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On a nature of a soliton cellular automaton
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abstract
We give a proof about a nature of ”solitons” in a soliton cellular automaton by
means of inverse ultra-discretization.

Almost a decade ago, Takahashi and one of the authors (J.S.) proposed a (filter type) cellular
automaton (CA) [1]. The CA is 1 (space) +1 (time) dimensional and two valued (0 and 1).
The state at time ¢ is an infinite sequence composed of 0’s and finite number of 1’s. The rule
to determine the state at ¢ + 1 is:

1. Move every 1 only once.

2. Exchange the leftmost 1 with its nearest right 0.

3. Exchange the leftmost 1 among the rest 1’s with its nearest right 0.

4. Repeat this procedure until all 1's are moved.

A peculiar feature of the CA is that any state consists only of solitons, interacting in the same
manner as KdV solitons (Fig.1).
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Fig. 1 An example of time evolution of the CA. Three patterns of I’s (1111, 11 and 1) retain their
forms with some phase shifts after collisions.

A block of 1’s is regarded as a soliton in the CA. Its velocity is proportional to the number
of 1’s in it. If the initial state is composed of N solitons arranged in the decreasing order in
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their size, then, after their interactions, they will be arranged in the opposite order to the initial
state.

Recently, a direct connection between the CA and the KdV equation was established by
means of a limiting procedure called ultra-discretization [2]. The purpose of the present article
is to give a proof of the feature of the CA mentioned above in terms of the inverse process of
the ultra-discretization. Precisely speaking, we shall prove the following theorem:

Theorem 1 Let Q% (n=1,2,....,N) and E., (n=0,1,2,..., N) be respectively the length (the
number of 1’s) of the n-th soliton and the number of 0’s between n-th soliton and n + 1-th
soliton at time t with boundary conditions E§ = +o0o, E& = +oo. If the following conditions
are satisfied at time t = 0, ’ :

o> Ll (1<n<N-1)
Ey > Q0 (1<n<N-1),

then there exists a time T such that Q! = Q?VH natt>T.

" As an example, in Fig. 1 Q¥ = 4,Q5 = 2,Q5 = 1,E) = 5 and E§ = 2, which sat1sfy the
assumption of the theorem, and for t > 4 we see Qi=1= Q3, Qh=2= Qz, Q4 = Ql
Prior to the proof of the theorem, we shall show a relation of the CA to the celebrated
Kadomtsev-Petviashvili (IP) hierarchy of nonlinear partial differential equations [3, 4] in terms
of ultra-discretization. :
We put the evolution rule of the CA m another way. The value of jth cell at time t
J( Oorl), is given as

oyt = 1 1fu =0 and Zl__oo ub > ZL__OO ultt | (1)
J 0 othervuse

where u?j = 0 for |7] > 1 is satisfied due to the boundary conditons. This is equivalent to the

equation:

i=—00 i=—00

i1 .
u;;l = min {1 _ LL Z lL Z ‘U,,E"‘l} (2)

J 4o

We introduce ,0] as p; = Z Z u;. Thus we have u == pJ p§+1 pg_ pjﬂl Then Eq. (2)
i=—o00 §=t

is rewritten as
&iwﬁ—mwhﬂ+%%ﬂ+fdll (3)

The generating function of the KP hierarchy is given [3, 4]:

ReS,—coT (x - e(-i—)) T (x' + e(%)) exp [¢€(x —x;2)] =0, (4

~—
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where x = (r1,%2,73,...) and x' = (z'1,1'5,7'3,...) are arbitrary two sets of infinite number
1 1 1

1 : .
of independent variables, €(=) = <— Py e 1 ) and £(x,z) = inz". If we replace x by

le (%) +me (%) +ne (%) and x' by (¢+1)e (é—) +(m+1)e (%) +(n+1)e (é), we obtain

the discrete KP equation (Hirota-Miwa equation):

+1

1 14 -
(a - b)T?+1,m+1TZr_; + (b - C)Tm+l,n+len + (C - a’)Tﬁl,n+1TZ;+1>= 07 (b)

1

with're"mzr<€e (—) + me G)-) +ne(l>). Weseta—b=1,b—c=0d,c—a=-1-0and
’ a c

impose a reduction conditon 77, = 774 41 Then, putting o} = 77, we obtain

(1+8)oitloi=] = olot | + 60t olt]. (6)

Equation (3) presents a resemblance to Eq. (6). When we put § = exp [—1} from Eq. (6),

a depends on ¢, i.e. aﬁ = O'J( ). If the limit hm rlog at( ) = ,0] exists, we find p] satisfies

Eq. (3). Therefore, we find a relation between the CA and the KP hierarchy.

This limiting procedure is called ultra-discretization, through which we can construct CA’s
from usual continuous equations. It should be noticed that if we have one parameter (¢) family
of the solutions to a continuous equation, then we can construct a solution to the corresponding
CA as far as its limit exists.

Now we shall prove the theorem 1. The idea of the proof is to use the inverse process of the
ultra-discretization. It is illustrated as:

solution to the Toda molecule
equation at t =0 <~—— | solution to the CA at t =0

time evolution

solution to the Toda molecule
equation at ¢ > 1 — |solution to the CA at > 1

Fig.2 Schetch of the proof of theorem 1
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We consider a system of N solitons. It is easy to see that the length of solitons Q!, and the
distance EY, (n=1,2,---,N) satisfy

n n—1

0% = min {z Qi -y @i, E;i} (72)
=1 =1

Ef = b+ B - Q. (7b)

These equations are the ultra-discretization of the Toda molecule equation [5]:

= I+ vi-vit (8a)
It 1vt
L T}Eﬂn (8b)
where n = 1,2,---,N, V} =V}, =0. In fact, taking into account of the boundary conditions,
we obtain
t+1 ?=1 I; i
I = g VR
3=11j
Thus, when we put
II =Tt (e) = exp[——l-Cjt (e)] = Lim_ Qb(e)
n n IS n ! n e>40 T
- 1 - % : =
V= Vi) mespl- LBy, Eif= lm B,

Qt and E} satisfies Egs (8).
Next propositon is trivial, but fundamental.

Proposition 1 Suppose that one parameter family of solutions Qt (¢) and EX(¢) satisfy Eq. (8)
for 0 < e < 3C, and that the limits Q' and EXt exist. Then, if Q20 and EX° coincide with the
initial values Q2 and EC of Egs. (7), QL and E}? coincide with Q, and Et for any t > 0.

To prove the theorem 1, we need three Lemmas.

Lemma 1 If 7} satisfies

2
t+1_t—-1 t t—1__t+1 t __ .t _
Tn Tn - (Tn) + Tn41Tn-1> T-1 = TN4+1 = 07
then ¢ e . e
It _ Tn—-1Tn Vt _ Tn+1Tn—1
n - t+1 n t+1
TeTno1 i Tn

satisfy Egs. (8).
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The proof of this lemma is simply done by substitution.
Lemma 2 V¢, Vp; € C (j=1,2,---,N),
t = det(AL(t)By)
n
= > [T @i -pi)?]]cri,
1< <ia<+<in <N \1<k<<n - 5=l

gives a solution to the bilinear equation in Lem. 1. Here

. er, o oy Lp g
2 n—

aapi c2ph ot CNPN L ko o P
Anlt) = A ; B, = Lo
erpttnl pt+n . 1 pv Pk - PN

Proof. The Jacobi identity for an arbitrary (n + 1) x (n + 1) matrix M is given as
1,n+1 ‘ n 1
MM = MM~ MMy,

where Mj denotes a minor of order n obtained from M by striking out raw ¢ and column j, and
M“’]; denotes a minor of order n — 1 obtained by striking out raws 41,2 and columns j1, j2-
When we fake M = (A, 41(t = 1)Bpy1), the Jacobi 1dent1ty turns into the bilinear equation in
Lem. 1 with 71, = 0. Another boundary condition 73, = 0 comes from the fact that the rank
of (An4+1(t —1)Byy1)is V. Furthermore, since

41 N t+n—1
N lp; ZL— Clpl T Z; \} Cipz
t+1 t+2 1 t4+n
Z =1 Clpz ZL‘_ c’lpz e i=1 clp[,
(An(t)Bn) = . . ’
’ t+n—1 N t+n Cthon—1
Zz—l CiP; i=1 CiP; Zz 1 GiP;
we have
R 1
Czlpzl 'L>‘pt$1 . Ctlnfz,éi?l
N N N
) CiyD; . G, P;
¢ 9 ne1l Llpgl 12Piy in P,
o= D )L ) PuPh P, : : , :
i1=1149=1 in=1 ’
e o pitn-l tin-1 tn—1
zl-pll CLZpLZ clnpln

_ Diy Diy R £
= > > sgn(0)pi, 2P, (3) " P my (H Cisi”i> C e
© 1<i1<ia<<in<N © s=1 . 1 ’ ) : y 1
Py Ph o P
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— 3 (ﬁc-pt) Pia P 7 P
— i D . .

1< <<+ <in<N \s=1

n—1 n—1 n—1
Piy Py Py,
' n
— . i \2 ot
= > II ®w-p)*[Ler, |-
1< << <in KN \1<k<l<n s=1

Lemma 3 If nonnegative integers Pj,v; (7 = 1,2,---, N, 11 = 0) satisfy the inequalities:

P>P>--->Py2>1
Yi+r 2V +iP— (G —-1)Pn (j=1,2,---,N),

then, for ¥n, {€;}7—; c (1,2,3,---,N), we have

n n
Y UP+1) <Y (jPej +“;’e,-) :
j=1 J=1
Proof. To prove the lemma, it is sufficient to show

for Vk, (1 <k < N —1) and for V¢, (1 < ¢). However,

kPiye+Yeve — (kPrye-1 + Yrye-1)
> k(Pope— Pope1) + (k+€—1)Peyoq — (k+€—2)Peyy
= (0 = 1)(Prro-1 — Poye) + Pryo

> Pyye > 0.

Thus the inequality (#) holds. B
Now we shall prove theorem 1.

Proof of Th. 1 For the initial state Q0, E® (n = 1,2,...,N — 1), which satisfy the
conditions in the statement of the theorem, we set QX0 = Q°, E}® = EJ. We also define the
nonnegative integers P, v, (n=1,2,...,N, 5, = 0) by :

Py = Q:;,O: n(Prat1 = Pu) + (Vng1 — Vn) :'EZD'



54

Then P, 7, satisfy the assumption in Lem. 3 and, hence, they satisfy the inequalities in Lem. 3.
Then we choose

1 1
¢j =exp|=—%;|, pj = ejexp | ——Fj|,

where, ajy1 —1> a5 > 1, a5 ~ O(1). (As an example o = j) Then

t _
o, = cl«lffulo elogt! (9a)
n
- (t+j—1)P +1
1< <E)< <en<1 ng * ] e * /e (gb)
From Lem. 3, we find
pé = min (Z?:l 1Py + ’yg].) = Zij + v
=1
n
A =min (T, (G- DPy +7) =2 G~ DP+7
j=1

From Lem. 1, in the limit ¢ — +0, we have

1 t
= ph1+ pﬁf ~fh - oty
Eyf = phy+ it — b — ot

*t
n

On the other hand, we find from (9) that there exists a time T such that for ¢ > T

n
=Y (t+7— 1)Pyontj+ VN-ntj-
j=1

Substituﬁng this expression into QX, we have QX = Py_ny1 = Q¥_ny1 - (%). Since
=Q°, EX* = E?, from Prop. 1, these Q}f, EX give the solution to the CA equation (8)
Wlth the given initial conditions. Thus (%) means Qf, = Q%_,,1. This completes the proof. g

We have proved that the ”solitons” in the CA behave exactly like KdV solitons. We utilized
the inverse process of ultra-discretization for the proof. Since all the variables of a CA are
discrete, it is suitable for numerical analysis. In fact, the soliton-like feature of the CA is easily
found by numerical calculations. However, it is fairly difficult to prove such features of a CA for
we can not directly apply analytical methods to it because of its discrete nature. We believe,
as was demonstrated in this article, that ultra-discretization (or inverse ultra-discretization )
offers an effective tool for the analysis of CA’s.
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