smallest class
of functions containing certain initial functions and closed under certain op-
erations (especially composition and recursion scheme). For example, A.
Cobham [2] characterized the polynomial time computable functions as the
smallest class closed under bounded recursion on notation; see [3] for other
characterizations of the polytime functions.

We give some elementary results and problems on the constructive theory
of real numbers and analysis with a universe I/ which contains zero-function
0(m) = 0, projection P(my,... ,My) = my, the binary successor functions
so(m) = 2-m,s(m) = 2-m + 1, the length in binary function Im| =
[og,(m + 1)], addition +, cut-off subtraction = (m =n=m—n ifm>n
0 otherwise) and pad(m,n) = 2" - m, and closed under composition: if
gi,.-- 9k h €U, then there is an f € U such that

F(m) = h(gi(R), ... , g(110)).



Furthermore we assume that a universe I/ contains a palrmg function (-, -)
and its inverses 7, mp such that

7r1(<m7 n)) =m, 7T2(<m7n>) =n;

(

(m,n) +z (m',n') = {
—(m,n) = (n,m),

[(m,m)| = (

padz((m,n),l) = {

etcetc; and then (i, m) code the dyadic rationals i/ 2lml where i is an integer,
<i’ m> =Q (]7 n> if padZ(ia n) =Z padZ(j? m)7

(i7 m) +Q <.7’ TL) = (padZ(i, ’I’L) + padZ(j) m)a pad(m, n)),
—(i,m) := (—i,m),
(&, m)| = (|i],m)

etcetc.

2 Real numbers

Definition 1. A real number is a sequence {p,}, of dyadic rationals such
that

Ymn (|pm — po| < 27 + 2""') X
We shall use a notation {p,}, € R to mean {p,}, is a real number.
Definition 2. Let z := {p,}n, ¥ := {@u}» € R, and put
z<y:=3n(¢—pn> 2"””2) .
Lemma 3. Let z,y,z € R. Then
1. ~(z<yAhy<uzx),

2.x<y = z<zVz<y.
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Proof. (1). Let £ = {pn}» and y = {gn}n, and suppose that £ <y Ay < z.
Then there exist n,n’ such that

qn — Pn > 2-|n[+2 and Do’ — Q' > 2—|n'l+2,

and hence
0 = (¢n—pn)+ (Pw — gw) — (P — Pn) — (Gn — ')
> 9-Inl+2 4 g-Inl42 _ (2—|"'{ + 2—|n|) _ (2-|n| + Q—In’l)
9—Inl+1 4 o=In'l+1
> 0,

a contradiction.
(2). Let £ = {Pu}n, ¥ = {gn}n and z = {rn}n, and suppose that z < y.
Then there exists n such that

Gn — Pn > 2-—]n|+2'

Letting N := 8n + 7, either (o, + ¢»)/2 < ry or ry < (P + gn)/2. In the
former case, we have

pn+‘]’n
N —DPN > —2“""_pN
_ Pntin
= 5 —pn— (PN — Pn)
qn — P
= n2 n—(pN“pn)

> 9-ini+l _ (2—|n|—3 + Q—Inl)
= 7.97In=3 5 o=INI+2
and hence, < z. In the latter case, we have
Pn+qn
2
= (qv —@n) + n —

= (v —a) + 22"
> — (27In1=3 4 o=nl) 4 p-ini+t

> 2—|N|+2’

gN — TN =2 qN —

Pn+ Gn
2

and hence z < y. O
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Definition 4. For z,y € R, define
l. z#y = (x <y Vy<z),
2. z =y :=~(z#y),
3. z<y:=-(y<zx).
Lemma 5. Let z,y,z € R. Then
1. z#y <~ y#z,
2. x#y = xH#zV 2#y.
Proof. Straightforward. a
Proposition 6. Let z,y,2 € R. Then
1. z=u=x,
2.r=y = y=u2a,
. x=yNy=2 — =2

Proof. (1), (2). Trivial -
(3). If z = y Ay = z, then =(z#y) A ~(y#z), and hence ~(z#y V y#z).
Therefore —(z#2) by Lemma 5 (2), and so z = z. O

Proposition 7. Let z,z',y,y' € R. Then
lLz=2ANy=yANzx<y = 2 <y,
2. —(z<yVz=yVy<az),

S r<yNy<z = r<z.

Proof. (1). Suppose that x = 2’ Ay = y' Az < y. Then either z < 2’
or ' < y by Lemma 3 (2). In the former case, we have z#z', and hence
—(z = z'), a contradiction. In the latter case, we have 2’ < ¢/ Vy' < y; if
y' <y, then —=(y' = y), a contradiction, and hence z' < y'.

(2). Trivial.

(3). Suppose that £ < y Ay < z Then either z < z or z < y. In the latter
case, we have a contradiction by Lemma 3 (1). Thus the former must be the
case. O
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Corollary 8. Let z,z',y,y',z € R. Then
1. z=2 ANy=vy Nz#y = 2'#V,
r=r'Ay=y A<y = 3’ <Y,
z<y & (z<yvz=y),

——(z<yVvy<a),
TSYANY<T = T=Y,
r<yANy<z = x<z2,

rlyYNhNy<z — <2,

SR I T R S I

r<yANy<z = z<z

Proof. (1), (2), (3), and (4) are straightforward.

(5). Suppose that z < y Ay < z Then —~(y < £V z < y), and hence
—(z#y). Thus z = y.

(6). Suppose that z < y Ay < z Then either z < z or z < y. In the latter
case, we have a contradiction. Thus the former must be the case.

(7). Similar to (6).

(8). Suppose that z <y Ay < z and z < z. Then either z < y or y < z.
In the former case, we have y < y by (7), a contradiction. In the latter case,
we have z < z, a contradiction. Thus z < 2. O

Lemma 9. For each z := {pn}n € R, we have
v (|p, — z| < 27M).
Proof. Suppose that |p, — z| > 2-Inl. Then there exists m such that
L gy gy ol < g,

a contradiction. | O
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3 Completeness

Definition 10. A sequence of real numbers {ZTm}m is a double sequence
{{p™},}m of dyadic rationals such that {p"}, € R for each m.

Definition 11. A sequence {z,}, of reals is said to converge to = with mod-
ulus § € N — Nif

Ven(|z — Tapin] < 271,
Then 7 is said to be the limit of {z,},.

Definition 12. A sequence {z,}, of reals is said to be a Cauchy sequence
with modulus o € N — N if ‘

VEmn(|Taksm — Takn| < 271F.
Theorem 13. Fach Cauchy sequence of reals converges to a limit.

Proof. Let {Zm}m := {{p?}n}m be a Cauchy sequence of reals with modulus
a, i.e.

vann(I-'Eozk:+m - xak—*—nl <_2—'k1)7

and define a sequence {g,}, of dyadic rationals by

2 1
Gn = D3V,

Then since |g, — Zo(ant1y| < 27™1) for all n, we have

|qm - in |Qm - xa(2m+1)| + |xa(2m+1) - xa(2n+l)| + lma(2n+1) - in

<
< gimi=l 4 o-iml=1 4 o=inl=1 4 9=Im|=1 — o=Im| 4 o=Inl
Therefore z := {g,}, is a real number. Furthermore we have

|30 - xa(4k+3)+ml < [33 - Q2k+1| + |€]2k+1 - xa(4k+3)| + |$a(4k+3) - xa(4k+3)+m|
< o Ik 4 o-lkl=2 4 o-lkl=2 — o-Ik|

and hence {z,}, converges to z with a modulus fn := a(4n + 3). O



4 Intermediate-value

In this section, we assume that our universe U is closed under full concate-

nation recursion on notation (FCRN) which is used in [3] to characterize the
polytime functions: if g, hg,hy € U with ho(m,7,1), ba(m, T, ) <1, then
there is an f € U such that

f0,7) = g(),
F(si(m), ) = Snymfmay(f(m, @) (ifi#0orm# 0)
Theorem 14. Let f € [0,1] = R be continuous with f(0) < 0 < f(1). Then
vk3z € [0, 1)(|f(z)| < 271,

Proof. Let A(n, k,m) be the characteristic function of the predicate

2m+1
(r(F)),.. <
2k+1

define a function ¢ by FCRN

¢(0,k) = 0
P(si(n), k) = Sxamkomr) (@, k), (i#0Vn# 0)

and let
d(n, k)

n,k)+1
Pnk = "En__ and dn.k ‘— ég——_)'—

2In|

Then we can show, by induction, that for each n

(f(pn,k))2k+1 <0 and (f(qn,k))2k+1 > 0.

They are trivial when n = 0. Suppose that n = s;(n’) and i # 0V n' # 0.
Then either A(n', k, ¢(n', k)) = 0 or A\(n', k, ¢(n, k)) = 1. In the former case,
since

_ so(6(n' k) _ 26(n', k)

Pnk = 2|50(n’)| - 2|n’|+1 = Dn' ks

we have

(f(Pag))2k+1 = (f(Prrg))2ks1 < 0 |
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by the induction hypothesis, and since A(n/, k, ¢(n’, k)) = 0, we have

(f(gne))2e+1 = <f (g%?—li——l)) > 0.

%+l
Similarly, in the latter case, we have the inequalities. Therefore we have
f(pn,k) S (f(p",k))Qk—l—l + 2—|k|_1 S 2"'/6'*1

and

Flgnk) > (F(gng))2psr — 27171 > —o-lki=1,

Letting z := {ppx}n and y := {gnx}n, we have z,y € R and z = y. Since
{Pnji}n and {gnx}n converge to z and f is continuous, we have |f(z)| <
2 IK=1 < 2-lK, 0

References

[1] P. Clote, C’omputati‘onal models and functional algebras, in E.R. Griffor
ed., Handbook of Computability Theory, North-Holland, forthcomming,.

[2] A. Cobham, The intrinsic computational difficulty of functions, in Y.
Bar-Hillel ed., Logic, Methodology and Philosophy of Science II, North-
Holland, 1965, 24-30.

[3] H. Ishihara, Function algebraic characterizations of the polytime func-
tions, Computational Complexity, to appear.

[4] A.S. Troelstra and D. van Dalen, Constructivism in Mathematics, Vol.
1, North-Holland, 1988.



