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81. Introduction

Let K = Q[v/ D] be a real quadratic extension of discriminant D > 0. Hecke
(in 1918) [He] was the first to introduce the notion of a Gréssencharakter
on ideals of K. Actually, Hecke defined Grossencharakters for an arbitrary
algebraic number field, but we shall not need this here. A Grossencharakter
1 is defined on principal fractional ideals (8) of K by

wik
log e

W) = |5

Here B’ is the image of 8 under the non-trivial automorphism of K/Q and
€ > 1 is a fundamental unit of Ok, the ring of integers of K. (Note that
¥((B)) is independent of the generator 8.) Then % is extended to all ideals j
as follows: If j* = (), define %(j) to be an A*® root of ¥((8)) so that
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Let b be a fractional ideal of K. The Hecke L-function with Grossencharakter

1) associated to the ideal class A of b~! is defined to be

L(s, 9, A) = Z P (a)

acA (Na)s
(Nb)* ~ ¥((B))
9(b) O%g, N(B) |+

where N denotes the norm from K to Q. Hecke [He] then showed that
L(s,%,A) has a meromorphic continuation to all s with at most a simple
pole at s = 1 and satisfies a functional equation in s — 1 — s.

Siegel [Si] found another proof of the functional equation by considering
the hyperbolic Fourier expansion of the real analytic Eisenstein series

E(z,s) = Z Im(7yz)°.
Y€l \T

for the full modular group I' = SLy(Z). Here

e {(3 1) mes)

is the stabilizer of the cusp co.
Let f(2z) = 3,51 an€®™™ be a weight two cuspform for I'¢(/N), normalized
so that a; = 1. Define the modular symbol

(. £) = —2mi / " i (2)dz

for vy € Ty(N) and 7 € H* = HU QU {ico}, where H denotes the upper
half plane. Note that the modular symbol does not depend on the choice of
7 € H*, and by writing

<< o ) ,f> =i | f(2)de

we may extend the definition of the modular symbol to matrices which are
not necessarily in T'o(V).
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In a series of papers ([Gol],[Go2],[0’S],[D-O’S]) the Eisenstein series twisted
by modular symbols were introduced and studied. These Eisenstein series
are defined by

Ei(z,5)= > (v, f)Im(o;'72)",

~eT\T

where a € Q U {ico} is a cusp of I' = I'o(NV),
I'o={y€Tlo(N):vya=a}

is the stabilizer of a in I, and o, € SL2(R) is uniquely determined by the
conditions
aa_la = 00, aa—lI‘aaa =I.

The E?(z, s) are not automorphic, but for all v € I', they satisfy the relation
Ei(vz,8) = Ej(2,8) — (7, f)Ea(z, 5),

where
E(ss)= Y Im(o;'y2)
YEL AT
is the ordinary real analytic Eisenstein series for I" associated to the cusp a.
The Eisenstein series E,(z, s) has a meromorphic continuation in s to the
entire complex plane and the column vector

E(z,8) = Y(Eqy(2,8), Bz, ), ...)

(with the a; running over all inequivalent cusps) satisfies the functional equa-
tion

E(z,8) = (s)E(2,1 — 3).

If I'o(N) has r inequivalent cusps, then the so-called scattering matriz ®(s)
is an 7 X r matrix with entries @, indexed by pairs of cusps of I'o(IV).
These entries may be given explicitly in terms of divisor sums and Gamma
functions, see e.g. [Hej]. Similar properties hold for E}(z,s). In particular,
E%(z,s) has a meromorphic continuation to C and the column vector

E*(z,8) = t(E:1 (2,3), E:2(z7 $) )

satisfies

E*(z,8) = ®(s)E* (2,1 — s) + D*(5)€(2,1 — ) (1)



where again, ®*(s) is an r X r matrix with entries ¢}, indexed by pairs of
cusps of ['o(NV). The functional equation (1) was first established in [O’S]. In
O’Sullivan’s paper, the new scattering matrix ®*(s) was given as an infinite
sum over double cosets. Using the results developed in Section 4 of this
paper, we show

Theorem 1. Let ® and ®* be as in (1). Then
¢:b(3) = Tup Pas(s),

where

b
Top = 27rz'/ fw)dw.
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This theorem was established by the first author in collaboration with O’Sullivan,

and we thank him for allowing us to include it here.

Following Siegel [Si] we will show that it is possible to obtain the hyper-
bolic Fourier expansion of E*(z, s) which in turn leads to a new type of zeta
function twisted by a modular symbol. We now describe the zeta functions
which arise.

Let

be a hyperbolic matrix in I'g(N), i.e., |& + §| > 2. The two fixed points of p,

w_ﬂ+\/(a+5)2—4 w,_ﬁ—\/(a+6)2—4
B 2y ’ 2y

lie in the real quadratic field K = Qv/D], D = (a + §)? — 4. We let € and
e ! be the two eigenvalues of p. We make the following assumptions:

A1: The level N is squarefree.
A2: The eigenvalue € is a fundamental unit of O and € > 1.

A3: The modular symbol (p, f) = 0.

The first two assumptions may be relaxed at the expense of some added

complications. The third assumption is essential for the hyperbolic Fourier
expansion of section 5.
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To state our main result, we introduce some more notation. Since we have
assumed N is squarefree, inequivalent cusps of I' correspond to the divisors
of N. For each divisor v of N, with corresponding cusp a ~ 1/v, we denote
by J. the fractional ideal of K generated by 1 and vw,

={cvw+d:cd e Z}.

For j = pw + q € K with p,q € Q we define 7/ = pw’ + q. For cw + d an
integer in K, we define

100

(cw +d, f) = <( z 2 ) ,f> = —2mi Flw)dw.

—d/c

Let xg (") denote the trivial Dlrlchlet character mod v and extend xg ) to OK

by defining x{" (cw + d) = x{"(d). Fix an integer n. Associated to ) w
have the Grossencharakter ¢ defined on principal ideals of Ok by
cw+d ~ o

((ew +d)) = x5 (d) | ———

The principal object of study in this paper is the L-function L(s, )
which is defined as a Dirichlet series

Lys, %)= > G H9((6)MN),

0#£(5)C3a

where the sum is taken over all non-zero principal ideals contained in J,. We
view L%(s, ) as a twist, by the modular symbol (-, f), of the classical Hecke

L-function
Lo(s,9) = > (N)™*9((4)).
0#(j)CJa
Let , )
o L) T )
Define

G (o) DV = ) )

L,(s, ¢
2loge L(2s, x{”) o(:¥)

5a(37 ¢) =
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and
. Nw—w")/v)™* - .
£:(5,) = Ga(s );lo(ge e S)/X{,)) T La(s,) + L (s, )]
Let
A'(s,9) = "(--,&6(5,9), 7+ )a
and

A(S,’LI)) = t(' e 7&1(37 ¥), - ')a

be the associated column vectors of L-functions.

Theorem 2. Assume A1-A3. Then the column vector L-functions A, A*
have an analytic continuation to the complex plane and satisfy the functional
equation

A(s,9) = @(s)A"(1 — 5,9) + &*(s)A(1 — 5,9),

where ®(s) (resp. ®*(s)) is the scattering matriz for £(z, s) (resp. £*(z,s)).
Moreover, for n # 0, L%(s,v) has a simple pole at s = 1 with residue given

by

N(’UJ ’LUI)L(Q X(v)) 1 lo"”? d’f‘
v Vol(To(N)\H) / Fa(r™"(ir))eee

. = 1 —w
T\l —u

and Fy(z) = 2mi [ f(w)dw, the antiderivative of f.

with

§2. Rankin-Selberg L-functions

We repeat and elaborate some of the definitions given in the previous section.
Define the Eisenstein series

Ey(z,s) = Z Im(o;  y2)°

YET\T

and its derivative,
, 0
E (z,8) = y—-Z:Ea(z, s)

~ 1 2
- ¥ > Im(aa‘l’yz)s—-”—J.(U“_l%Z)2
2 ,761'10\1'\ ’] (Uu e Z)I



where j(v, z) = cz + d. The Eisenstein series have a Fourier expansion given

by v

Ea(0b2,8) = 8asy® + Gan ()" ° + D _ das(n, 5)Wa(n2)
n#0

where W,(2) is the Whittaker function

Wi(z) = F(f) 1 (2my)e’™,

o0
d
K(y) = %/ e~ bty
0

u

and

is the Bessel function. The matrix
®(s) = (das(s))
is called the scattering matrix of the Eisenstein series; it is the matrix ap-

pearing in the functional equation of Section 1.

a4 Z € SLy(R), we define the slash

operator |, of weight k operating on holomorphic functions f : H — C by

Fix an integer £ > 0. For 0 =

flo(2) = (ad — be)*?(cz + d)7* f (Zj::;) )

Let f be a holomorphic weight two cusp form for I" with Fourier expansion
Floa(2) = D fa(n)e(n2)
1

at the cusp a. Let
Fu(z) = 2mi / f(w)dw

We define the Eisenstein series twisted by a modular symbol

Ei(z,5)= Y (v,/)Im(o; v2)"

7era\r
and the automorphic function

Ga(2,8) = Ei(z,8) — Fy(2)Eq(z, 5).

206
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It follows that
Go(z,8) = — Z Fy(v2)Im(o; ty2)5.

YT\

We compute the Petersson inner product (fE!(-,s)Im(-), ;). Here z =
x+1y € H

(fEL(:, 9)Im(-), n;)

— [ @B o))

T'\H Yy
_ s Aot SO | da dy
-7 2 /P\Hf( R O T o T R

YET\T

- oo 1 d
= 5[ [ @ maial

iD(s+ % +ir))T(s+ L1 —iry)
= 3 Lu ’ ’
5 m9225H1T(5) (s, f @)

where

Ly(s, f®mn) = Z fﬂ(%l}(n).

n>1

The vector Eisenstein series satisfies the functional equation
E(z,8) = ®(s)€(2,1 — 9)
and after applying y-Z, we also obtain
E'(z,8) = ®(s)E' (2,1 — 3).

Similarly, define the column vector of convolution L-functions L(s, f ® 7).
Then the completed L-function

L(s+Li+4+ir))I'(s+3

A(Sa f X nj) = 7rs223+11-\(8)

—" (s, f @)
satisfies the functional equation

A(S7f 2y nj) = Q(S)A(l - 87f & 771‘)-



This follows immediately from the representation

Mo(s, f © 75) = S(FEL(, m(), )

and the functional equation for the Eisenstein series.
In the same way, we may show that

(P B 9)mC), Bl +ir)

P(s+2i+ir)I(s+ 3 —ir) _
= 22T (3) Ly(s, f ® Eyp(5 +ir)),

where we have defined

(n, 3 +1ir)
ns '

Lu(s7 f ® Eb(% + Z’I‘)) = Z fa(n)¢ba

n>1

As before, define the column vector of L-functions L(s, f ® Ep(3 + ir)) and

the completed L-function by

D(s+i+ir)D(s+ 5 —ir)
7r322s+1]_"(s)

A(s, f ® Ee(3 +1ir)) == L(s, f ® By(} +ir)).

This satisfies the functional equation

A(s, f ® By(1/2 +ir)) = B(s)A(L — s, f ® By(1/2 +ir)).

§3. A Functional Equation for G(z, s)

Let 17,72, ... be an orthonormal basis of Maass cusp forms with Fourier ex-
pansions given by

15(0az) = Y _ baj(n)V/In|yKir, (27|nly)e(nz).

n#0

Here, \; =1/ 4+’I‘J2~ denotes the eigenvalue of 7;. The Selberg spectral decom-
position says that every g € £2(I'\H) which is orthogonal to the constants
has the representation

(e o]

o) =3 (omm() + =3 [ (0 Eule 1/2 4+ i) Bulz 1/2 + ir)ar

=1
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We will use the Selberg spectral decomposition to obtain the meromorphic
continuation and functional equation for the Eisenstein series formed with
modular symbols.

Recall the definitions

Fu(e) = 2mi | " fw)dw

and

Ga(z,8) = Ei(z,8) — Fu(2)Eqs(z2, )
= — Z Fy(v2)Im(o;y2)5.

YETa\T
After a change of variables, we get
fa(n) anina
| Fy(o42) = ; — e )
We define the column vector -
G(z,5) = (Ga(2,8))a = £7(2,5) — F(2)€(z, 5),

where F is the diagonal matrix diag(. .., Fy(z),...) indexed by inequivalent
cusps a. As in [Go2] one may compute the inner products of G4(z2, s) with the
Maass cusp forms and the Eisenstein series on the line Re(s) = 1/2. Doing
this, we find

F(S -+ % — z'rj)I‘(s + % + Z.7"‘7')1;&7(('3) f & 77])
me122-1T (5) (5 — § — ir;)(s — § +iry)

(Ga(s8), my) =

and

T(s+ 1 —ir)T(s+ 3 +ir)La(s, f ® Eo(5 + 7))
ms=1225-1D(s) (s — & —ir)(s — 5 + ir)

(Ga(+,9), Bo(,3 +1r)) =

In vector notation

(665 ) = o T e )

§—ir)(s — 3 +iry)

209
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. A(s, f ® By(} +ir)
. 1 S & Epls + ir
. E.(- L = ! 2 . 3
(G(r9), Bl 3 +ir)) 4r (s — L —ir)(s — 2 +1ir) (3)
Now, use the Selberg spectral decomposition to write G(-, s) as a series ex-
pansion with coeflicients given by the above inner products. Then from the
functional equation for the Rankin-Selberg L-functions together with the fact
that the denominators of (2) and (3) are invariant under s — 1—s, we deduce

that

G(z,s) = ®(s)G (2,1 — s).
Note that all of the formal manipulations of this section are justified because
Ga(z, s) is square integrable for all s.

84. Proof of Theorem 1

The functional equation for G(z, s) given in section 4 may be combined with
the functional equation given in [O’S] to give a very simple formula for the
entries of ®*. The equation in [O’S] is

E*(z,8) = ®(s)E (2,1 — 5) + ®*(5)E(2,1 — 3).

Writing
E*(z,8) =G(z,8) + F(2)E(z, s)
and using the functional equation for G(z, s) we get
®*(1 - 5)E(2,5) = F(2)E(2,1 — s) — ®(1 — s)F(2)E(z, 5). (4)

Now replace z by oyz and compare the constant term in the Fourier
coefficients of both sides. For this we need,

constant term of E,(0p2,8) = Jap¥® + bap(s)y’™*
constant term of Fy(0p2z) = Top

The constant term of F,(0p2) is computed as follows:

Fy(opz) = 27rz'/abz f(w)dw

= 2mi /b f(w)dw + 27i /abz f(w)dw
a b

T 3 B

n>1



Let a;, az, ... denote the inequivalent cusps of I'y(N). Then the constant
term of the 5% column on the left side of (4) is

Z ¢:ja1’(1 - 3)[5%’53/3 + ¢aib(s)y1—s]7

and the j™ column on the right side of (4) is
Tajb¢ujb(1 - S)ZIS - Z fz)ajai(s)Tuistaib(s)yl—s-

Equating the terms involving y*, we get
Ga,6(1 — 8)y" = Tu6da;6(1 — 5)y°".
Hence, for any two cusps a, b,
a6(8) = TapPas(s),

as was to be shown.

§5. The Hyperbolic Fourier Expansion for £*(z, s)

Let p be a fixed hyperbolic matrix in I'y(NV). We recall the assumptions made
in the introduction:

A1: The level N is squarefree.
A2: The eigenvalues €, ¢! are fundamental units in Ox and € > 1.
A3: The modular symbol (p, f) = 0.

We will compute the hyperbolic Fourier expansion of E*(z, s) with respect
to p. By A3, EX(pz,s) = Ei(z,s).
Let w, w' be the two real fixed points of p. Define

(1 ~w
k=11 _u )

Then

211



The function E*(k~'2, s) is invariant under z — €°z. Therefore, on the pos-
itive imaginary axis (i.e. choosing z = ir), Ei(k 'z, s) has the Fourier ex-

pansion
;nlogr

Ei(k7M(ir),s) = ) _ ga(n, s)e™ Tos< .

The Fourier coefficients are given by

1 62 -nlo rd’r‘
* — E* -1/ =M on e
i8) = o [ Bl i), ) S

A set of inequivalent cusps for T'y(V) is given by {1/v : v|N}. The scaling
matrix o, for the cusp a ~ 1/v is given by

O = ( % : ) € SLy(R).

A direct computation shows that

(ro/N)(w —w') ™
[(av — c)w' + (bv — d)]2r2 + [(av — )w + (bv — d)]?

Im (ao“lfyrz_l(i'r)) =

As ( Z Z ) ranges over elements in [',\I', the pairs (av — ¢,bv — d) range

over distinct pairs of integers (c, d) such that ¢ = 0(v) and (c,d) = 1.
Furthemore, we observe that for

the modular symbol

() - (% 2))
= 2mi /1 /__” f(2)dz

by—

= 2mi f(2)dz + 27i /——

00

d
o f(z)dz
1/v 100

- T“°°+<(av——c bv——d)’f>'

212



(Recall our convention from the introduction for defining the modular symbol
(v, f) when = is not in I'y(NV).)
Therefore,
By (k™ (ir), s)
= > () Im(ogtysT i)

YETa\I'o(NN)
* ok rv/N(w — w') s
2 [ o << L) f>] ((cw'+d>2r2+(cw+d>2>
. c=0(v)

We introduce the Mobius function p which satisfies
(1 (d)=1
Z ule) = { 0 otherwise
el(c,d)
to relax the condition (¢,d) = 1, and conclude that
By (k7H(ir),s) =

a0 5 ,[Tm+<(\2 ARG

(c,d)#0
¢=0(N)

r s
x ((cw’ +d)?r2 + (cw + d)2> ’

where x X( v) is the trivial character mod v. Therefore

se(ms) = (;%(;“X) f;’g)z > [Tm+<(z 2),f>] x(d) g,

(c,d)#0
¢=0(N)
where
Iy = / ¢ Z"Tl‘égf dr
e . \(cw' + d)2r2 + (cw + d)2

cw

S
. cw + d loge cw+d r nlogr d’f‘
= N(cw -+ d) § 5 ewz Toge —
cw' +d cul +4 r2 4+ 1 r
cw

213
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In the previous expression, N(cw + d) := (cw + d)(cw’ + d).
In the notation of the introduction,

. 7
Tn €2 I

log € 7
.ﬁ )
J

(v/N(w — w'))°

J
2L(2s,x)loge 7'

ga(’I’L, 3) =

> G XN

JEJarj#0

.1 -1
27 27
7 <7 T ° _pinlogr dr
- e log e .
it i r2+1 r
J J

We write the sum over non-zero integers in the ideal J, as a double sum over
principal ideals (j) contained in J, and generators of (j). Since € generates
the unit group, we have

win 621;
] T loge J
> G xGN) 7 /
j€3a T
Jj#0
—2(m+1)J_ s
= Z (N7)™*(J Z / . e i Bloge dr
’ ~2m 1L r2+1 r

(4)CJa,3#0 meZ

The inner sum over m divides the positive real axis into non-overlapping
intervals, thus the integral evaluates to

SN ] G0 L G Rt}

I'(s)

We conclude that

(v/N(w —w'))*
2L(2s,x)loge

__min

_~_7___ log e
, .

ga(n,s) =

Gn(s) D [Taoo+ (4, )IX(G)(N) ™

0£(7)CJa

A similar but simpler computation gives the hyperbolic Fourier coeffi-
cients of the ordinary Eisenstein series:

E (x7(ir),s) = Zga(n 5)e™ Togs |

with

T loge

_ (v/Nw =)’ s
9a(n, 8) = 2L(2s, x) loge )O;ﬁg;au ()~ j_
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86. Proof of Theorem 2

The proof of the first part of Theorem 2 now follows immediately from the
functional equation (1) and the results of the previous section. The hyper-
bolic Fourier coefficients g%(n, s) and g4(n, s) must satisfy (1) as well. But
these Fourier coeflicients are precisely the L-functions appearing in the The-
orem.

We now compute the residue of L}(s, %) at s = 1. It is known [O’S] that
E*(z, s) has a simple pole at s = 1 with residue given by

Fy(z)
Vol(To(N)\E)
Consequently,
Res;=193(n, 5) = 3 Toge Voll(Fo(N)\]I-]I) /: Fa(h:_l(z'r))e‘ﬁé"e %
But -
gan, ) = LN WD (1 (o, 0) + L5, ).

2loge L(2s,x)
Assume n # 0. In this case, L4(s, ) is entire [He]. Therefore,

v
2N(w — w')loge L(2,x)

Ress:lg: (n7 3) = . ResszlL:(s, 'd))

Solving for the residue of the twisted Grossencharakter L-function,
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