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Wave front sets and wave packet transforms

FERFRFGEFER  KE&iE FEF] (Takashi Okaji)

Abstract In this talk, I would like to present some basic methods in the microlocal
analysis, which becomes an essential and important tool in the theory of partial
differential operators. It is an advanced version of the Fourier analysis in relation
to regularities of functions or distribution. The core of microlocal analysis is the
notion of wave front sets of distributions defined on an open subset of R*. We can
characterize the wave front sets by use of wave packets transform, introduced by
G.B. Folland. The standard FBI transform is its special one.

As an application, we shall study the topic of propagation of singularities of
solutions to the Schrodinger equations with magnetic or electric potential. It is
intensively developed since the 1980’s and there are many approaches to this topic.
However, we shall take a new approach based on a microlocal conservation law in
terms of the Wigner transformation. We will discuss reconstruction of microlocal
singulariﬁes and creation of microlocal singularities from oscillatory initial data as

well as smoothing effects.
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1 Wave front sets

First of all, we recall the definition of the wave front set of distributions, which

can give a precise description of the local smoothness properties of distributions.

Definition 1.1 Let Q C R™ be open and u € D'(Q). Consider a couple (z0,&0) €
Q x Rr. Here and in what follows, R™ denotes R™\{0}. We will say that (20, &0)
does not belong to the wave front set of u, denoted by WF (u), if and only if

3f € C°(Q) with f(zo) #0, 3 an open cone I's &

such that
VNeN,3IC>0/veel, |fu@l<sca+Ed™.

In a similar way, we can define the notion of an H*® wave front set.

Definition 1.2 Let © C R™ be open and u € D'(Q). Consider a couple (2o, &0) €
Q x R*. We will say that (zo,&) does not belong to the H® wave front set of u,
denoted by W Fys(u), if and only if

3f € C(Q) with f(zo) #0, 3 an open cone I' 3 &

such that
Fu(€) € LA(T, (1 + [7)°dE).

2 Wave packet transforms

In this section, we are going to describe another characterization of wave front
sets of tempered distributions in terms of the wave packet transform of u.

The most famous example of the wave packet transform is the standard FBI
transformation, introduced by Bros-lagolnitzer and Sjostrand. They used the FBI
transformation to characterize the analytic wave front set of tempered distributions.
Tt turns out that it is very useful for studying local properties of infinitely differen-
tiability of distributions as well as properties of analyticity of distributions. In fact,

P. Gérard gave a characterization of the H® wave front set.



58

Let g and p be in R", and let u be a measurable function on R". i denotes the

imaginary unit v/—1. We define the function p(p, q) f on R™ by
(2.1 (p,0))(@) = "+ 5971 (@ 4 p), = € R
We can write the above function as
OO0 [ (@) = 1 f(z 1 p), (0P f(2)" (e b f(g — )

Indeed, the function (2.1) is identically equal to g(z,1). Here, g(x,t) is the solution

to the first order partial differential equation

% — pV,g = igzg
(z,0) = f(=).

To see this, we set G(t) = g(z — pt,t). Then,

(2.2)

e}

G'(t) = ig(z — pt)G(t), G(0) = f(x).

Proposition 2.1 p(p,q) : L*(R™) — L*(R") is a unitary operator for all p and q
m R™.

A simple calculation implies that

lo(p, @)ullz = |lullr2 and p(p, 9)™ = p(—p, —q).

Let define a unitary operator on L?*(R™) depending on the parameter (p,q,t) €
- R2n+1 by
p(p, g, hu(z) = e* Py (g 4 p).

It is easily verified that § is a unitary representation on the Heisenberg group H”.

Namely,
plg)plg') = plg*g), Vg, ¢ €H"
where, the product of two elements (p, g,¢) and (p/, ¢, ') in H" is defined as follows.

qp’ — pq’ )

a0 (F, ¢, 1) = (p+p g+t +1+ 5=



59

Given a nonzero function ¢ € S(R"), we set
$z) = AP 2z),
and define the wave packet transform of u as

Plu(e,€) = [uly)et=s ¥Ry —z)dy = [ u(y)p(—z, O W)dy.

Using the unitary transformation (2.1), we rewrite it as

PA(3,€) = (£, p(—2,6)8").

Let us recall the definition of the FBI transformation. Let u be a tempered
distribution on R™. The FBI transformation of u is the function on C™ X [0, +00)
defined by

Tu(z,)) = [ 3 u(y)dy,

where (z —y)? = £-,(z; — y;)%. It is an entire function of the complex variable
z, real analytic with respect to the péra,meter A. If u is a compactly supported
distribution, it is of finite order. Thus, there exist an integer N and a constant
C > 0 such that | . | |

ITu(z,\)| < C(1+ A+ [Imz|)NeaIms)?
for z € C™ and X € [0, 00). From the simple identity
1, I o
e it~y = — o~ ol + itz — ) + el

it is obvious that
Alg)? iX

e 2 Tu(z —i&, ) =e

# Pu(e, A
when ¢(z) is a Gaussian function e~1#*/2,

Now, we can state a characterization of the wave front set of a tempered distri-

bution u.

Theorem 2.2 Suppose that ¢ € S(R™) satisfies

' /R" z%¢(z)dx # 0.
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for some o € (NU{0})*. Let Q be an open subset of R", let (xo,&) be a point
of @ x R" and let u be a compactly supported distribution defined in Q. Then,

(z0,&) does not belong to the wave front set WF(u) if and only if there is a conic
neighborhood V' of (o, &) such that for alla, N > 1,

Plu x, A < Cun\N for A > 1, al< £l <a and (z,€) € V.
¢ ,

Remark 2.1 This gives a partial answer to an open question by G.B. Folland, who
proved this theorem under the restriction that ¢ is even function. He proposed an

open question whether the same conclusion is still valid without that restriction.

The proof of Theorem 2.2 is a slightly long, so we omit it (c.f. [18]).

3 The Wigner transformation

The Gaussian function is the most useful function in S(R") in terms of the

Fourier transformation. In fact, we have the following well-known fact.

:t 2
Lemma 3.1 The Fourier transformation of the Gaussian function e s equal to

2
(2m)2e~ % .

We are going to define the Wigner transformation of two functions f and g in
S(R™). It is a function on R?", defined by

W(f,9)@,8) = [ e?f(a+gle—F)dp, @, (R

We can easily verify the following useful properties of the Wigner transform.

Lemma 3.2

(3.1) W(g, /) =W(f.9), [ g€SR")

32) [ We&do = a©)F, [ Ww(ee)d = @) lu)P,
(33) W(@)(z,€) = 2m)"W (w)(E,—),

(3.4) lullZamny = [ W(w)(z, dode.



Here and in what follows, we use the notation W (f) = W(f, f). Then, from (3.1), it
follows that W (f)(z, €) is real-valued function on R** for f € L*(R™). Furthermore,

Lemma 3.3 Leta, b, ¢, d be in R™ and let f and g be in S(R™). Then

(3.5) W(p(b,a)f,p(d,c)g)(z,§)

. ; b+d
— ez{(a—c)-m+(b—d)-§}e§(a-d-—b~c)W(f, g)(.’D + + _ atc

2’é 2

)

and

(3.6) W (>, ¢")(@,€) = W(f,9) (X2, X7V/2¢)
for all x and £ in R™.

In particular,

W(p(a,b)f)(z,€) = W(f)(z +a,§—b), abz,{cR"
The next is important identity, called the Moyal identity.

Lemma 3.4 For all f;,95, 7 = 1,2, in S(R™), we have

W (f1,91), W(f2, 92)) = (2m)™(f1, f2)(91, 92)-
Proof: Define W : S(R*™) — S(R*") by
WF(z,§) = /e“’f"’F(m + g,x - g)dp.

According to the Plancherel theorem,

(3.7) (WF,WFy)p = (27r)"/ {/ Fi(z + g,m - g)Fg(:n n g, T — g)dp} dz
= (27)”/ Fy (u, v) Fy(u, v)dudv.

Applying this identity to

Fl(u7v) = fl(u)m and Fg(’u,’l)) = fZ(’u’)ma
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then

3.8) (W9, W(age))iz = [[ 5:0)5:0) ol (v)cuce
= ([ AwE@) ([ a@uwe).
Q.E.D.

There is a nice connection between wave packets and Wigner transforms. This

connection is crucial in the subsequent sections.

Lemma 3.5

(3.9) PAN@OP)P, 0 = 72\ [ W(f,9)(x, M) Bx(z — p, & — g)dade
for f, g € L2(R™). Here,
(3.10) Ex(z,€) = exp{—A(le2 +1€7)}-

Proof: From the Moyal identity and Lemma (3.3), it follows that the LHS of
(3.9) is equal to ' |

N [ W9 @ W (p(~p, )6, o(—p, 0)6”) (w, A6 dod

and it is seen that

1) W (o=, )", (=1, 0)8") (2,6) = W (6", ¢*) (z — p, € — g).
The last expression is equal to

(ZW)n/22n/2€—>\($“P)2‘%(5_‘1)2 .

In fact, Lemma 3.1 implies

e—i€~p€~%(w+§)2—%(x—§)2dp

(3.12) W (e™®"/2, e=2"/2) :/
= /e“zf'pe*”?‘%”zdp = /()27 €7,



Now, we are going to describe the interaction of the pseudodifferential operator

with the Wigner transformation. By a direct calculation, we obtain
(3.13) O W (u,v) = W (ug,v) + W(u,vz)

= 2W (ug,v) — 2iEW (u,v)
= 2W (u,v;) + 26EW (u, v),

so that

(3.14) W (O, v) = (%az &)W (u, v)
W (u, 8,0) = (50 — €)W (u,0)

and

(3.15) W (zu,v) = (& — i%@g)W(u, v)

W (u, 2v) = (2 + i%&g)W(u, v).
‘Therefore, we conclude that
(3.16)  W(i02u,v) + W(u, z'agv)": i {(%am +i€)? — (%am - ig)z} W(u,v)
= —2£0, W (u,v)

and

(3.17) W (iz®u,v) + W(u,iz’v) =1 {(m — i%ag)z —(z+ %ag)z} W(u, v)
= 220:W (u,v).

In order to develop the above calculation into more general case, we shall use
~ the Weyl calculus. Let a(z,§) and b(z, ¢) be two symbols belonging to the standard
symbol class S7%(R™). Denote their corresponding pseudodifferential operators by
a¥(x, D) and b*(z, D):

r+y

a”(z, D)u = /ei(m‘y)ga( ,g)u(y)dydﬁ/(QW)”.{
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We denote the symbol of the product AB by (a o b)(z,£) as usual. From a direct

calculation, it follows that
(a*(z, D)u, )z = (2m)™ [ alw, )W (u,0)(z, €)dode.
We use the formula

(3.18) (aob)(z,&) =ei{D”'D€‘Dz'D"}/2 (, )54, M) ly=z,n=¢

~ab+z {a b}(z,8),

{0,0}3(5,€) = (5000 — 80 3,7 ) alz, )b(y, Mhy=sr=e

It holds that

(3.19) (a¥(z, D)b*(z, D)u,

- / W (b*(z, D)u, v)(z, £)dzds
:/aob (2, )W (u,v) (z, €)dedg
= { - —{a b} + - }W(u, v)(z, &)dzdE

modulo S7*°(R"). Here,
{a,b} = dea(z,£)0:b(z,§) — Bea(z, §)O¢b(z, ).
In what follows , we will take
(3.20) a(x,8) = exgp(z,£) = eV =P

We willl often drop the suffix ¢ and p and use the notation P instead of Py, in short.
Let b(z, £) belong to S%(g) for the metric g = dz? + df—;

By use of an integration by parts, we obtain

(3.21) (x(q,p)Pb(z, D)u, Pv) = / x(g, p)e(z, §)b(z, )W (u, v)(z, §)dzdEdAdpdyg

+ % / / x(q, p)ex(x, £){0ub(z, €)Be — bz, €)0; }W (u, v)(z, €) + O(A72).
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Here, we note that the terms corresponding to the second derivatives 9;0:b are
cancelled out.

On the other hand, we obtain

(3.22) (Pb(z, D)u, Pv)

= (b(Qv )\p)PU, P’U) ({a b(q: )‘p)_ - %b(q, /\p)6 }PU P’U)

Here, the remainder terms contain the error terms like

M = 9)erqn(® M) = Buerqn(® AE) = —Dyenap(m, AE).
For any real symbol b, we consider the evolution equation
%E)tu + 5%z, D)u = 0.

Differentiating W (u(t), u(t)) in ¢, we have
(3.23) W (u(t), u(t)) = W(0u(t), u(t)) + W(u(t), eu(l))

W (—ib"u(t), u(t)) + W (u(t), —ib*u(t))
= W(—ib"u(t), u(t)) + W (—ib®u(t), u(t))
— W (b u(t), u(t)) + W (), u(D)).

It follows that the Wigner distribution itself satisfies the transport equation modulo
(A7)

(324) {at + Hb +-- }W(u, ’U) = O, Hb 8§b8 -0, b85

In fact, this is immediately veriﬁed for polynomial b(z,&) without error terms be-
cause we can arbitrarily choose a test function e = a € S(R"™) in (3.21).

For the general case, it is helpful to use the Taylor expansion at (g, Ap) up to
any high order:

(3.25) bz, €) = by(2,& ¢, 2p) + Bw(z,€,9,2p),
where
_\e(E )8
bv(z,& ¢, p) = ) =a) ,(f, ) 85 (8,/X)’b(q, Ap) + Rw (2, €, ¢, \p)
la+181< N algl

Since we can apply the formula (3.24) to by(z,&; g, Ap), the hardest thing is to

estimate the remainder terms to be O(A~V/2).
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4 Schrodinger equations with quadratic Hamilto-
nian
We consider the following essentially self-adjoint operator on Cg°(R"):
H=h0"(z,D,;), Mz,§)= 3 aaps,
lat+B|<2

where a, s are any real constants. We consider the Cauchy problem:

(4.1) %@u + h*(z, D)u = 0,
u(0, z) = uo(z).

Let us denote its self-adjoint extension on L?(R™) by the same letter H. Ac-

cording to Stone’s theorem or Hille-Yosida’s theorem, the solution e~ %Hy, to the

equation (4.1) is continuous with valued in L?(R™). Moreover, we see that e~

CY(R; D(H)) if ug belongs to the domain D(H) of H. However, we require more

Uy €

regularity of the solution. In fact, we need

Lemma 4.1 If the initial function vy belongs to S(R™), the solution v(t) to the
Cauchy problem (4.1) belongs to C*(R; S(R™)).

Proof: = When h = [£|?/2, it holds that
u(t,x) = (27r)_“/eim'ge—itmgﬂﬁ(f)d&.

This formula leads us to the conclusion of this Lemma in this simple case. Q.E.D.

Define the Hamilton flow

¢t(xv 5) = (X<t7x7§)7 E‘(ta T, 5))

by the solution to the equation

dX

(4.2) ZFE

dt

= O:h(X,E)

= —8,h(X,E), X(0) =z, Z(0) =&



We are going to see this phenomenon more precisely. o
To make the situation to be clear, we define the life span of smoothing effects as
follows: Let H = h*(z, D). For u(t) = e™*ug

t,=inf{t >0, u(t) g C®(R") with Ju(z) € &' N L*(R")}.

Especially, we define ¢, = +oo if the above set is empty. Tn what follows, T7*(R?)
denotes T*(R?)\{0}. We consider the Schrédinger operator Ho with magnetic vector
potential:

1

Hy = 5 {~(V —idz)? + (Ez,2)},

where A is a constant real skew symmetric and E is a constant real symmetric
matrices. Moreover, we assume that they commute each other. This means that

essentially, we may assume that n = 2 and

0
A= Pl and E=eld,
—u 0

where p and € stand for positive constants.

Theorem 4.2 Let H = Hy. It holds that

r/VpEte ifpt+e>0

+00 if p2 +e <0.

c =

Furthermore, if p® + & > 0 and ug € &' N L*(R™), then it holds that
(4.3) WFu(t)=0, Vt¢ tCZ |
and
(4.4) WFu(tl) = {(z,6) € T*R?); ((—1)feM‘z, (—1)fetete) € WFug}
for any £ € 7. »
Corollary 4.3 [fA=0and ¢ ’> 0, then
W Ful(t,) _ {(z,&) e T*(R?); (—=z,—) € WFuo}.

If E =0, then
WF'U,(tC) - WF'LLO.
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Remark 4.1 A, Jensen firstly proved the corresponding result for A = E = 0 in
1986. His method is completely different from ours. However, he did not give any

microlocal results.

We can generalize the above result as follows. We consider a self adjoint operator
H on L*(R™) as a second order perturbation of Hy such that the symbol of H =
H - H,

(4.5) o(H) = > aq(z)ee.

satisfies the following condition:

a

ao (T z)rlel. .
a( )ES(< > ) <.’L')2)

The conclusion (4.3) and (4.4) are valid for u(t) = e~#Htyy if k < 2 and x < 1,
respectively.
Moreover, we can characterize the wave front set of the solution at the midpoints

of two adjacent critical times.

Theorem 4.4 Let p? +¢ > 0. Then,
W Fu(t.(¢+ %)) ={(z,€) e T*(R?); ((—1)’Det</2, (—1)*D™1ete/2¢) € W Fy).
Here, iy denotes the Fourier transform of wuq:

0(6) = [ e ug(z)da.

Now, we state creation of new singularities. Let us consider the special initial
data
up(z) = T2 ¢ S'(R?),

- where I stands for the constant real symmetrix matrix. We denote its (real) two

eigenvalues by v; and 72, which may coincide.

Theorem 4.5 If y® + ¢ = 0, then u(t) = e~#Hoyy is smooth if and only if 2t ¢
{=", %3'}. Here, we define Y1 =400 ify = 0.
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Theorem 4.6 Assume that A = 0 and ¢ > 0. Then u(t) = e~Hoy, s smooth if

and only if —2e~* tan(et) does not coincide with the inverse of any eigenvalues of .

These phenomena do not occur under the presence of some magnetic filed.

Theorem 4.7 Assume that y* +¢ > 0. Let D = \/uZ + ¢ then u(t) = e~#Hoyq 45
smooth if and only if —2D~" tan(Dt) does not coincide with the inverse of any real

eigenvalues of ' — A.

Corollary 4.8 Assume thatT'— A does not have any real eigenvalues. Then, u(t) =

e~ "oy, is smooth at any t € R.

We can show the similar results to Theorem 4.5-4.7 when u?+¢ < 0 by replacing
tan by tanh.

5 Microlocal conservation law

The essential part for proving Theorem 4.2 is to show an inequality (or identity)
along the Hamilton flow for the symmetrized wave packet of the solution, introduced
in the previous section. It follows that the wave front sets of solutions at time ¢ is

completely determined by the initial datum and the behavior of the Hamilton flow.

Theorem 5.1 Let ®(x) be a real-valued function in S(R™) and u(t) = e ®Hy,.

Then, we have
(51) [ W(u(t)(@, )W (@) (\/2(z — g), XV2(E ~ p)) dndé
= [ W)@ @ A)W(@) (XV2(x — ), \V2(E ~ p)) dedé  for any A > 1.
When ® is equal to exp(—|z|2/2), it follows that
W(@) (\2(@ - q), A€~ p)) = Balz — ¢, — p).

To prove the identity (5.1), we need the following lemma.
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Lemma 5.2 Let v € C}(R; S(R™)) be a solution to
(0 + ih*(z, D))v = 0.
Then, it satisfies
(5.2) {0+ Ha}W (v(1))(2,6) =0,
where Hy, denotes the Hamilton vector of h(x,§):
H}y, = 0¢h0, — 0phok.

Proof: We only consider the simplest case that h(z,&) = [£]*/2 and @ is the

Gaussian function. Define

(5.3) [z, 8) = W(u(t))(z,§).
By a simple calculation, we observe that
, 1 1 1 1
_ —1y€ Vi — = NG — =
0.7(t,,6) = [ fulo+ Jp)ula — 5u) +vla + Jyule = )} dy
gy 1 _1 P a2 1
= /e 2Av(sc+ 2y)v(a: 2y)dy+/e v(x + 2y)2Av(z 2y)dy
. 1 | [ —— 1
- /e—zyf {ZiAyU(m + éy)ﬁ(:c — %y) +v(z + §y)2iAyv(x - §y)} dy.

An integration by parts with respect to y gives

(54) 8tf(ta z, E)

_ /e—z’yé {_2§ - Vyu(z + %y)ﬁ(a: — %y) +ou(z + %y)2§\7yv(:v — %—y)} dy
= [t Vanla + S0l = 50— vla+ 39)EVe(z ~ o) dy

Notice that
ye W = (Ve .

This leads us to the desired conclusion of Lemma 5.2.
We are going to prove Theorem 5.1. Since h*(z, D) is an essentially self-adjoint

operator on L2(R"), we can approximate the solution u by the sequence of solution



v, € CYR; S(R™), n=1,2,.... Therefore, it suffices to prove the identity (5.1)
for the solution v € C1(R; S(R™)). Lemma 5.2 implies

AW (v(t))(¢"(2,€)) = 0.

Hence,

W (u(t))(¢'(z, X)) = W (u(0))(z, A€) and W (u(t))(z, A§) = W (u(0))(¢*(z, AE))-

Integrating the last identity against the Gaussian function Ej(z — g, € —p)in t from
0 to ¢, we obtain the desired identity. This completes the proof of Theorem 5.1.

Remark 5.1 For perturbed operators, we can no more expect any identity analogous
to the one in Theorem 5.1. Fortunately, we can replace it by an inequality which as-
sures the same conclusion of Theorem 4.2 when A =0 and V(z) € S({(z)*, dz*/(z)?)
with & < 2 ([17]). The sublinear case (when k < 1) can be much easily analyzed
than the other case because the difference between the Hamilton flows corresponding

to the unperturbed operator and the perturbed one is bounded.

6 Outline of Proof of Theorems 4.2—-4.7

Finally, we are going to see how the wave packet identity (5.1) leads us to our
results.

The first step is the following result. For € > 0, let us denote € neighborhood of
any set U of R™ by Us.:

U.={zeR" [z —y| <e JyeU}

Proposition 6.1 Let K be any compact set of R*™ and € an arbitrary positive
number. Suppose that

lim sup |X(Z,¢,\p)| = o0
A= (g.p)eK
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and ¢~ (z, A) is holomorphic in {|{Imé| < o/} for some o > 0. Then, There exists
a positive number § such that for any v € L*(R"™), 3C, > 0,

(6.1)  sup [ W(u)(¢™"(z, \))Ex(z — ¢,€ — p)dzdf

(g,p)EK

< CuA" sup sup fu(y +¢7%(z, M)+ O(e™),  as A — o0
(.6)€Ke lyl<eX

Proof: For simplicity, we shall treat only the simplest case A = E = 0. We
consider the region S, = {z € R™; |z| > rA} with » > 0. Then, there exist a finite
open covering {S,;}; of S, such that each S, is a conic subset such that either
infzes,; Y - €k, > 0 Or SUP,cg, ;Y - ex; < 0 for some 1 < k; < n. Here, e; is the j-th
canonical base of R™: Its j-th component is equal to one and the others are zero.

Then, the integral

62) [ exam(#"(5, M)W (11, )y, M)y
= [[ exam @', Mm)e P uly + 2/2)uly — =/2)dzdn

is equal to the finite sum of the similar integrals I; over the conic set S, ;. We are

going to substitute each integral I; by a new one taken over a path
Fj = {C: T]+€ji€kj)\-l’7'; 0<7< T()}
in the space C™. Here, ¢; =1 or —1 and it is determined such that

sup €5y -ex; <0,
YES, ;NSn—1

which we denote by ¢;. On I';, the integrand of I; becomes
(6.3) e exp{—AMReX(~t,y,X() — ¢)* + MImX (—t,y,X)|*}
x exp{=MAT'ReE(~1,,A¢) = p)* + AN ImE(—t, 5, A()*}
X u(z + 2/2)8(x — 2/2)e " exp{2i(ReX (—t, 5, AC) — g)(ImX (—t, y, \())}
X eXp{zi()‘_lR‘eE(—'ta Y, )‘C) - p)(/\_lImE(—ta Y, )‘C))}
If 75 > 0 is taken to be small enough, we see that

(6.4) Sup eyTOeAllmX(_tﬁ%AC)lze}‘_lIImE(_tﬂ%AC)lz — O(e-éjrk)‘
YESrj, lyl26;mA
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Indeed, the absolute value of the left hand side of (6.4) is less than
(6.5) exp{—6;770\} exp{rEA\} exp{re A"} < Cexp{—(§;rm0 — 1)},

where C is a positive constant independent of 75 and A.

Now, it remains to check the validity of this deformation. It is easy to see that
the left hand side of the expression (6.1) decreases of order exponentially as A — oo
whenever the distance between (z,&) and (g, p) are greater than a positive constant
co. This indicates that it suffices to consider the case where (z,€) is in a compact
set K’ of R™ x (R™\{0}) since (g, p) runs over the compact set K. Therefore, we
may assume that (y, An) in the expression of (6.1) belongs to the image of K’ under
the map ¢*(z, A\§): Namely,

(6.6) y e {z+tX; (z,6) € K'} and n € {X¢; (2,8 € K'}.

From the Riemann-Lebesgue Theorem, it follows that for any compact K of
R™ x (R"\{0}),

timsup [T e (¢, Mty + 2/2)y ~ 2/Ddadd = 0

N=E gty Am)eK

for each A > 1.

Since the same reasoning as for deriving (6.5) implies that the integrand of
the above integral, e”®ey (4. (¢*(y, X()), is a bounded function in (y,(), by the
dominant convergence theorem, we can deform the path of the integral (6.13) into

the following way.

( ) v/R,” n |Z|>E>\ 14 (y 2% ) yA
= \/R"-}—g - /ES, (el 7A d ;
j 1/ oAl 6ej C . r’jli(y'z” )Z

where K(y, z,n, \) denotes the integrand of (6.13). Q.E.D.
When the Hamilton flow has no holomorphic extension in &, we can show the

analogous result to (6.1) by use of integration by parts. Indeed,
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Proposition 6.2 Let K be a compact set of T*(R"). Suppose that

lim sup |X(t ¢, p)| = 0.
A= (g p)ek

Then, there ezists a compact set K D K such that

(6.8) sup [ W(u(0))(¢~"(z,8)Ex(z — ¢, — Ap)dzd¢

(¢p)EK

< CyA* sup sup  |u(y + ¢ g, Ap)) |2+ O(x)
(g,p)EK 2lyl<o~t(g,2p)

for any N € N and X > 1.

Proof: The formula given in the next section tells us that

X(t) = e Tz + S(t)E}, E(t) = e AT (t)x + S'(t)€}

@ s® ) [ S® -S@
@) St )\ -T'@) T

if u? + e #0. The left hand side of (6.1) is estimated by

and that

| Xapr (0, W (o) (X(=,2,36), 2,3, X)/\) Ex(z — g, — p)dodédpdg
for iany nonnegative function x45.(q, p) € C§°(R?") such that
Xapr(g;p) =1 on K.
By a change of variables, the last expression is equal to
(69) 1= [ Xanra,p)W (u0)(z, A) exp[-M(X (D — 0)? + (\Z(0) - p)2)]
x x(t, 2, &, p, W (uo)(x, AS)dzdEdpdy.

Here,

(6.10) Qx(t,,6,9,q) = Xg5r (¢™q,¢7p)
x exp[-M(T()z + St)A — 9)* + (AT (t)z + S'()€ - p)*}).



We have used the fact that e * is an orthogonal matrix. The function @, is expo-

nentially decaying in A outside of
{T()x + SEA—g=0, X'T'(t)z+ S5 (t)§—p=0}
Thus, it suffices to look into the integrand of I on the following set: -
= {(z,6,¢,9); (THz+ SO -+ AT+ 5O -p) 26> 0}.

We split the Wigner transform into two pieces:

(6.1) W (o) (@, 7) = [ " €uo(x +y/2)Tol(z — y/2)dy
= S U /1w|s1y|{' Yy

We consider the two integrals [ @\W;, 7 = 1,2, which are denoted by I; and Iy,
respectively. Hence, I = I + 5.

We are going to estimate I;. Since |z| > |y| implies |z £+ y/2| > |z|/2 and
(z)Nu(z) is bounded for any N >0, it is easily verified that

\Wi(z, )| < Cla|” sup luo(z + ) I*.

From now on, we assume that S (t) is nonsingular. For any 6 > 0 and a compact
set of R2"\{0}, K; stands for the § neighborhood of K. It holds that

|lz| > CAlp|-
From this, it follows that

(6.13) L) <Cx sup  sup  u(y+¢7(g, )"

(g,p)eKe 2|y|<¢d~t(q,Ap)

Now, we are going to estimate concerning I. When |z| < |yl|, we use the identity

()\y> —2N(1 . AE)Ne—z‘/\y-& — e—z’Ay-g

75
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and an integration by parts in £ to obtain
(6.14) [ Wa@u(t,,€,q, p)drdédpdg
= [W(w)@,8) [(a)>¥(1 - AV Qu(t, 2., g, p)dpdadzde.
According to Leibniz’s rule and the identity
(6.15) 8 exp[-M(T(O)s + S(E)M¢ - 0 + (VT (1) + 5'(1)¢ - p)?}]
= {-25()0,~ 5 ()3, exp[-M (T ()z-+ S~ + AT (D)o + 5'() )2,
an integration by parts in (g, p) gives
| [ ()™ (1 = 20 Qa(t, 7,6, 4,p)dpda] < C [ (221 Qu(t,2,€, g, p) dpdg

Using the same reasoning as in the previous case, it holds that |z| > CA[p| on .

Therefore, we can conclude for any N > 0,
L =0\ as A - .

provided that S(t) is nonsingular. Q.E.D.

The following is a direct consequence of Proposition 6.1 or 6.2.
Corollary 6.3 Let K be a compact set of T*(R™). Suppose that

lim sup |X(t g, \p)| = co.
A—o00 (g.p)EK

Ifu(z) € L*(R™) satisfies

VNEN, 3C>0 / |u(@)|<CA+|z|)™ forallz e R",
then, for every compact set of R x R™ {0},

[ W@ 6@, 2 Bale ~ .6~ p)dadg = OAY), YN > 1

As for the proof of reconstruction of singularities (4.4), we have to use the same
idea as in the proof of Theorem 2.2 for the general case. We also omit this for saving
pages. However, we note that if A = 0, the proof is almost trivial.

For proving Theorems 4.5-4.7, we shall use the following useful relation.



Lemma 6.4 Let ' be a real symmetric matriz. Then, it holds that
W (e ug) = W(ug)(z, & — 2I'z).
Here, W (u) denotes W(u,u).
Let
B(t) = cos(Dt) + D7'2(T" — A) sin(Dt).

We observe that

X(t,z,2z) = e B(t)z, E(t,z,2I'z) = e B (t)z.
Therefore, Theorems 4.5-4.7 follows from the next result.

Lemma 6.5 Let u(t) = e~#0t¢iT22) and t be fized. Then, u(t) belongs to C=(R?)
if and only if the matriz B(t) has no zero eigenvalue. Furthermore, if B(t) has zero

eigenvalue, then

WFu(t) = {(0,p); p€ R°\{0}, p=B'(t)g, q € kerB(t)\{0}}.
Proof: If the dimension of the subspace

H = {z € R* B(t)z =0}
is positive, then one can find a couple of nonzero vector ¢ and p such that
X(t,A\g,2T'A\q) =0
and
=(t, Mg, 2T Ag)/ A = p.

These relation imply that
(6.16) |Pxu(t)|*(0,p) = /E,\(X(t,x,ZI‘az),E(t,m, 2I'z) — p)dx

= [ BA(B®)(@ = 2g), X' B (1) & — M)d
Since
|B(t)z|® + |B'(t)z[* > 6|z, >0,
we can show that the integral (6.16) does not decay rapidly.

If the contrary case holds, we can easily show that (6.16) is rapidly dereasing.
Q.E.D.

7
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7 Hamilton flows

As described in the previous section, the behavior of the Hamilton flow is im-
portant. In this section, we shall give the explicit formula for the solution.

When p?+¢ > 0, let D = v E + A2, which is a positive scalar matrix. It follows
that

Lemma 7.1 Assume that pu* + ¢ > 0. Then, the unique solution to (4.2) is given

by
(7.1) X(t)=e {(cos(Dt) —2AD™! sin(Dt)) r+ D! sin(Dt)fS}
and
(7.2) 5(t) = e~ 4 {(—Dsin(Dt) — 24 cos(Dt)) z + cos(DE)E} .
Here, ‘ ' ’ '

cos B = fi_gfﬂ’ sin B = e _22_6_&

Lemma 7.2 Let y?> +¢ = 0. Then, the unique solution to ({.2) is given by
(7.3) CX() = e Mo+ 1), E(t) = e A
Lemma 7.3 Assume that p?> +¢ < 0. Let \/T—l—e) = J. Then, the unique
solution to (4.2) is given by
(7.4) X(t) = e {(cosh(Jt) — 24 sinh(Jt)) z + J ' sinh(Jt)¢ }
and
(7.5) E(t) = e~ {(J sinh(Jt) — 2A cosh(Jt)) z + cosh(Jt)£} .
Let qzt(a:, €) be the Hamilton flow corresponding to the perturbed Hamiltonian
(4.5). Then, it holds that

Lemma 7.4 Let K be any compact set of T*(R*"). If k < 1, then

lim sup |¢'(z,€) - ¢'(z,€)| = 0.
—®(zL/N)EK
If1 <k <2, then
sup |¢%(z,€) — ¢'(z,&)| = O(XY),  as X — oo.

(z£/MEK
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