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Toric ideals and nonregular triangulations of
convex polytopes
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Introduction

Let A= {ay,...,a,} be a finite subset of Z% and suppose that A is contained in
a hyperplane which does not contain the origin. We may assume that rank(A) =
if we regard A as a matrix. (If not, we can delete suitable rows of A.) Let K
be a field and K[t,t7!] = K[t1,t7",...,t4,t;"] the Laurent polynomial ring in d
variables over K. Then, we write K[A] for the subalgebra of K[t,t~!] which is
generated by t21,...,t% over K. Here t* = 1'[?:1 t7 if a; = (q1,...,0q). Let
K[x] = Klz1,zs,...,2,] denote the polynomial ring in n variables over K and
m : K[x] — K][A] the surjective homomorphism of semigroup rings defined by
m(x;) = t% for all 1 < ¢ < n. We write I 4 for the kernel of 7 and call I4 the toric
ideal associated with the affine semigroup ring K[A].

Let P4 be the convex hull of A. A triangulation A of PA is a set of submmphces
of P4 which satisfies the following conditions:

(i) All vertices of each o € A belong to A,

(11) Pa= UUEA g,

(iii) If F is a face of 0 € A, then F € A;

(iv) If 01,09 € A, then o1 N oy is a face of both o7 and os.
One of the ways to represent a triangulation A of P4 is to consider the Stanley—
Reisner ideal In = (24 -+~ @i, ; {2y, 2} ¢ A) C K[x] of A. Here, we write
{a;,,...,a;,} for the polytope whose vertices are {a;,,...,a; }. If A is a “regular”
triangulation [G-K-Z], then an algebraic approach is known as follows:

Proposition 0.1 ([Stu, Theorem 8.3]). Let < be a term order on K[x|. Then, the
radical ideal \/in<(14) of the initial ideal in<(I4) of L4 is the Stanley—Reisner ideal
of a triangulation of Pa.

Triangulations discussed in Proposition 0.1 are called regular (or coherent). The
main purpose of this paper is to generalize Proposition 0.1 to nonregular tr1angula—
tions.

In Section 1, we study basic results on markings and circuits of toric ideals. A
binomial f € I4 is called circuz't if f is irreducible and has minimal support. Here,
the support of f = [Ti; 7" ~II}-, z} is defined by supp(f) = {z;; p; > 0 or ¢; > 0}.
Let C4 be the set of all circuits of 4. In order to give an algebraic approach to
nonregular triangulations, we consider a marking in(-) on Cly, i.e., for each binomial
f € C4,in(f) is one of the terms of f. We say that a marking in(-) is coherent if there
exists a term order < such that in(f) = in<(f) for all f € C4. Let in(C4) denote the
monomial ideal (in(f); f € C4). Proposition 1.4 says that y/in<(I4) = /in(Ca)
holds for any term order <. Hence, it turns out that, in Proposition 0.1, it is sufficient
to consider only the set of circuits C4 instead of I4. Note that in<(I4) # in<(C4)
in general. See Example 1.5.

In Section 2, we study the relation between triangulations and markings on C 4.
Theorem 2.1 guarantees that, given a triangulation A of P4, there exists a marking
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in(-) on Cy4 such that In = 4/in(C4). Thanks to Proposition 1.4, Theorem 2.1
generalizes Proposition 0.1. On the other hand, the converse of Theorem 2.1 is false
in general, i.e., there is a marking in(-) such that 1/in(C.4) is not the Stanley—Reisner
ideal of any triangulation of P4. See Example 2.2. However, we show that every
marking in(-) can be associated with the simplicial complex A, on the vertex set A.
See Proposition 2.3. If a marking in(-) satisfies that 1/in(C4) is the Stanley—Reisner
ideal of a triangulation of P4, then we call in(-) a geometric marking on C4. We
study a criterion for markings on C4 to be geometric markings. See Theorem 2.6.

In Section 3, we discuss flips of triangulations of P4. We say that a triangulation
A of P4 is supported on a circuit f = x*" —x¥" € Cy if the following two conditions
are satisfied:

(1) icsupp(pn{j} Ti & Ia for all j € supp(x“+);

(ii) For all monomials m € K[x] such that supp(m) N supp(x*") = @ and for all
1, j2 € supp(x¥"), we have m - icsupp(p)\(j1} Ti belongs to Ia if and only if
m - [Licsupp(f)\(jo} Ti Delongs to Ia.

If a triangulation A of P4 is supported on a circuit f € C4, then we can construct a
new triangulation by taking away all the simplices of the form supp(m)Usupp(f)\{i}
where i € supp(x*") and m € K[x] is a monomial with supp(m) N supp(f) = 0 and
adding the simplices of the form supp(m) U supp(f) \ {j} where j € supp(x* ) and
the same m. We call this operation a flip (or modification or bistellar operation)
along f. It is known [G-K-Z] that any two regular triangulations are connected by
finite flips. Using this fact, there are several algorithms which enumerate all regular
triangulations of a convex polytope. Consult [De], [G-K-Z] and [Rei] for the details
about flips. On the other hand, recently, it turns out [San] that there exists a convex
polytope having a (nonregular) triangulation which is supported on NO circuit. In
Theorem 3.3 and Theorem 3.4, we give an algebraic approach to flips.

A configuration A is called unimodular if all triangulations of P4 are unimodular.
It is known that A is unimodular if and only if both terms of any circuits of I4
are squarefree. Hence, (/in(Cy) = in(C4) if A is unimodular. Moreover, [Stu,
Proposition 8.11] says that, if A is unimodular, then C4 equals to the universal
Grobner basis Uy, i.e., C4 is a Grobner basis with respect to every term order.
In Theorem 2.6, we state that in(-) is a geometric marking if and only if every
monomial in K[x] can reduce to a monomial which does not belong to in(C,4) with
respect to in(-) modulo a subset of C4 by a suitable reduction if A is unimodular.
On the other hand, Corollary 3.5 guarantees that we know which circuits support a
triangulation if we compute S-polynomials of a subset of C 4 in unimodular case.

In Section 4, we apply these results to problems of polytopes arising from fi-
nite graphs. Recently, the following six properties on a configuration .4 have been
investigated by many papers on commutative algebra and combinatorics:

(i) A is unimodular;

(ii) P4 is compressed, i.e., the regular triangulation with respect to any reverse
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lexicographic order is unimodular;
- (iii) P4 possesses a unimodular regular triangulation;
(iv) P4 possesses a unimodular triangulation;
(v) P4 possesses a unimodular covering; :
~ (vi) P4 is normal i.e., the semigroup ring K[A4] is normal.

There is the hierarchy (i) = (ii) = (iii) = (iv) = (v) = (vi). However, the converse
of each of the five implications is false. :

Let G be a finite connected graph having no loop and no multiple edge on the
vertex set V(G) = {1,2,. ,d} and E(G) = {e1,e€a,...,e,} the set of edges of G.
If e = {¢,7} is an edge of G joining ¢ € V(G) with j € V(G), then we' define
p(e) € R? by p(e) = e; + e;. Here e; is the i-th unit coordinate vector in IR%. Let
Ac = {p(e) ; € € E(G)}. We set P for Pa, and call Py the edge polytope of G.
We set K[G] for K[Ag] and call K[G] the edge ring of G and set I for 14, and call
I the toric ideal of G. See also [O-H,|, [O-H,], [O-Hj] and [O-H,].
 Suppose that G has a vertex io of degree 2. Then, we can construct a new graph

G with d + 2 vertices and n + 2 edges by the following operation:
j 10 k J 17ty i3k
o—o—o = *—eo—o oo

€1 €2 . €1,1 €21 €12 €272

By using the results in section 1-3, we can define a bijection 1 from the set of all
triangulations of Pg to the set of all triangulations of P which preserves regularity,
unimodularity and flip connectivity. See Theorem 4.7 and Theorem 4.8.

In [O-H,], an edge polytope none of whose regular triangulations is unimodular
and having a unimodular triangulation obtained by one flip from a regular triangu-
lation was studied. However, any other polytope which has the same property seems
to be not known so far. In thls paper, we give an infinite family of edge polytopes
which have the same property. From Pg, in Example 4.1, we get an infinite family
of normal edge polytopes having the same property as Pal since G has five vertices
{v1,va,...,vs5} of degree 2. Let G (p1,ps,...ps) D€ the graph obtained from G; by apply-
ing the above operation p; — 1 times to the vertex v; for 1 <4 < 5. Gy, py,...0s) has
25> | p; vertices and 5+23°%_ p; edges. Thanks to Theorem 4.7 and Theorem 4.8,
we can, show that the edge polytope Pg(pl apg) 1S & DOTMal (0,1)-polytope none of
whose regular triangulations is unimodular and having a unimodular triangulation
obtained by one flip from a regular tnangulatlon of Pe, parps) See Theorem 4.9.

1 Markings and circuits

In this section, we study markings and circuits of toric ideals. Let A = {ai,...,a,}

be a finite subset of Z¢ and suppose that A'is contained in a hyperplane which does
not contain the origin. Let K be a field and K[t,t7!] = K[t;, 7 ,o ooy ta, t7Y] the

Laurent polynomial ring in d variables over K. Then, we write K[A] for the sub-
algebra of K[t,t™!] which is generated by t®1,...,t* over K. Here t® = H;l=1 t?j
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if a; = (o,...,a4). Let K[x] = K|[z1,Z,...,%,] denote the polynomial ring in n
variables over K and 7 : K[x] — K[A] the surjective homomorphism of semigroup
rings defined by 7(x;) = t* for all 1 < i < n. We write I4 for the kernel of m and
call 1,4 the toric ideal associated with the affine semigroup ring K[A]. It is known
that I4 is generated by homogeneous binomials. A binomial f € 14 is called circuit
if f is irreducible and has minimal support. Let C4 be the set of all circuits of I4.

Now, we consider the marking in(-) on Cy, i.e., for each binomial f € Cy, in(f)
is one of the terms of f. We say that a marking in(-) is coherent if there exists
a term order < such that in(f) = in<(f) for all f € C4. Let in(C4) denote the
monomial ideal (in(f); f € Ca). It is known [Stu, Theorem 3.12] that

Proposition 1.1. A marking in(-) on Ca is coherent if and only if every sequence
of reductions modulo C 4 with respect to in(-) terminates.

For a positive integer p, there are only finite monomials of degree p in K[x].
Since C 4 consists of homogeneous binomials, we immediately have the following:

Corollary 1.2. A marking in(-) on C4 is not coherent if and only if there exists
a monomial M € in(C,) such that there exists a sequence of reductions modulo C 4
from M to M with respect to in(-).

Let f = x""—x"" € K[x]. Then, we associate f with a vector u = u*—u- € Z™.
Note that f € I4 if and only if Au = 0. Here, we regard A as a matrix.

Lemma 1.3. Let < be a term order on K[x]. Let f = x*" —x"" € I4
with ing(f) = x**. Then, there exists a circuit g = x¥" —x¥" € Cy such that
supp(v*t) C supp(u®) and supp(v™) C supp(u~) with in(g) = x'".

Proof. Factoring out common variables of x4 and x¥~, we may assume that x"*
and x"  are relatively prime. Let £ be the minimum number of the cardinality of
support of the binomial in I4. Let r be the cardinality of the support of u.

If r = ¢, then there exists a circuit g = x¥* — x¥~ € Cy4 such that supp(v) =
supp(u). By changing the sign of v, we may assume that at least one of u;/v; is
positive. Let A = min(u;/v; > 0 ; ¢ € supp(v)). Then, the vector t = u — Av
satisfies that supp(t) C supp(u). By multiplying a suitable positive integer z, we
have an integer vector t’' = z -t € Z". Then, it follows that xt - xt” belongs to
I 4. Since the cardinality of the support of t’ is at most 7 — 1, we have t' = 0. Hence,
u = Av and it follows that X is a positive integer and that f = (x¥")* — (x¥7)\.
Thus, g satisfies the above condition.

We now use induction on r. Let h = x*" — x%7 € I4 be a circuit satisfying
supp(s) C supp(u). By changing the sign of s, we may assume that at least one
of u;/s; is positive. Let A = min(u;/s; > 0 ; ¢ € supp(s)). Then, the vector
t = u — )s satisfies that supp(t™) C supp(u*) and supp(t™) C supp(u~). Then,
the cardinality of the support of t is at most » — 1. By multiplying a suitable



positive mteger z, we have an integer vector t' = z -t € Z". Then, it follows that
h = xt' —x%" belongs to I4. By the hypothesis of induction, there exists a circuit
g =x"" —x¥" € I, such that supp(v*) C supp(t’+), supp(v™) C supp(t'”) and
supp(in<(g)) C supp(ing(h')). If m<(h’) = x*", then inL(g) = x¥" and g satisfies
the condition above. If inL(h') = x* |, then replacmg above h by g, we repeat the
same argument as above. Since u =1 / zt' 4 As and both 1/z and X are positive, it
follows that either in(h') = x*" or in4(h) = x** as desired. Q. E. D.

The following proposition directly follows from Lemma 1.3. Thanks to this
proposition, it turns out that, in Proposition 0.1 ([Stu, Theorem 8.3]), it is suf-
ficient to consider only the set of circuits C4 instead of I 4.

Proposition 1.4. Let Cy4 be the set of circuits of I4 and let < be a term order.
Then, we have \/in<(IA) = \/z'n<(CA).

However, note that in<(l4) # in<(C4) in general.

Example 1.5.  Let A = {(2,0,0,0),(1,1,0,0),(1,0,1,0),(0,1,0,1), (0,0,1, 1),
(0,0,0,2)} C Z*. Then, C4 = {z123 — z3z5, 122 — 2326, ToTs — T34} and I 4 =
(z14F — T3x6, T122 — T3%6, TaTs — T3T4, T1T4T5 — ToT3T6). Let = be the lexicographic
term order induced by z; >~ x9 > -+ > z5. Then, we can check that the ini-
tial ideal in, (I4) = (2123, 2128, Zo%5, T124%5) # (2123, T132, T2T5) = iny (Cy) and
\/in> (I4) = \/in> Ca) = (2124, T1T5, T2Ts5).

In the rest of this section, we discuss basm properties of circuits Wthh is 1mpor—
tant in the followmg sections.

Proposition 1.6. Let f = x" —x“ be a binomial in I 4. Then, there exists a
monomial M € K[x] and a positive integer m such that

)" = 6" = ([T 6™ = [T ™)

i=1 i=1
where each m; € IN, each xVit —xviT ¢ Cpandl<p<n-—d.
p

Proof. Factoring out common variables of x*" and x*~, we can find the monomial
M. Hence, we may assume that x*" and x% are relatively prime.

Let £ be the minimum number of the cardinality of support of the binomial in
I4. Let r be the cardinality of the support of u. Thanks to the proof of Lemma 1.3,
if 7 = £, then there exists a circuit x** —x¥~ € C 4 such that f = (x¥*)™ — (x )™
where m; € IN.

We now use induction on r. By virtue of Lemma 1.3, there exists a circuit
x"" — x¥~ such that supp(v*t) C supp(u*) and supp(v™) C supp(u™). Let A =

min(u;/v; > 0; i € supp(v)). Then, the vector t = u— Av satisfies that supp(t+) C
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supp(u*) and supp(t™) C supp(u~). By multiplying a suitable positive integer z,
we have an integer vector t' = z-t € Z". Then, it follows that x*" —x*"~ belongs to
I4. Since supp(t') # supp(u), the hypothesis of induction enables us to show that

there exists a positive integer m such that
(xt/+)m t/ H (Xv + m, . H (Xvi )m
=1

-+ = .
where each m; € IN, each xVi" — x¥i" € C4. Since mzu = mt’ + mzAv, we have

P p
_ (xv+)mzA ' H (xvi+)mi _ (Xv—)mz,\ ) H (Xvih)mi-
i=1 i=1

Finally, we must show that only p < n — d circuits are needed. Suppose that
p > n —d. Since each vector v; belongs to the (n — d)-dimensional vector space
{u € Q" ; Au = 0}, there exists a linear dependence ¥ ;c;n;v; = 0 where 0 <
n; € Nand § # J C {1,2,...,p}. Let N = min(m;/n; > 0; j € J). We
define the vector M = (my,mo,...,m,) — N(ny,ng,...,np) € QP where n; = 0
if 7 ¢ J. By multlplymg a su1table positive integer ¢, we have an integer vector
M =gq-M=(m/,mg,...,m,) € Z°. Then, the cardinality of supp(M’) is at
most p — 1 and

M) = I T )™

i€supp(M’) i€supp(M’)

as desired. Q. E. D.

A is called unimodular if all triangulations of P4 are unimodular. It is known
that A is unimodular if and only if both terms of any circuits of I4 are squarefree
If A is unimodular, then we immediately have the following:

Corollary 1.7. Let f = x" F o xuT € I4 where x"* and x* are relatively prime.
If A is unimodular, then we have

= [L)™ - [T e )™

i=1 i=1

where eachmlelN each x¥i" — xvi~ ECA and1<p<n—d
Proof Since both terms of every circuit of I 4 aré squarefree, in the proof of Proposi-
tion 1.6, A = min(u;/v; > 0 ; 4 € supp(v)) = min(Ju;| ;u;/v; > 0, i € supp(v)) € N

since each v; = 1. Hence, we have z = 1. Moreover, by the hypothesis of induction,
we may assume that m = 1. - Q. E.D.

Lemma 1.8. Let I,J C {1,2,...,n} with I # J and suppose that the equation

> aa; =) bja,

iel jeJ



holds, where 0 < a;,b; € Q. Then, there exists a circuit x¥ Tox e C4 such that
supp(x¥") C I and supp( ycJ.

Proof By mu1t1p1y1ng a suitable mteger to the equation above we have

> aia; = Z bia;

iel jeJ

where 0 < a;,0; € Z and Yicra; = Xjey b;. Hence, the homogeneous binomial

i1 Y3
[T - [T 27 #0

i€l geJ
belongs to I 4- Thanks to Lemma 1.3, there exists a circuit x*" — x¥~ € C4 such
that supp(v*) C I and supp(v™) C J. -~ Q. E.D.

2 ’I‘riangulatibns and markings

In this section, we study the relation between triangulations and markings on
Ca. If 0 is a convex polytope, then let V(o) denote the set of all vertices of o. We
often identify {ai,...,a,} with {1,...,n}. Thanks to Proposmon 1.4, the following
theorem generalizes [Stu ‘Theorem 8. 3]

Theorem 2.1. Let A be a triangulation of P4. Then, there exists a marking in(-)
on Cy such that In = 1/in(C4). In particular, A is regular if and only if there exists

a coherent marking in(-) on Ca such that In = 1/in(Cy).

Proof. Let a binomial f = x*" — x”_‘belong to I4. Then, we have

>, viai= Z' V58,

i€supp(v) j€supp(v™)

where 0 < v; € Z. Moreover, since I is homogeneous in the usual grading, we
have Zz'esupp(w) Vi = YVjesupp(v-) Vj- Hence, two polytopes supp(vt) and supp(v™)
intersect in their interior. Slnce A is & triangulation, either supp(v+) or supp( ~)is
a nonface of A, i.e., either x¥* or x? belongs to Ia.

We consider a markmg in(-) such that in(f) € I for each f € C4. Suppose
that o is a minimal nonface of A: Now, we choose a point YacV(o) @idi € 0 C Py
where 0 < a; € Q and 3, V(o) & = = 1. Since A is a triangulation, there exists a
simplex ¢’ € A such that oo K

S wa= Y ba 1)

a; €V (o) ajEV(J’)
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where 0 < b; € Q and X, ¢ b; = 1. Thanks to Lemma 1.8, there exists a circuit
f=x"" —x" € Cy4 such that supp(v*) C V(o) and supp(v™) C V(o'). Since
o' € A, we have x*~ ¢ I and x** € I5. Hence, supp(v*t) = V(o) and in(f) = xU".
Thus, we have In = {/in(C4). Moreover, by virtue of Proposition 1.4 and [Stu,
Theorem 8.3], A is regular if and only if there exists a coherent marking in(-) on

C 4 such that Ip = \/in(IA) = \/in(C'A). Q. E. D.

The converse of Theorem 2.1 is false in general, i.e., there is a marking in(-) such
that 1/in(C4) is not the Stanley-Reisner ideal of any triangulation of P4.

Example 2.2.  Let A = {(1,0,1,0,0),(1,0,0,1,0),(1,0,0,0,1),(0,1,1,0,0),
(O, 1,0, 1,0), (0, 1,0,0, 1)} C Zs. Then, C_A = {fl = T1T5 — Ty, f2 = T9Xg —
T3Ts, f3 = T3T4 — T1T6}. Now, we consider a noncoherent marking in(-) defined by

m(fl) = I1%s5, in(fz) = T9Zg and m(f;;) = T3X4. Then, \/ZTL(C_A) = (.’1311135, ToZg, .’L‘3$4).
Suppose that there exists a triangulation A of P4 with Ian = 1/in(C4). Then, the
set of vertices of maximal simplices in A is {{ai, a2, as}, {a1,as a4}, {ai1, a3, as},
{a1, a4, a6}, {22, a3, a5}, {a2, a4, a5}, {a3, a5, a6}, {a4, a5, a6} }. Since dim P4 = 3, this
is a contradiction. Thus, there exists no triangulation A of P4 with Ia = 1/in(Cy).

However, note that, geometrically, A in Example 2.2 is a simplicial complex on

‘the vertex set A. Let Ay, = {’PB cIR?:; BC A, [la,e5 i & /in(Ca) }

Proposition 2.3. Let in(-) be a marking on C4. Then, Ay, is a simplicial complex
on the verter set A such that Ia,, = /in(Cy).

Proof. If o € Ay, is not a subsimplex of P4, then there exists an affine dependence
on the vertices of o, i.e., there exist two disjoint subsets J; and J» of V(o) such that

Y aar= ) bia;

a; €1 aj€J2
where 0 < a;,b; € Q and ¥.cs, @i = Xgjes, bj = 1. Thanks to Lemma 1.8, there
exists a circuit f = x?" — x*” € Cy4 such that supp(vt) C J; and supp(v™) C Ja.
Then, neither x*" nor x¥~ belongs to 1/in(Cy4). This is a contradiction. Hence, o

is a subsimplex of P4.
Let 01,02 € Aj,. We choose a point o € o7 N oy. Then, we have

= Z a;a; = Z bj a;,

a;€V (1) a;€V(o2)

where 0 < a;,b; € Q and X q,ev (o)) % = Xa;ev(on) b; = 1. By multiplying a suitable
integer to the equation above, we have

>, sai= ), Ya

a;eV(o1) a;eV(o2)
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where 0 < a,b; € Z and Ya,cv(01) 8 = Lajev(on) U I

A
a’ A
9= I =~ II sf+o

aiEV(Oj) ajGV(az)

then the homogeneous binomial g belongs to I4. Thanks to Lemma 1.3, there exists
a circuit f = x¥" —x*” € Cy such that supp(v*) C V(01) and supp(v™) C V(o2).
Then, neither x¥" nor x¥~ belongs to 1/in(C4). This is a contradiction. Hence, we
have g = 0. Thus, « has a representation

o= Z a;a;.

a;€V(a1)NV(a2)

Thus, A, is a simplicial complex on the vertex set .A. : Q. E. D.

If A;, is a triangulation of Py, then we call in(-) a geometric markiﬁg on Cy.
For a marking in(-) on Cy4, we define the subsets Qi(,ll) and g},? of C4 as follows:

G = {f€Cus f~in(f) ¢ /in(Ca) }
6P = {fe g there exists no g € C4 such that supp(in(g)) % supp(in(f))}.

Then, f € G (resp. g,.(j)) satisfies that supp(in(f)) is a nonface (resp. minimal
nonface) of A;, and supp(f — in(f)) is a face of A;,. Note that if A is unimodular

and in(-) is coherent, then g§j) coincides with the reduced Grobner basis of 14 with
respect to the term order in(:).

Theorem 2.4. Suppose that in(-) is a geometric marking on C4. Then, we have
Vin(G2) = /in(C.). |

Proof. In the proof of Theorem 2.1, we have shown that if ¢ is a minimal nonface
of Ay, then there exists a circuit f = x*" — x*~ € C4 such that supp(v*) = V(o)

and XV ¢ +/in(C4). Since f € Qi(,zl), this completes the proof. Q. E. D.

Corollary 2.5. Letin(-) and in'(-) be geometric markings on C4. Then, Ajp = A
if and only if g§§) = gfj) and in(g) = in'(g) for all g € G,

Proof. Since g,.‘,? is uniquely determined by A;,, “only if” part holds. On the other
hand, Theorem 2.4 enables us to show “if” part. Q. E. D.

Now, we study a criterion for a marking on C4 to be a geometric marking. Note
that, in the conditions (ii) and (iii) below, m’ is unique for each {m,p}, {m,p'}.

Theorem 2.6. For a marking in(-) on Cy, the following conditions are equivalent:
(i) in(-) is a geometric marking,
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(ii) there exists a positive integer p and a monomial m' ¢ (/in(Ca) such that
mP —m' € L4 for an arbitrary monomial m € in(C4);
(iii) there exists a positive integer p' and a sequence of reductions from mP to
m' & \/in(C4) modulo gi(,? for an arbitrary monomial m € in(Cjy).
Moreover, if A is unimodular, then we have p=7p = 1.

Proof. First, by virtue of Proposition 1.6 and Corollary 1.7, we have (ii) < (iii).
Second, we show that (1) (ii). Suppose that in(-) on C4 is a geometric
marking Let m = [, 28 € in(C4), s = X1, 0a; and a] = az/s Then, we have
= Yicsupp(m) %8; € P4 since 0 < a; € Q and Yieoupp(m) @; = 1. Since Ay, is a
trlangulatmn there exists a unique 81mp1ex o € A, such that = Yicsupp(m) B =
Ya;ev (o) bjaj, where 0 < b; € Q and 3., cv() bj = 1. By the similar argument as
in the proof of Lemma 1.8, there exists a positive integer p such that f = mP —
[lajev(o) :II P € I4. Since o0 € A, we have [a;ev(o) z:b P ¢ \/in(Cy).
Suppose that A 'is unimodular. Since s-a € ZA and o is a face of a simplex
of normalized volume 1, we have b;s € IN for all j with a; € V(o). Hence, we have

fl=m-— [a;evio) 1% e Iy and [la,ev(e) = J * ¢\ /in(Cy).

Finally, we show that (ii) = (i). Choose an arbitrary point o = 377", a;a; € Py
where 0 < a; € Q and Y-, a; = 1. By multiplying a suitable integer z, we have

z-a =Y, aa; where 0 < o] € Z. Now, we consider the monomial m = [[j, :v
By the hypothe51s, there exists a positive integer p and a monomial m’ = [];¢; .’1}? §é

\/in(C4) such that m? — m’ € I4. Hence, we have

a:Zaiai—Z<bj>a]
1=1

jeJ zp

Since m’ ¢ 1/in(C4), we have J € Ay,. Thus, we have Py = Uyen,, 0. Thanks to
Proposition 2.3, A, is a triangulation of P4 as desired. . Q. E.D.
Example 2.7. Let A = {(6,0,0), (0,6,0), (0,0,6), (4,1,1),(1,4,1),(1,1,4)} c Z°.
Then, P4 is a planar triangle and Cj4 consists of the following 15 circuits: -
Ca = {z92? — 1122, 2322 — 2222, T12% — 2373, 237073 — 2§, 717473 — 2§,
T1Z9T3 — g, TiT5T6 — T3, T3TaTe — T3, T3TaTs — Tg, L3275 — :ci,
12572 — 28, 257375 — 28, Toxias — 2§, Tiwax? — 2§, T 2ixd — xG }.

Now, we consider the following triangulation A of Py:




If we define the marking in(-) as in(f) is the first term in the above expression

for each f € Cyu, then we have In = (/in(Ca) = (x2x4,x3x5,x1$6,x1x2x3). In

. 1 2
this case, G\ = C4 and G = {2502 — 7,22, 7322 — 7272, 7,22 — 2372, 237073 —

8, 12573 — 28, 717275 — 2§}. The triangulation A is nonregular because in(-) on

2) . . .
{2222 — 1132, 2322 — 7272, 2122 — 7372} C G2 is not coherent. Note the following
two sequences of reductions:

ToT3Ti ——  I1%3Tr  —  T1TeTi  — ToT3Ts

xQzZ—xlxg o ) 33:1:%—:022% zlzé—z3z2 .
2\15 12,2424 20
(z22377) —  I3Ty Ts - :c4 23’13 ¢ y/1n(Ca)-

First sequence of reductions means that in(-) on {2223 — 2122, 2322 — 2972, 2,22 -
2) . Do
z323} C g}n) is not coherent. Second sequence of reductions illustrates Theorem 2.6.

3 Flips

Let A be a triangulatioh of P4 and let f = x*" —x* € C4 be a c1rcu1t We
say that A is supported on f if the following two COI’ldlthIlS are satisfied:

(i) Tiesupp(rivgsy @i & Ia for all j € supp(x*’); .

(ii) For all monomlals m € K[x] such that supp(m) N supp(x* ) = @ an d for all
j1, J2 € supp(x*"), we have m - icoupp(r)\ (51} T belongs to I if and only if
.- Hzesupp(f)\{]z} z; belongs to Ia. ’

If a triangulation A of P4 is supported on a circuit f € Cy4, then we can construct a
new trlangulatlon by taking away all the simplices of the form supp(m)Usupp(f)\{i}
where i € supp(x*") and m € K[x] is a monomial with supp( )N supp(f) = 0 and
adding the simplices of the form supp(m) U supp(f) \ {j} where j € supp(x*" ) and
the same . We call this operation a flip along f. See [G-K-Z] for the details.

Example 3.1. We continue the argument in Example 2.7. The triangulation A
is supported on circuits {222} — 2123, £323 — 2223, T12% — z3z5}. For example, the
triangulation A’ obtained by a flip from A along the circuit 2322 — 2027 is as follows:
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Then, A’ is a regular triangulation of P4.

First, we represent a flip of a triangulation A of P4 as a operation for a geometric
marking in(-) such that A = A;,. Suppose that a triangulation A, is supported on
a circuit f € C4 and A’ is obtained by a flip from A;, along f. Now, we define a
marking in’(-) on C4 by

g —in(g) g=1
in'(g) = { g—in(g) g¢ 0y and supp(in(f)) C supp(in(g)) (3)
in(g) otherwise.

Theorem 3.2. Work with the same situation as above. Then, A’ = Ajy.

Proof. For a monomial m, if m € In and if m & Ias, then supp(in(f)) C supp(m).
Similarly, if m ¢ Ia and if m € Ias, then supp(f — in(f)) C supp(m).

‘Suppose that there exists a circuit g € C4 such that in'(g) ¢ Ias. It then follows
that g —in'(g) € In.. By the definition of flips, we have in/(f) = f —in(f) € Ia-.
Hence, we have g # f. \

Suppose that g € G. By the definition (3), in(g) = in(g) € Ia. Hence,
we have supp(in(f)) C supp(in'(g)). Moreover, since g — in'(g) ¢ Ia, we have
supp(f — in(f)) C supp(g — in'(g)). This contradicts that g is a circuit.

Suppose that g ¢ g},{’, i.e., both in(g) and g —in(g) belong to In. Since in'(g) ¢
Iar, we have supp(in(f)) C supp(in’(g)). If in'(g) = in(g), then supp(in(f)) C
supp(in’(g)) = supp(in(g)). This contradicts the definition (3). If in'(g) = g—in(g),
then we have supp(in(f)) C supp(in(g)) by the definition (3). Since supp(in(f)) C
supp(g — in(g)) and supp(in(f)) C supp(in(g)), this contradicts that g is a circuit.

Hence, we have ,/in/(C4) C Iar. Thus, A’ C A;y. Thanks to Proposition 2.3
and since A’ is a triangulation, A’ = A;,/ as desired. Q. E. D.

Theorem 3.3.  Suppose that a triangulation A’ is obtained by a flip from a
triangulation A along the circuit f € Cy. Then, there exist markings in(-) and
in'(-) such that A = Ay, A' = DAy, in(f) = f —in'(f) and in(g) = in'(g) for all
g€ CA\{f}.

Proof. Let in(-) and in/(-) be markings with A = Ay and A" = Ay, ie., work with
the same situation in (3). Let in*(-) be a marking defined by

in'(q) = { g—in(g) g &Gy and supp(in(f)) C supp(in(g))
in(g) otherwise.

Thanks to Theorem 2.4, we have \/ in(Cy) = \/ in*(Cy4). Hence, we have A;;, = Ay
and we can rewrite (3) as follows:

in’(g) — { g— 7:n*(g) g=1f

in*(g) otherwise.
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Thus, we have a desired conclusion by Theorem 3.2. Q. E. D.

Now, we want to know which circuits support a triangulation. The following
theorem and corollary are related with the S-polynomial S(f,g) of the binomials
f=x*"—x*" e€lgjand g=x"" —x"" € I with in(f) = x*" and in(g) = x*":

_ LOM(in(f),in(g)) .- LOM(in(f),in(s)) .-
S(f.9) = n(f) X = in(g)

X

Theorem 3.4. Let in(-) be a geometric marking and let f = x*" — x¥%~ € C4 with
in(f) =x*". Ifp=maz(|u]| €Z ; x* —x*" € Cy), then a triangulation A,, of
P is supported on f if and only if f € g,&? and

LCM(in(f)?,in(g))
in(f)P

X% € in(Cy)
for all g € G\{f}.

Proof. [only if] Suppose that Ay, is supported on a circuit f = x*" — x¥~ € Cy.
Then, [Ticsupprn\ i3 Ti & 1/in(Ca) forall j € supp(x*"). Hence, in particular, neither

x%" nor ILicsuppxnty\ 5y Zi belongs to \/in(C4). Thus, f € Gi(,f).

Suppose that
LOM(in(f)?,in(9)) - ¢ \/in(C.a)
in(f)P

for a circuit g = x*" —x*" € Qz(z)\{ f} with in(g) = x*". Then, supp(x*") N
supp(x”") # 0. Suppose that supp(x¥’) = supp(x®"). Let vy /U, = min(v;/u; >
0; % € supp(x*")) where r € supp(x**). It then follows that (x**)*r divides (xv e,
Hence, we have

0 # e ()" = () € L

()

Since (xV")¥r ¢ 4/in(C4), we have m = oy (x* ) € y/in(C A).,Since supp(m)‘ C

supp(f) \ {r}, A is not supported on f.
Suppose that supp(x*") # supp(x*") and A’ is obtained by a flip from A;, along
f. Since g € g,.(,?, supp(x*") \ supp(x"") £ 0. If i € supp(x¥*) \ supp(x¥™), then
supp(LCM (in(f),in(g)) - x*7) \ {¢} is not a face of A;,. Hence, '
LCM(in(f)*, in(g))

in(f)P

Thus, x* ¢ Iar and this contradicts Theorem 3.3.

. Xu— ¢ IAI.
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[if] Suppose that m = [Licoupp(r\{j} Ti € \/in(C4) for some j € supp(x¥").
Then, there exists a circuit g € G® such that supp(in(g)) C supp(m). Since
supp(in(g)) C supp(f), we have ‘

LCM (in(f)?, in(g))
in(f)P

Suppose that there exists a monomial m with supp(m) Nsupp(x*") = 0 such that

my = m-Hiesum, f)\{]l} Z; ¢ 1/7;71 CA and mo = M- H'LEsupp(f N{j2} x; € \/’LTL(CA) where
1,42 € supp(x*"). Then, there exists a circuit g € Qm such that supp(m(g)) C
supp(ms). Thus, :

(LCM (in(f)P,in(9)) .
in(f)P

as required. , Q. E.D.

) € Ai'n-

supp -x“"> = supp(x*

supp ) C supp(m x*) C supp(my) € A,

If Ais unimodular, then we immediately have the following corollary.

Corollary 3.5. Suppose that A is unimodular. Let in(-) be a geometric marking
and let f =x*" —x¥" € Cy with m(f) =x¥". Then, a triangulation Ny, of Py is
supported on f if and only if f € 9(2) :

LCM(z'n(fmn(g))'
n(f)

. 5(”— € in(Ca)

for all ge GEN{F}-

4 Some applications

In this section, we study some applications to the problems of polytopes arising
from finite graphs. Let G be a finite connected graph having no loop and no multiple
edge on the vertex set V(G) = {1,2,...,d} and E(G) = {ey,eq,...,en} the set of
edges of G. If e = {4,j} is an edge of G joining ¢ € V(G) with j € V(G), then we
define p(e) € R% by p(e) = e; +e;. Here e; is the i-th unit coordinate vector in IR%.
Let Ag = {p(e) ; e € E(G)}. We set Pg for P, and call Pg the edge polytope of
G. We set K[G] for K[A¢] and call K[G] the edge ring of G and set I for L4, and
call I the toric ideal of G. See also [O-H,], [O-Hy], [O-Hs] and [O-H,].

Example 4.1. In [O-H;], we give the following graph G, with 10 vertices and 15
edges. Then, Pg, is a normal (0,1)-polytope none of whose regular triangulations
is unimodular and having a unimodular triangulation obtained by one flip from a
regular triangulation.



The main purpose of the present section is to give an infinite family of normal
edge polytopes having the same property as Pg, . ’
Suppose that G has a vertex i of degree 2. Then, we can construct a new graph
G with d + 2 vertices and n + 2 edges by the following operation:
Jjo ot ko Jj.o ot iy 13k
o—o—o = ® ®
€1 €2 €1,1 €21 €12 €22

First, by virtue of [O-Hz, Corollary 2.3], we have the following proposition.

Proposition 4.2. Work with the same situation as above Then, K [G] is normal
if and only if K|G] is normal.- :

" Let K[X] = K[z1,1, Z1,2, T2,1, T2,2, L3, < - - 5 ] denote the polynomial ring in n+2
variables over K. Now, we define the injective homomorphism % : K[x] — K[X] by

iy fi=1,2
Y(z;) = N '

“x; - otherwise.

The set of all circuits of Ig is explicitly classified. Given an even' closed walk
['= (e, €is5 - - - , €iy,) Of G with each e, € E(G), we write fr for the binomial

a4 ¢
'fF = H Tigg_1 — H Tiog € IG‘
k=1 . k=1 ‘

It is known that Ig is generated by such fr’s. See [O-Hj, Lemma 1.1]. "Let Cg
denote the set of all circuits of I(;. Then, the following is known [Stu, Lemma 9.8].

Proposition 4.3.  Let G be a finite connected graph Then, Cg consists of the
binomials fr where T is an even closed walk satisfying one of the following conditions:
(i) T is an even cycle;
(ii) T consists of two odd cycles having ezactly one common vertez;
(iif) T' consists of two odd cycles having no common vertez. and connected by a path.
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Corollary 4.4. Let G be a finite connected graph. Then, the set Cg of all circuits
equals to {¢(f) € K[X] ; f € Cg}.

If in(-) is a marking on Cg, then we define the marking In(-) on Cz by In(y(f)) =
Y(in(f)) for all f € Cg. Thanks to Corollary 4.4, this is a one-to-one correspondence
between the set of all markings on Cg and the set of all markings on C.

Lemma 4.5. A marking in(-) on Cg is a geometric marking if and only if

corresponding marking In(-) on Cg is a geometric marking.

Proof. Let m be a monomial in K[x]. Note that m € 1/in(Cg) if and only if the
monomial ¥(m) € ,/in(Cg). Hence, 1/)((]1-(:;)) = g};’ for i = 1,2. It easily follows
that there exists a sequence of reductions from m? to m’ ¢ 1/in(Cg) modulo gf,?
for some positive integer p if and only if there exists a sequence of reductions from
(¥(m))? to (m’) ¢ ,/in(Cz) modulo gﬁ). By virtue of Theorem 2.6, this completes

the proof. Q. E. D.

Lemma 4.6. Let in(-) and in'(-) be geometric markings on Cg. Then, Ay = D
if and only if A = Apy. :

Proof. Since z/)(gi(,?) = g}f}, Corollary 2.5 enable us to complete the proof. Q. E. D.

We define a map from the set of all triangulations of Pg to the set of all
triangulations of Pz by ¥(Ain) = Ag, where in(-) is a geometric marking on Cg.

Theorem 4.7. v is a bijection from the set of all triangulations of Pg to the set of
all triangulations of Pg. Moreover, if A is a triangulation of Pg, then A is regular
(resp. unimodular) if and only if (A) is reqular (resp. unimodular).

Proof. Thanks to Lemma 4.5 and Lemma 4.6, 1 is a bijection from the set of all
triangulations of Pg to the set of all triangulations of Pg.

Note that in(-) on Cg is coherent if and only if In(-) on Cp is coherent. Thanks
to Theorem 2.1, A is regular if and only if ¥(A) is regular.

Since Ia,, = Noea,, (Ti ; @ ¢ V(0)), we have Ia,, = Noea,, (¥(zi) ; a ¢ V(0)).
Note that thanks to [O-H,, Lemma 1.4 (i)], either a; € V(o) or a; € V(o) for every
maximal simplex o € Ay,. Hence, for each o € A;,, we have

(z; ; a; ¢ V(0)) if aj,ay €0
W) s 8 ¢ V(0) =4 My ({ong) Ufzis i£La ¢ V(0)}) o ¢ V(o)
Mooy ({z2} U{zi; i# 2,2 gé V(o)}) ifaxé V(o).

It then follows that 9 preserves the number of odd cycles in the subgraph of G asso-
ciated with a maximal simplex o € A;,. By virtue of [Stu, Lemma 9.5], this implies



that 9 preserves the normalized volume of 0 € A;,. Hence, A, is unimodular if
and only if ¥(A,) is unimodular as desired. , Q. E. D.

Theorem 4.8. Let Ay and Ay be trz'dngulatz’ons_of Pg. Then, AVI zs obtained by
the flip from Ay along the circuit T if and only if (A1) is obtained by the flip from
¥(Ay) along the circuit ¥(T).

Proof. Let f,g € Qi(f) and p b‘e'a positive integer and let
_LCM(n(f)yin(g) o, _ LOM(In@()P, InW(9)) .

-x* and m “p(x" ).

m in(f)? ST T T T In(e(f))r

Since (m1) = ma, my € 1/in(Cg) if and only if my € /In(Cg). Hence, thanks to
Theorem 3.4, A; is supported on T if and only if ¥(4;) is supported on +(I"). Since

Y(GP) = G'Y and since supp(in(f)) C supp(in(h)) if and only if supp(In((f))) C
supp(In((h))) for h € Cg, Theorem 3.4 completes the proof. Q. E. D.

From Pg, in Example 4.1, we get an infinite family of normal edge polytopes
having the same property as Pg, since G, has five vertices {v1, v2,. .., vs} of degree 2.
Let G(p, ps,...,ps) D€ the graph obtained from G by applying the operation p; —1 times
to the vertex v; for 1 < i < 5. G(pyps...ps) has 235, p; vertices and 5+ 233, p;
edges. For example, G(21,22,1) is the following graph. _

Thanks to Theorem 4.7 and Theorem 4.8, we have the following theorem:

Theorem 4.9. The edge polytope Pg(mm ,,,,, pg) 1S @ normal (0,1)-polytope none of
whose reqular triangulations is unimodular and having a unimodular triangulation

obtained by one flip from a regular triangulation of PG o090

Finally, we give two examples of graphs whose edge polytope is a normal polytope
having a unimodular triangulation and having no regular unimodular triangulation.
Since the graph G given in Example 4.1 has 10 vertices and 15 edges, its edge
polytope is of dimension 9 with 15 vertices. Thus, it is reasonable to ask if a graph

103



104

G satisfying the odd cycle condition [O-Hy, Corollary 2.3] has d vertices and n
edges with n — d < 4, then the edge polytope P possesses a regular unimodular
triangulation. Note that the operation for graphs defined in this section preserves n—
d. Tt is not difficult to show that if a graph G satisfying the odd cycle condition has
d vertices and n edges with n—d < 3, then the edge polytope Pg possesses a regular
unimodular triangulation. Surprisingly, there exists a graph G having 20 vertices
and 24 edges whose edge polytope possesses no regular unimodular triangulation.

Example 4.10. Let G be the following graph with 20 vertices and 24 edges.
— ' : »

L

Then, dimPg, = 19 and the normalized volume of Pg, is equal to 307. There
are 3 pairs (C1,Cy'), (Ca,Co"), (Cs, C3') of two minimal odd cycles in G5 having no
common vertex. Each (C;, C;’) has exactly one bridge b; and the even closed walk
Ty = (b, Cy, bi, C;') satisfies the conditions in Proposition 4.3. By virtue of [O-Hs,
Lemma 3.3] or the technique of combinatorial pure subring [O-H-H], we can show
that each fr, appears in the reduced Grébner basis of I with respect to any term
order. Suppose that I has a squarefree initial ideal in,.(Ig). Since one of the terms
of each fr, is not squarefree, > satisfies that

2
T1X3T4LeT8T10L11T13T15 = T2T5T7T9T12L14T16T 19
4 2
ToZ7T10T12217T19L20L22L24 > L1T3T6L13218L21T23T 71
2
T5T9T11T14T16T18%19%21T23 > L4L8T15217L20%22L24% 70 -

Since TI3_; in. (fr,) = [To_, (fr, — ins-(fr;)), this contradicts that > is a term order.
Thus, with respect to any term order, the initial ideal of I, is not squarefree.
Thanks to [Stu, Corollary 8.9], Pg, has no regular unimodular triangulation.

On the other hand, Firla~Ziegler [F-Z] verified that Pg, does have a (nonregular)
unimodular triangulation A,. Moreover, H. Imai also verified that A, is obtained
by one flip from a regular triangulation. ‘

Example 4.11. Let' G5 be the following graph with 10 vertices and 15 edges.




By the same technique. appearing in Example 4.10, we can see that Pg, has no
regular unimodular triangulation. On the other hand, by explicit computation by
PUNTOS, it is verified that Pg, has a (nonregular) unimodular triangulation As.
Pg, is the first edge polytope having a unimodular triangulation and none of whose
unimodular triangulation is not obtained by one flip from any regular triangulation.
However, it is also verified by PUNTOS that Aj is obtained by two flips from a
regular triangulation.

We do not know if there exists an edge polytope satisfying odd cycle condltlon
which has noe unimodular triangulation so far.

Conjecture 4.12. Let G be a finite connected graph satisfying the odd cycle
condition. Then, Pg has a unimodular triangulation obtained by finite flips from a
regular triangulation.
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