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A REMARK ON THE NON-SCARRING OF —Au; = \ju;.
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ABSTRACT. Scar is the singular support of the mass distribution related to Laplace
eigenfunctions. We claim that if the singular support exists, then the Haussdorff di-
mension is at least 1. For example there exists a subsegence of eigenfunctions such that
this singular support is a closed geodesic curve.

§1.Introduction and results.

Let (M, g) be a compact Riemannian manifold without boundary, and let (A;, u;)
be eigenvalues and normalized eigenfunctioin of —A. So {u;} forms a complete or-
thonormal base in L2(M).

In this paper, our main concern is the property of the probability measure dv; =
luj(x)|?dvoly , when j — oo.

The typical example are as follows.

In the asymptotic theory of high-frequency eigenfunctions, if the phase flow on
the cosphere bundle S* M is ergodic, then the ”almost all” of the probability measure
are asymptotically uniformly distributed. So there exists a subsequence satisfying
dvj, — dvolps(as k — 00).(See [1,2,3,4].)

On the other hand, another example illustrates different behavior of eigenfunc-
tions. It is a subsequence of eigenfunctions concentrated near the stable closed geo-
desic line v on M. In this case, dvj, — 6ydvolp(as k — c0), where 8,dvolys denotes
a measure distributed uniformly along +v.(See[5].) We call v;, scars to -y in this case,

too.
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Moreover we generally conjecture a mixed type of concentration of eigenfunc-
tions called ”Scar”.(See [6].) ”Scar” is the singular part of mass distribution of eigen-
functions (rigorous definition is given below), and a few things are known about
”Scar”.(See [6]) In this paper, we claim that strong scarring on isolated points is im-
possible.(See §2.) Furthermore if the one-dimensional Hausdorff measure H(S) = 0,
then strong scarring on S is impossible.(See §3.) This is the best possible estimate

for general compact manifolds.(See the above example.)

§2. Non-scarring on isolated points.

In this section we define ”Scar”, and we proof that the strong scarring on isolated

points is impossible.

Definition(Scar)(See [6].). A subsequence vj, is said to scar strongly to a closed
subset S € M if vj, — p and suppus € S, where p = pg + p, is the Lebesgue
decomposition of p into singular parts and regular parts with respect to volys(the

volume form on (M, g)).
We have the next theorem.

Theoreml. A subsequence vj, scars strongly to a closed subset S and let o € S be

an isolated point. Then vj, scars to S\{xzo}.

Proof. We assume that a subsequence v;, scars strongly to a closed subset S and let
zo € S be an isolated point. (i.e. there exists an openset M’ such that o € M’ and
SNM ={xo}.)

Let ¢(z) € C§°(M) be a smooth real valued function satisfying ¢e(zo) = 1
with a compact support Be(zo) = {z;dist(z,z9) < €} , where dist(z,y) denotes the

Riemannian distance on M.
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We consider the following estimate.

/ de(x)dvj, =/ be(z)|uj, |2dvolp
M M
=(¢e(T)ujy, Wi ) L2(M)
:<e-it\/3‘_9:'u,jk, ¢e(w)eitmujk>L2(M)

:<e_it B ujk,(pe(x)eit - ujk)Lz(M)

where (,)2(ar) denotes the scalar product in L?(M).

The Egorov theorem states, that if Aisa pseudo-differential operator with prin-
cipal symbol A(z,€) € C°(S*M), then e~ V2 AeitvD s also a pseudo-differential
operator, and its principal symbol is exp(tX)* A(z, £). Here exp(tX) is a Hamiltonian
phase flow in S* M generated by the Hamiltonian function H = \/g(é“—,{) . We applies
the Egorov theorem to ¢.(x).

So we have
liknlggf(e—it\/zujk, ¢e(w)eit\/zujk>L2(M) = likl’gg}ﬂexp(tX)*qSe(.’E)Ujk, ujk)Lz(M) te (1)

where we consider that ¢.(z) is a pseudo-differntial opeataor with prinipal symbol
7™ @e(z). Here m: S*M — M is a projection operator on the cosphere bundle.

We assume that u;, scars to S and S contains isolated point zo.

(ie. |uj, |2dvol — const.6z, +---)

Therefore

likrr_l’ior;f /M de(x)dyj, = hkrggf/M ¢e(x)|uj, |2dvolps = const > 0(indep. of €). - - - (2).
By (1) and (2), we obtain
liklzl_)igf(exp(tX)*qﬁe(a:)ujk,u,-k)Lz(M) = const > O(indep. of ¢t and €). - -- (3).

On the other hand, exp(tX)*¢¢() is a smooth function with compact support
Bie = {(z,p) € S*M : exp(tX)Bc(zo)} , and volp(7B;e) — 0 (e — 0). By the
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assumption of this theorem, there exists ¢ > 0 satisfying 7B; C supp(u,) for all

small € > 0. By applying Garding inequality, we have

lim sup{ezp(tX)* e (x)ujy, , Uz, ) L2(0r) < limsup/ [uj, |*dvolse p
k Bt,e

—00 —00

k—o00

= M(”Bt,e)

= ﬂ'r(ﬂ'Bt,e)

< limsup/ |uj, |2 dvol s
ﬂBt,e

< 3const vol(rB; ) —» 0 ase— 0.

which is a contradiction of (3), thus we have proved the theorem.

Corollary. Let a subsequence vj, scars to | J;—,{z:}. Then v;, scars to 0. Thus v;,

converges to some reqular measure weakly.

§3. Non-Scarring on Cantor-like sets.
Next we proof that if the closed set S satisfies one-dimensional Hausdorff measure
H(S) = 0, then strong scarring on S is impossible. This proof is the same method

as the above theorem.

Definition. Let S C R™ be a set, 0 < s < 00,0 < § < 00. Define

oo d. .
H3(S) = inf{})_ a(s)(%(oﬂ))ﬂs c |J¢;, diam(C;) < 6}
Jj=1
Here I'(s) = f0°° e z° !dz,(0 < s < o00) is the usual gamma function, a(s) =
%5—3//2—21-1—&)— , {C;} is a collection of closed balls, and diam(C;) means the diameter of

c;.

Definition(s-dimensional Hausdorff measure)(See[7].). For S and s as above,
define
H?(S) = lim H{(S) = sup H{(S)
§—0 ‘ §>0

We‘ca,ll H? s-dimensional Hausdorff measure on R™
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Lemma. Let f: B™ — R be Lipschitz, S C B™,0 < s < 00.Then

H*(f(S)) < (Lip(f))*H*(S),
where B™ is a n-dimensional closed ball in R™, Lip(f) means the Lipschitz constant
of f.
Proof. Fix § > 0 and choose sets {C;} C B™ such that diam(C;) < 6,5 c U;2, C
Then diam(f(C;)) < Lip(f)diam(C;) < Lip(f)6 and f(S) C Use, f(C;).Thus

Hyip s f (S <Z o) (22 (Cy,

g(Lz’p(f))S_LVja(s)(flf“—%f—@‘)s.

Taking infima over all such sets{C;}, we find
Hiip)sf(S) < (Lip(f))* HE(S).
Send 6 — 0 to finish the proof.

Key lemma. Let S C R™ be a closed set satisfying H'(S) = 0. Then for all
zg € S,€ > 0, there exists an annulus
As(zo,€') = {z € R™|0 < € < distlz — x| < € + 6}
such that SN As(zo,€') =0 and diam(As(zo, €)) < e.
proof. S is a closed set. So if the statement is not true, we may assume there exists
zo € S,e > 0 such that Ag(zo,e)NS#Dforall0 <€ <e.
Let f : Be(zo) 3 (r,0) — R > r be a radial function, where B¢(z) is a closed

ball with radius €. Therefore f is a Lipschitz continuous. We apply the above lemma,

for f. So we have
e=H'([0,€]) = H'(f(Be(20))) < (Lip(f)) H'((Be(20))) < (Lip(f)) H'(S).
Lip(f) = 1, thus H!(S) > € > 0.This is a contradiction.

By the following corollary, we may assume the uniform estimate for § > O(the

width of the annulus).
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Corollary. Let S C R™ be a compact set. For all € > 0, there erists 6 > 0 such that
As(z', € (z") = {z € R (¢') < dist|z — 2| < €(z') + 6 < ey NS =0 for allz’ € S,

where € (z') > 0 depends on z'.
proof. S is a compact set. The usual covering statement means the uniformity of 6.

Remark. On compact Riemannian manifolds, we can easily show the same lemma.

So we use the lemma on compact manifolds.

Using the above corollary, we obtain the following main theorem.

Theorem2(Non-scarring). A subsequence vj, scars strongly to a closed subset S

and HY(S) = 0. Then vj, scars to {.

Remark. This theorem states if the strong scarring on closed sets happens, the Haus-

dorff dimension is larger than 1.So strong scarring on Cantor-like sets is impossible.

Remark. H'(S) = 0 is the best possible estimate.For example, there exists the strong
scarring on the stable closed liney.(See[5].) This means if H(S) > 0, strong scarring

on S is possible.

Proof. This proof is the same method as Theorem 1.

We assume that a subsequence v, scars strongly to a closed subset S and
HY(S)=0.

By the definition of the one-dimensional Haussdorff measure, for all small L >
0, € > 0 there exists a finite cover S C |Jj; Bi such that diam(B;) < € and
> diam(By) < L.

We fix 6 > 0 as the above corollary and we assume 0 < € < 6.

Let ¢'(x) € C°(M) be a partition of unity satisfying i #(x) = 1on S with a
=1
compact support support(¢!(z)) C Bi.
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We consider the following estimate.
n
v(S) <lim inf/ ¢ (z)dv;
) <lminf | ; i
= likrgg.}f ; /M ¢ () |uj, |2dvol pr

n
= likrgigf ;<¢l (a:)qu s ujk>L2(M)
=liminf ) (e™*V eu;,, ¢! (2)e™V eug, ) 12 (an)
=1

n

= liknig.}f (e—itmujka ¢l ("E)eitmujk>L2(M)
=1

We applies the Egorov theorem for ¢!(x).So we have

lim inf (e~ u;, , ¢ (2)eY P uj, ) L2ar) = lim inf (ezp(tX )* ¢! (@), wsi ) L2(an)

k—o0

By the above lemma, we can choose ¢; > 0(uniform bounded) satisfying As(x;,t;)NS =

. Thererfore by applying Garding inequality, we have

n n
liminf(Y exp(t;X)* ¢ (x)uj,, u;, ) r2(ary < liminf / |u;, |2dvolg s
P lzz; Jky Cge/LA(M) = 2 2 ; s (@i,te) Ik

n

= p(|J(4s(z1, 1))

=1

< 3Cvolys (| J(As(z1,11)))
=1

n
<3C") " diam(B)
=1
<3c'L,

where C’ > 0 is independent of L. For all L > 0, we obtain u(S) < C'L. Thus we
obtain ps(S) < pu(S) =0.
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