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Classification by Iwahori subgroup and
local densities on hermitian forms

Yumiko HIRONAKA*

§1. Introduction

Let k£ be a nonarchimedean local field of characteristic 0, O the ring of integers in k, *
an involution on k with the fixed field kg, and ¢ the cardinality of the residue class field
of ky. We assume that the residual characteristic is not 2.

For a matrix A = (a;;) € M q(k), we set A* = (a};) € My (k). A matrix A € M, (k)
is called hermitian (with respect to *) if it satisfies A* = A. We denote by X, the set of
all nondegenerate hermitian matrices in GL,(k), and set X,(0) = X,, N M,(O).

The group GL,(k) acts on X,, by g- A =gAg* (g € GL,(k), A€ X,).

We choose the prime element @ of k for which @ = 7 € ky if the extension k/kq is
unramified (Case(U)) or w? = 7 € ky if k/ko is ramified (Case(R)).

First, we determine the classification of X,, under the action of Iwahori subgroup
I'={v= (1) € GLa(0) | vy € wO if i > j},

by giving a complete set of representatives of I'\ X, which will be denoted by R,, (The-
orem 1).

We also give an explicit formula of the volume «(Y’; T') of the stabilizersof each Y € R,
in I' (Theorem 2). Here '

¢~ Ny(Y;T) (Nd(Y; )=t {fy € I' mod (%) l v-Y =Y mod (wd)})
is stable for sufficiently large d, and we define
a(Y;T) = lim ¢ Ny(V;T).
—00
Next we consider the local density u(B, A) of B € X, by A € X,;, (m > n). Here

g " INY(B, A)  (Na(B, A) = §{T € My n(0) mod (r?) l T*AT = B mod (n)})

*Partly supported by Waseda University Grant for Special Research Projeéts(2000A-511). 1991
Mathematical Subject Classification. Primary 11E08; Secondary 11E95, 11F30.



144

is stable for sufficiently large d, and we define
u(B, A) = lim g~ N,(B, A).

It is easy to see that u(B, A) depends only on the GL,(O)-orbit containing B and the
GL,,(O)-orbit containing A. Further, since p(n"B,n"A) = ¢ u(B, A) for r € N, we
may assume that A and B are integral.

We give a completely explicit formula for p(B, A) in Theorem 3 for Case(U) and
Theorem 4 for Case(R).

The problem of integral representation of hermitian forms is a classical problem, as is
seen in works of Hermite ([He]) or H. Braun ([B]). But few results were known when it
is compared with the case of symmetric forms. The classification of GL,(O)-orbits of
X, is a classical result due to Jacobowitz ([Ja]). For an explicit expression of u(A, A),
Otremba gave some special cases ([O]) and the author gave it in general ([H1, I}).

For unramified case the author has given explicit expressions of local densities u(B, A)
by two methods including 2-adic case. In both methods the theory of spherical functions
on the space of nondegenerate hermitian forms plays an important role, and in the second
the theory of zeta functions on the space of hermitian forms is also used([H3], [H4]).

Comparing with above methods, the present one is elementary. The key step for the
calculation of the explicit formula is to take the Iwahori subgroup, in stead of GL,(O),
in a reformulation of local densities by using Gaussian sums (Proposition 3.1).

By the same method F. Sato and the author have determined a complete explicit
formula of local densities of symmetric forms ([SH]). For ramified hermitian case, the
situation takes a complicated aspect, which looks like a mixture of symmetric forms and
alternating forms. For the classification of I'\ X, we have to consider both symmetric
forms and alternating forms over finite rings. For an explicit expression of u(B, A), the
situation becomes complicated, since A and B have factors of type

0 w?e—l—l
( ___,CUQe—H 0 )
in general (cf. §3.3).

It seems to be many combinatorial identities among our explicit expressions of local
densities. In particular, for unramified hermitian case, we have three kinds of explicit
expressions for local densities of different appearances. It will be interesting to compare
and examine those formulas and draw out combinatorial identities among them, which
will be discussed elsewhere. We shall note some examples at the end of §3.

§2. Classification of I'\ X,

Let

S, = the symmetric group in n letters acting on the set I = {1,2,...,n}
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and we regard elements of &, as matrices, permutation matrices in GL,(Z).
In Case (U), put

R ={(0,€) € &, x Z”’ o =1, e = e, (Vi)},
and for each (o,e) € R,, set
T
Yse=0 .. O e X,.

’ O én

In case (R), fix a unit § € kg not contained in the image of the norm map Nk, and put

ot =1, € = e, € =€) (Vi) }

Rn:{(a,e,e)EanZ"x{1,5}n 2| e ifo(i) =14, ¢ =1ifo(i) #1

and for each (o,e,¢€) € Ry, set

61w 0

Ya,e,e :UJa,e € Xn,
O €, 7" '

where

; . . ) . -1 ifi<o(i) and 2 fe;
Ja,e = Dlag(]la o ,]n) Wlth Ji = { 1 0therw1ge) /r ¢

Hereafter we identify each element of R, with the corresponding matrix in X,,. Then
we have

Y

Theorem 1 The set R, forms a complete set of representatives of '\ X,.
Some more notation is needed to describe the explicit formula of a(Y;T") for each
Y € R,. For each (o,¢€) or (o,e,€) in R, let
o {e1<i<n}={N|0<i<h} with A<\ <...<M,
and put
v=Xx(€Z), vy=X - Xa(eN 1<i<h),

Set
alo) = t{ielfo@) =1, a(ko)= ZH%GLIU() i}

1

(o) = §(n~cl(0))=%ﬁ{i61|0(%')#2'},

h
to,{L}) = Y t{G,)elxL|i<j<o(), oj) <o(@)},

lO
T({IZ}) = Zﬁ{‘b] IOU UIl_l)XIlli<j}.

Then we have
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Theorem 2 In Case (U): ForY =Y,. € R,, we have
a(Y;T) = (g + 1) {q(l — g ?)}=g 1240,
In Case (R): ForY =Y, .. € Ry, we have
a(y; F) — 261(0’)(1 _ q—l)cz(a)q—%n(n~1)+d(a,e).

Here
h

D> vmj.

=0

l\DIr—t

d(o,e) = co(0) + T({L;}) + t(o, {L;}) +

For the proofs we refer to [H6, §2].

Remark 1 A complete set of representatives of GL,(O)\X, is given in the following
way by Jacobowitz([Ja]).

Case(U) : {Diag(r®,...,m) | e1<---<ex}(={(l,e) eRp| &1 < - <en});

Case(R) : {Yol -+ 1Yy € X, | Y; € RO, mi), Ao <+ < M, hgmy =n},

where
( {Diag(wd, o, en?) ‘ €= 1,(5} if A = 2d,
RO\ m) = { 0O @Y % T o om
—w* 0 —wr 0 ’ ’
e if 2/, 2 fm.

The explicit formula of a(Y; GL,(0)) = p(Y,Y) is also known ( [HI, I, (2.3)]).

Remark 2 For symmetric case (kK = kg), the corresponding data is the following (cf.
[SH, §2]).

Rn(S) = {(o,e €) €S, xZ"x {1,§}" o?=1, &= ea(z)(‘v’i), }

-—11fz;£a()

e O

Ya,e,e =0 C- € Xm

O €, T
CY(Y{,B & F) = 201(0)(1 _ q—l)cz(a)q‘%n(n—l)-{—ds(g,e)’

where

ds(o,€) = ca(o) + T({L;}) + t(o, {L}) + = Z vy (my + 1).
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§3. Explicit Expressions of local desnsities

§3.1. Reformulation of local densities

Let V,, be the set of matrices Y in M, (k) satisfying Y* = Y, and v be an additive
character of kg of conductor Oy,. For X,Y € V,,, set < X,Y >= Tr(XY'), which is an
element of kq. For S € V,,, and X € M,, ,(k), we denote S[X] = X*SX (€ V).

Let A be a congruence subgroup of GL,(0O). For Y € X,,, we define

a(Y;A) = lim ¢~ ™ Na(Y; ),

where
Ny(Y;A) =4 {y € Amod (r) | v-Y =Y mod (x%)}.
Proposition 3.1 For A € X,,, and B,Y € X,,,

gA(Ya B)g(Y, A)
2 a(Y; A) '

u(B,A) =
YEA\Xn

Here
G, 4) = [ W<V AX] )X,
Gu(Y,B) = [ w(<Y,~Bly] >)dv,

where dvy is the Haar measure on M,(O) normalized by [y, (o) dy = 1.

By Proposition 3.1, the calculation of the local density p(B,A) is reduced to the
following problems :

(i) Take a suitable A and classify A\X,,

(ii) For each representative Y of A\X,, calculate a(Y;A), G(Y, A), and G (Y, B), and
arrange them into a finite sum.

The calculation of G(Y, A) is easy in general.

When A = GL,(0)(= K, say), the classification of K\ X, and the value of a(Y; K) = .
p(Y,Y) are known (§2 Remark 1). The calculation of Gk (Y, B) for Case (U) has been
done by using spherical functions and functional equations of local zeta functions on the
space of unramified hermitian forms, and we have an explicit formula of local densities
(B, A) (cf. [H4]). For Case (R), it seems to be difficult to follow a similar line to the
unramified case.

Very similar formula to Proposition 3.1 with A = K has been used to obtain a
denominator of the power series ’

S B AXT (A€ Xn(0), B € X,(0)),

r=0
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by an suitable estimate of Gx (Y, n"B) (cf. [H2]).

When we take the Iwahori subgroup I for A, the classification of I'\ X, and calculation
of a(Y;T") have been done in §2, we can calculate Gr(Y, B), and we obtain an explicit
formula of local densities p(B, A) which we shall give below. For details see [H6].

§3.2. Case (V)
We give the explicit formula of u(B, A) for Case(U). It suffices to give for A and B in
the following form

A= ()L L(7*) € Xpn(0), B=(xB)L.. . L(xP") € X,(0).
We set, for 0 € G with 0% =1,

0 ifk <t k<o(d),
Coik =13 1 ifi<k<o(i)oro(i)<k<i,
2 ifi<k, o(i) <k.

Proposition 3.2 LetY =Y, € R, and A € X,, and B € X,, be as above.
(i) We have

G(Y,A) = (—9)*®  with a(e,A) =33 min{0,e; + A;}.
i=1 k=1
(ii) The character sum Gr(Y, B) vanishes unless

—Bi—1 ifo@d) <i .
e > { _B, if oi) > i (Vi e I). (3.1)

When the condition (3.1) above is satisfied, we have

Gr(Y, B) = (1 — g7%)220)gn(n=U(—g)f@eB) T I*(e; + By),

1<ikn
o(i)=1

where '
f(07 €, B) = ?:1 22:1 m1n{0, e; + Bk: + ga,i,k},

— 1—q72 ifA>0
I*()\): -1 . ‘
1+¢ ifA=-1

For each 0 € G, with ¢® =1 and a partition I = I,UI;U---UI, into disjoint o-stable
subsets, we set

b(o,B) = min[{B;| i€, o(i) >} U{B;+1|i€l, o(i) < i},

Eia(0,A,B) = (—¢)" [] 6in (0<1<h, A€Z),

i€l}
o(i)=1
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where

Pt = ,Ol,,\(U, A, B) =1m Z min{ov A+ Ak:} + Z Z min{o) A+ Bk + gcr,i,k})

k=1 t€l; k=1

[ 1-q? fA+B;>0
= o) ={ 110 TR EY,

Then the explicit formula of local density u(B, A) in Case (U) is given as follows.
Theorem 3 Let m > n and A € X,,(O) and B € X,(O) be as above. Then we have
u(B, A)

v eile) { NG L) 2t
= Z -(1+q 1) cl()(q 1(1_q 2))2 X Z q2({11}) 2t( a{Iz})

I=IgU--UI},

h+1 1— g2 c1(k;o) _27=k+1 m? _ k—1
« S ARG T s (St s [T Siasesn (03 A, B).
k=0 M=kl —g™™) {7} 1=0

Here the summation with respect to I = IyU---U I}, is taken over all partitions of I into
disjoint o-stable subsets, the summation with respect to {v} for k > 1 is taken over the
finite set

{wovn,.. 1) €ZX N = (0, B) <o+ 1+ +u < -1 (0<I<k-1)},

and if k = 0, we understand the summation with respect to {v} to be equal to 1.

§3.3. Case (R)
We give the explicit formula p(B, A) for Case(R). It suffices to give for A and B in
the following form

0 w2b1+1 0 w2bs+l
A= (Ul'/ral)J— T —L(urﬂ'ar)—j- ( — g2l 0 ) 1L ( —g2bits 0 € Xm(O),

2d;+1 2dy+1
B=(nr)L--L(vre) L 0. " Lol o € X,(0),
—w 0 —w 0

where u;,v; € O (1 <9<, 1 <5 <t). Set

A 2ak lkaT
Tl 21 ifk=r+2ork=t+2j—1,

By = . :
2d;+1 ifk=t+2jork=t+2j—1.
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a(d) = aXA) ={k|1<k<r XA+ A4, <0},

Bi(A) = Bi(A B)

f 1 <k <min{i—1,¢} Udk min{i, t} <k <t
A+ B, <0 A+ B, < —2 )

For o € G, with 02 =1, we set
(o) = c(o,B)=t{iel|o(i)=i>1t},

1 ifk<ik<o(i)
2 ifi<k<o(i), oro(i)<k<i
3 ifi<k,o@i) <k

 oie =

Proposition 3.3 LetY =Y,,.. € R,, and A € X,, and B € X,, be as above.
(i) We have

g,y =¢e T 11 (=) 7 (F2%)e,

1<i<n k€a(e;,A) b
o(i)=t
where

n

Z Z min{O, e; + Ag + 1}.
k=1

=1k

N)Ir—l

(ii) The character sum Gr(Y, B) vanishes unless

—B; -1 ifi<o(i), 2i —t wheni=o(i) — 1>t

orit=o0(i) >t 2ji—t
—B; =2 ifo(i) <i, 2fi —t wheni=o0(i) >t
ori=o0(t)—1>¢ 2fi—t

When the condition (3.2) above is satisfied, we have

gr(}/, B) — (1 . q—1)2cz(a)+c’1’(a) . (__1 + q—l)—-é(a,e,B) . q—ﬁw-{-f(a,e,B)
1 e;+Bg
— 2 i'U
x I[ I*(5 eZ+B —€v;) - [] II (—) (6 k)w,
1<i<t 1<i<n k€pBi(ei,B) p b

o(i)=i o(i)=i
where

6(o,e,B) = t{i|t<i=o0()—1, 2fi—t, e;+ B; = -2},
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1> 1 .
flo,e,B) = =>"> min{0,e; + By + &%} — = >, min{0,e; + B; + 1},
2 3= 2 1(53‘51;

1—-qt fA>0
I"(\m) = q"%(f)w4q‘1 ifA=—
0 A< —2

For each 0 € G,, with 02 = 1 and a partition I = [yUI; U---UI, into disjoint o-stable
subsets, we set .

h
ci(k;o) = éﬁ{iéhl o(i) =i <t},

b(0,B) = min[{B;+1|i€l, i<o(i), 2i—tifi=o(i)—1>1t}
U{B;+1|i€l, i=0(i) >t 2ji—1t}
U{Bi+2|i€l, o(i)<i, 2fi—tifi=0() >t}
U{Bi+2|icl, i=a(i)—1, 2fi—t}],

El,A(U,A,B) = (”1-’1-(1 6z>\, g - H 9”\

i€l
o(t)=t
Here
61’)\ = (51’,\(0, )—ﬂ{’LEIll’L“‘O'()—].>t 212—25 A+ B; = },
px = pia(o, A, B) me{O /\+Ak+1}+222m1n{0 A+ By, +&sin}
k=1 i€l; k=1
1
) > min{O,)\+Bi+1},
1€l
1=0 (1)<t

’

[m(x)w,«»a]
2

kéa() KEBN)
0 if 2 (X)) +#8:(\) and i > ¢, ori <t, A+ B; >0
1 if 2|fa(X) + 6;(A) and 7 > ¢
o | 1—a  if2fa(X) +46,()) and i <t, A+ B; >0
—q7! if 2)fo(N) + #6:()) and 5 < ¢, A+ B; = —2
g <——L) £ 2 flo(A) + 16:(\) and § < t, A+ B; = —2
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where [ ] is the Gaussian symbol. Then the explicit formula of local density u(B, A) in
Case (R) is given as follows.
Theorem 4 Let m > n and A € X,,(O) and B € X,(O) be as above. Then we have
u(B, A)
= Z 97e10) . (1 — g7t)el)+ei(0) . gmealo) 3 g~ TWEH UL}
I=IgU---UIly

UEG n
g2=1

htl gci(ko) | (1 — g—1)ci (ko) . mi—lZ’; m? e k-1

x Z ( z ) _mg 2 2=k 9 Z qu:Ol v(mi-mf) H Eivotin (0, A, B).
k=0 (1 —g™™) (VI i=0

Here the summation with respect to I = Iy U---U I} is taken over all partitions of I into
disjoint o-stable subsets, the summation with respect to {v}y for k > 1 is taken over the
finite set

{(Vo,z/l,...,z/k_l)EZxNk‘l] —b(o,By <+ +-+y < -1 (USZSk—l)},

and if k = 0, we understand the summation with respect to {v}x to be equal to 1.

§3.4. An application
As an application, we consider the following polynomial in X:

uw(X; B, A) = u(B, A(g)),

where
A<g>=AL(fglOg) (920), and X=1(0/m)".

In the case of symmetric forms, a similar polynomial has been introduced by Kudla and
plays an important role in arithmetic of Eisenstein series ([Ku]).

Corollary 3.4 (i) Case (U) : With the same notation as in Theorem 3, we have

WXGBA) = 3 (L4q )0 . (1— g2 ol F grh-2uein)
€S I=IgU---Uly
g2=1

h+1 (1 _ q—2)61(k;a) g Zf‘:w m;

) (qu;: v (mg—m?)

X
k=0 Tk (1 —q ™ ) {v}
k—1 o1

X H Sl o+t (0, By A)) X Do ot tulm
=0

In particular, the degree of u(X; B, A) in X is equal to n+ ord.(det B). When {B;} has
distinct values co > ¢, > - -+ > ¢ with multiplicity n; (0 <1 < h), the leading coefficient
18

g Timonitim o (_g)Sizo(—Emi(m ) T mmin{0, A1+ 0]y miny (e —ar+D)
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where vg = —cg— 1 and v, = ¢y — ¢ for 1 > 1.

(ii) Case (R) : With the same notation as in Theorem 4, we have

WX B A) = 3 2700 (1 - g EOHEE) g Y i)t
o€ n I=IgU---Uly
o2=1

h+1 261(k;0) . (1 —_— q_l)cll(k;g) . qmz_%Z;l:k-i-l m12 1 k—1

) (qg 2o v(mi-m?)

X

k=0 H?:k (1 - q_mg) ap
k—1 —1 g(cr(o)—ci(k;o)) k—1

X H El,y0+...+yl (O', B, A)) (T) « X Za=0 !V0+-..+l/l[nl,
=0

in particular, the degree of u(X; B, A) in X is equal to 2n + ordy(det B).

§3.5. Some identities

It seems to be many conbinatorial identities among our formulas of local densities.
Here we give some examples. '

For Case (U), by the explicit formula in [H3], we have

n—1

p(ln, A) = T (1 = (=¢7)"7),
i=0
where lp = ${i| 1<14i<m, 4, =0}. Comparing it with the formula induced from
Theorem 3, we obtain the following identities with indeterminate X

X27'({Ii})+2t(a,{Ii})+Z;L=1 m2

T (1-X)a@ (X1 - X)) Y : Tt
eSS I=IgU---UI}, Hl:0(1 - X Z)
02:1n og—stable

and forawith0<a <n-—1,

XD+ LD+, m (X )n(To)+noa

> (=X (xX(1-x)" 3 — __xm
0'0626:1" o—stable,o|z,=1d

where ng = Iy and n(lp) = Yieg, @
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