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ENTROPY FOR EXACT C*-DYNAMICAL SYSTEM
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2. Bk & EROMEE
2.1. Definition. Given a unital separable C*-algebra A, a state ¢ of A, and a
$-preserving automorphism « of A, let m be a faithful *-representation of A on

a Hilbert space H, and let £ € H be a a cyclic unit vector for m(A) such that

#(a) =< m(a)¢, €& > . Let

CPA(A,B(H)) ={(o,n,C) : Cis a finite dimensional C* — algebra and

0:A— C,n:C — B(H) are unital completely positive maps}.
Given (p,n,C) € CPA(A,B(H)), C has the state wgon of C :
we on(c) =< n(c)€, > forall ceC.

The von-Neumann entropy of the state we o7 is denoted by S(wg o 7). For a finite

subset w C A, and a § > 0, put

scpg(m,w,8) = inf{S(wg on) : (o,n,C) € CPA(A, B(H))

and ||n o o(a) — 7(a)|| < d]lal|, for all a € w}.

The scpy(m,w, d) is defined to be oo if no such approximation exists.

The value scpg(m,w;é) does not depend on the choice of the representation

7 : A — B(H) by the following Lemma 2.1.1 so that we denote scpy(m,w;d) simply

by scpg(w; d).



2.1.1. Lemma. If m; : A — B(H;) is a *-representation for i = 1,2, and if
£ € H; is a cyclic vector for m;(A) such that ¢(a) =< m;(a)é;, & > for i = 1,2,

then scpg(m,w;d) = scpy(ma,w;d).

For a unital ¢-preserving automorphism o of A, put
htg(a,w ;) = lim —:-l—scp (WU a(w)U--- U (w);d)
ANt ’ N—oco N ¢ ’

and

hty(o,w) = sup htg(a,w ; 6).
6>0

Then the entropy hts(a) of a is defined by

htg(a) = sup htg(a,w),
weR

where () is the set of all finite subsets of A.

2.1.2. Remark. A unital C*‘algebra A is exact if and only if for some C*-algebra
B there exists an embedding ¢« : A — B which is nuclear, that is, for arbitrary
€ > 0 and for every finite set w C A there exist a finite dimensional C*-algebra
C and unital completely positive maps lp : A — C and n : C — B such that
lle(a) —nop(a)]| < e for all a € w. ([K2 : Theorem 4.1], [W]).

We remark that if A is exact, then the GNS-representatation 7 : A — B(H ) of
¢ is nuclear map (so that the approximation approach for scpy(w; §) is reasonable).

Let C be a finite dimensional C*-algebra. The rank of C is the dimension of
a maximal abelian C*-subalgebra of C' and it is denoted by rank(C). We denote
by Myank(cy the matrix algebra which has the same rank and the same diagonal

algebra with C.



2.2. Lemma. Assume that C is a finite dimensional C*-algebra and thatn: C' —
B(H) is a unital completely positive map. Then there ezists a unital completely

positive map 7 : Myonk(cy = B(H) such that
n(a) =i(a), (a€C) and S(Yon)=S(on),

for all state ¢ of B(H).

Remark. As a a consequence of Lemma 2.2, we may treat only the triplet
(p,n,C) € CPA(A, B(H)) such that C is some matrix algebra M,(C) in the defi-

nition of scpg(w;d).

2.3. A similar entropy (which we denote for a little while by hty(a)) as hty(a) was
defined for an automorphism « on a nuclear C*-algebra A preserving a state ¢ of
A in [Ch2]. The definition was given by replacing the definition of scpy(w; 6) to
the scpy(w;d) defined as follows : Let CPA(A) the triplet (¢,n,C), where Cis a
finite dimensional C*-algebra, and p: A — C and n: C — A are unital completely

positive maps. For a finite suset w of A and a § > 0, let
scp'¢(w; 0) =inf{S(¢on):(0,n,C) € CPA(A),|nopla)—al <¥,a€w}
then At} (a,w ;9), ht)(a,w) and hty(a) are defined by the same formula as htg(a).

2.3. Proposition. If A is nuclear and ¢ 1s a state of A whose GNS-representation
18 fasthful, then

hty(a) = htg(a)
for every automorphism o of A with ¢oa = ¢.

2.4. Proposition. Let (A, a,d) be a C*-dynamical system, where A s ezact and

@ has faithful GNS-representation.



(1) The monotonicity : If B C A is a C*-subalgebra. with the same unit with A and
a(B) = B, then htg(a|p) < hty(a).
(2) hty(a®) = |k|hty(a) for allk € Z.

(8) The covariance property : htg(a) = htgog(c ™ 0 a0 o) for all o € Aut(A).

2.5. Proposition (Kolmogorov-Sinai Property). If (w,).er s a net of finte

subsets of A such that the linear span of |J,cr Upez @™ (w.) 1s dense in A, then

htg(a) = sup hty(a,w,).

2.6. Proposition. Given C*-dynamical systems (A;, o, &;), where A; is ezact

and &; has the faithful GNS-representation for 1 = 1,2, we have

max{hty, (01), htg,(a2)} < htg,@ss(on ® az) < htg, (a1) + htgy(as).

2.7. Relations among Other Entropies.
The relation between the Connes-Narnhofer-Thirring dynamical entropy hg()

and the Brown-Voiculescu topological entropy ht(«a) was obtained by Dykema [Dy].

We give here more presice relation.

2.7.1. Proposition. Let (A, «a,¢) be a C*-dynamical systems such that A s ezact

and ¢ has the faithful GNS-representation. Then
he(a) < hty(a) < ht(a).

To prove that hg(a) < htg(a), we review the definition of the CNT-entropy
hg(a). Let v : Mp(C) — A be a unital completely positive map, where My (C) is
the k x k matrices.

An abelian model A = (B, P,u, By, Ba,--- , By,) for (A,¢,(a' 0v)2%') consists

of an abelian finite dimensional C*-algebra B, a unital completely positive map



P : A — B, a state u such that u o P = ¢ and *-subalgebras By, By, -- B, of B

which contain the same identity of B. Put P; = E; 0 Po a’ o~ and

su(P;) = S(uls;) Zu DS (@0 v[6).

Here m; is the dimension of Bj, {p(] di=1,-m ;} is the minimal projections of
B; generating Bj, and {d)gj);i = 1,---,m;} is states of M}(C) obtained by the
method that

Pi(z) = BjoPoat or(a) = 3 6P (@pl?, (2 € Mi(C))
=1

for the p - conditional expectation E; : B — B;. The entropy H(A) of such an

abelian model A is defined by

3

H(A) = Mlv su(P

i=1

Here we need the following 2.7.2 and 2.7.3.

2.7.2. Remark. The value H(A) does not change when we replace B and
{B;}j=1,...n by Be and {Bje};=1.... » respectively for the support projection e

of . Hence we may assume that the state p in A is faithful.

Letting Hy((a 07)"23) = sup 4 H(A) and hy a(7) = im0 L Ho((ad 07)720),

the hy(a) is defined by the supremum over all posible +’s of the values hg (7).

2.7.3. Lemma. Let A be a C*-subalgebra of B(H) containing the identity oper-
ator, and let £ € H be a cyclic vector for A. Let B be a finite dimensional abelian
C*-algebra, and let p be a faithful state of B. Then every completely positive linear
map P : A — B with poP = wg has a completely positive extension P' : B(H) = B

with po P’ = we.



Remark. Remark that the three entropies hy(a), hty(a), ht(a) are different by

examples given in [Ch2 : Examples 2.6.4, 2.6.5].

3. Crossed Products

In this section, we estimate the entropy for some automorphisms on the C*-
crossed productd of an exact C'*-algebra A by a discrete countable amenable group
G, and we need some results of this section in the next section. Remark that if A
is exact and G is amenable then the crossed product is exact By Kirchberg [K1].

The statements in this section are analogous of [BC : Lemma 3.1] and [Ch3 :
Cor. 3.4, 3.5]. In the latter, we obtained an estimate of the topological entropy for
an automorphism on the crossed product by using the entropic invariant h(6) in
[Ch3] for an automorphism 6 of an amenable discrete group G. Here we discuss on
our dynamical entropy by using the entropy ha(#) by Brown and Germain [BG] :

Let K C G be a finite subset, and for an § > 0 we denote by F(K, ) the set
of functions f on G such that f(g) > 0,(g € G), |supp(f)| < oo, ||fl1 =1 and
> g 1f(R71g) = f(g)| < 8, (h € K), where supp(f) is the support of f and | K| means
the cardinality of K. Let ra(K,¢) = inf{|supp(f)| : f € F(K,4)}. A function f on

G is minimal for (K, §) if f € F(K,d) and if |supp(f)| = ra(K,d). Let
n—1
- . 1 (7
ha(0, K, é) = lim sup — log(ra( U 6'(K),$)),
n—oo T i=0
ha(0, K) = supg~q ha(6, K, ). Then the entropy ha(0) is defined as the supremum
of ha(8, K) over all finite subset K of G. To fix our notations, we review the deinition
of the reduced crossed product. Let A be a C*-algebra acting on a Hilbert space H,
and let o be an action of a discrete countable group G on A, that is, a : G — Aut(A)

is a homomorphism. Then the reduced crossed product A x, G is the C*-algebra

on [*(G, H) generated by m(A) U \g. Here 7 : A — B(I*(G, H)) is a faithful *-
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reprensentation defined by (7(a)é)(g) = a;'(a)é(g), (€ € I*(G,H)), and A : G —
B(I*(G, H)) is a unitary repsentation given by (A\,&)(k) = é(g71h), (€ € I*(G, H)).
There exists the faithful conditional expectation E of A X, G onto 7(A) such that
E(m(a))\y) = 0 for all g € G except the unit e and a € A. Given a state ¢ of
A, we denote by the same notation ¢ the state ¢ o 7! on m(A). Then we have

the state ¢ o E of A x4 G. For a subset w of A and a subset K of G, we let

wg ={m(a) ;1 a €w,g € K}.

3.1. Lemma. Let A be an ezact unital C*-algebra, and let ¢ be a state of A whose
GNS-representation my is faithful. Let G be a discerete countable amenable group,
and let a be an action of G on A with ¢ o a = ¢. Given a finite set K C G and
§ >0, let F = supp(f) for some minimal function f for (K,6%/2). If w is a finite
subset in the unit ball of A, then
sepgor(wr.8) < sepol | 07" (), 3) +log(|F).
geF:

3.2. From a view point of entropy, an interesting example « is an automorphism of
the shift type, that is, @ is the automorphism of ], ., Gi (restricted direct product)
induced by the map i € Z — 1 + 1. Here G;, (i € Z) is a copy of a finite group Go.

We consider a condition which is satisfied by such an automorphism. Let G be

a discrete group and let § € Aut(G).

3.3. Condition (*) for (G,6) : Given a finite set K C G and ¢ > 0, there exist
a finite subgroup L C G such that for all all n € N we can choose a a minimal
function f,, for (U} 6%(K), ) whose support supp(fr) is contained in the product

set LO(L)---6™"1(L).



The pair (G, 8) in 3.2 satisfies (*) by taking the smallest subgroup L O K for

given finite set K C G.

3.4. Let A be an exact unital C*-algebra, and let ¢ be a state of A whose GNS-
representation 74 is faithful. Let G be a discerete countable amenable group, and
let o an action with ¢ 0 ay = ¢ for all g € G. In the next Theorem, we study the

entropy for a ¢ o E-preserving automorphism v of A x, G which satisfies that
v(m(A)) =w(A) and ~vy(Ag) = Ag-

This condition is equivalent to that v o 7 is a ¢-preserving automorphism of A.
Remark that we can construct such an automorphism ~ from a ¢-preserving
automorphism of A as in [Ch3], [DS]. In the section 4, we treat such a v which

asises through the reduced free product construction.

Theorem.
(1) If v(Ag) = Ay for all g € G, then
htgor(Y) = Bto(Vlm(a))-
(2) Assume that v commutes with Ad\, for all g € G.
(2.1) If (A\g,~) satisfies (*), then
htgor(Y) < hte(vln(a)) + ha(vlxs)-

(2.2) If G is abelian and if a finite subset of G 1s contained in a finite subgroup,

then the inequality in (2.1) holds.

4. Entropy of Free Products
In this section, we investigate entropies for automorphisms which arise naturally

by the free product construction. (See [BC, Chl, Ch3, D2, DS, S1, S2] for other

11
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kind of computations of entropies for automorphisms on the reduced free product

C*-algebras.

4.1. For a set I, let A;,i € I be a unital C*-algebra with a state ¢; whose GNS
representation is faithful. The reduced free product (A, ¢) = i zI( A, ¢;) defined by
Voiculescu [V1] (see also [VDN]) is the pair of a unital C*-algebra A with unital
embeddings A; < A for all : € I and a state ¢ such that

(1) dla;, = ¢4, forall 1 € I,

(ii) the family (A;);er is free in (A, ¢),

(iii) A is generated by the family (A4;).er,

(iv) the GNS reprentation of ¢ is faithful on A.

Here, the statement (ii) means that ¢(ajas - - - an) = 0, whenever a; € A,;, ¢(a;) =
0 and ¢j # tj4q for j € {1,2,--- ,n — 1}. The state ¢ is denoted by izl_@.

In the case where all ¢; are tracial state, lzlgbz is a tracial state of A ([Av]).

A reduced word a in (A;)ier is an element in A given by an expression of the
form a = ajas - -a,, where n > 1,a; € A,,,6,,(a;) =0 and ¢; # o, ,tn—1 F tn-
The ‘It_lumber n is called the length of the reduced word and the set {¢1,¢2, - ,tn}
is called the alphabet for the word.

The linear span of all reduced words in (A;)ier is dense in A. Let a; be a
*_automorphism of A;, and let ¢; be an «;-invariant state of A;. Then there ex-
ists a ¢-preserving automorphism « of the algebra A such that a(ajas---a,) =
a,(a1)a,(az2) - a,,(an) whenever a; € A,;,¢(a;) = 0 and ¢; # tj41 for j €

{1,2,--- ,n — 1}. The automorphism « is denoted by hiCH



Theorem. Let I be a set, and for every ¢ € I let A, be a unital finite dimensional

C*-algebra with a state ¢, whose GNS—representation 18 faithful. Let

(Av d’) = L* (AL’¢L)'

el

(1) If w C A is a finite subset of reduced words in (A,).c1, then
scpg(w, d) : 0, forall §>0.
(2) For every ¢-preserving automorphism a of A, we have that
hg(a) = hty(a) = 0.

Let G be a countable discrete group, and let A the left regular representation of
G. We denote by 7 the trace of the C*-algebra C}(G) generated by Ag defined by
TG(Ay) = 0 for all g € G except the unit. An automorphism 6 € Aut(G) induces

the automorphism 8 € Aut(C?(G)) by 8()\,) = Ag(,) for all g € G.

4.2. Proposition. Let B be a finite dimensional C*-algebra with a state 1 whose

GNS-representation 1s faithful. Let G be an amenable discrete group. Then
htrg(0) < htreup(0 % 8) < ha(8),

for all 6 € Aut(G) and B € Aut(B) with p o B =1.

Proof. First, we prove that ht, .., (8 * 8) < ha(6).
Let

("47 Lto) = (C:(G)vTG) * (Ba?vb)

Let Ay = A\gB)} for all g € G, and let A be the C*- subalgebra of A generated

by {A,; : ¢ € G}. We denote by ¢ the resriction ¢|4 of the state ¢ to A, and

13
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by ¢, the state ¢|4,. Then A is isomorphic to the C*-algebra which is obtained

o~

(Ag,¢g), and A

from the reduced free product construction, that is, (A4, ) , e
is isomorphic to the crossed product A x4 G ([CD : Claim 4]). Here we define the
action o of G by ay(z) = Mgz} for all z € A. Then o a(z) = ¢(z) forall z € A
because ¢ is the restriction of 7g * . In this situation, we have that ¢ = ¢ o E,
where E : A — A is the ¢-conditional expectation such that E(A,) = 0 for all
g € G except the unit. For the sake of simplicity, we denote 6 x 8 by ~. Then
Y(A) = A and y(Ag) = Ag(y) for all g € G. It is clear that ¢ 0y = ¢.

First, we apply Lemma 3.1 to compute htyog (7). Let w C A be a finite set and
let K C G be a finite set. Let W be the set of all reduced words in (Ay)gec. We
may assume by Proposition 2.5 that w C W. Also we may assume that K contains

the unit 1 of G and all elements in w has the norm less than 1. For an n € N, let

w(7,n) = Ui (w) and K(6,n) = U7 6°(K). Then
wr Uy(wk) U+~ Uy Hwk) C w(¥,n)k6.n)-

Given § > 0 and n € N, let F = F(6,n) be the support of some minimal function
for (K(6,n),4%/2). Then by Lemma 3.1, we have that
B 5
Scp¢oE(w(77n)K(9,n)a 5) < Scp¢( U a, (W(’Y, TL), 5) + log lF‘
geF
On the other hand, A, is finite dimensional for all ¢ € G, and if w C W then

User @5 ' (w(v,n)) C W. Hence we have by Theorem 4.1 (1)

_ 4]
scp¢( U Qg 1("‘)(’71”)7 '2_) =0.
geF

This implies that ht,(8 * 3) = htgop(7) < h(8).

Since htTG(é) < ht¢(é * 3) by Proposition 2.4, we have the conclusion. 0O



4.3. If (A, @, ¢) is a C*-dynamical system, and (H, 7, £) is the GNS-triplet of ¢, and
& the extension of a to the von Neumann algebra M = n(A)", then hy(a) = hy, (@),
([CNTY)). Furthermore, if ¢ is a tracial state of A, then h, (@) is the Connes-St¢rmer
entropy H (&) of a finite von Neumann algebra M ([CS)).

For an automorphism 6 of an discrete group G, we denote by 6 the automorphism
of the group von Neumann algebra L(G) induced by 6.

Let (M;, ;) be a von Neumann algebra with a faithful state for 7 € I. The

free product (M, ) (M;, ;) has the same structure as in 4.1 ([V1, VDN]).

= %
el
And if o; is an automorpism of M; with ¢; 0 o; = ; for ¢ € I, then we have the

automorphism 216” of M with the same property as in 4.1.
[3

Corollary. Let B, 3 be the same as in Proposition 4.2. Assume that G is dis-

crete and abelian, and 0 € Aut(G). Then
hrg (8) = htrg (8) = htrgup(0 % B) = hrop(8) = ha(8) = ht(0).

In the case where v is a tracial state, we have that

— ~ ~

H(B % B) = hrgup(6 % 8) = htrgep(8 % B) = hrop(6).

Proof. Peters [P] introduced an entropy h(a) for an automorphism o of an abelian
discrete group G and he proved that h(a) equals the Kolmogorov-Sinai entropy
for & which is nothing but the classical topological entropy hrop(&). On the other

hand, by [BG : Theorem 4.1] ha(a) = h7op(&). Hence we have
hrg (é) < htrg (é) < htTG*w(é *3) < ha(f) = hTOp(é) = ht(é) = hrg (é)

by combining Proposition 4.2 and known results in [V2].

15
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If ¢ is a tracial state, then Tg* is a tracial state of A in the proof of Proposition
4.2. By the definition in [CS], H(-) is monotone, i.e. if N C M is a von Neumann
subalgebra such that a(N) = N for given automorphism o of M then H(a|n) <

H(a). Hence by the avobe fact for CNT-entropy and Proposition 2.7.1, we have

These inequality implies the desired equality. O

4.4. Theorem. Let B be an ezact C*-algebra, and let 1) be a state of B whose
GNS-representation is faithfuln. Let G be an amenable discrete group. If B is an

automorphism of B preserving ¢, then

ht * ﬂg) = htrG*¢(idG * ﬁ)

wg(gEG

*
g9€eaG
Here, 3, and v, are copies of 3 and v respectively for all g € G, and idg 1is the

identity automorphism of C}(G).

Proof. Our proof is a similar line to the proof of [Ch3 : Theorem 4.3]. Let A, A and
A,(g € G) be the algebras obtained by the same method in the proof of Proposition
4.2 from G and B. Then A is decomposed into the crossed product A x4 G. This
time, the automorphism v = idg * 8 of A = A x4 G satisfies y(4) = A and
¥(Ag) = A, for all g € G. The the state 7¢ * ¢ is nothing but the extension of the
state . észpg by the conditional expectation E from A to A. Here 1, is the state of
Ay given by ¥4(AbA3) = (b),(g € G,b € B), and so 1, coinsides with ¢,. Since
all conditions Theorem 3.4 (1) are satisfied, we have that ht,;.y(7) = htrgep(v]a)-
On the other hand, v|4 behaves as , ;Gﬁg, where (3, is the automgrphism of A,

defined by By(A;bA;) = A\B(b)A; for all g € G. These imply the conclusion. O
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4.5. Corollary. If G is an abelian discrete group and 6 € Aut(G), then for each

positive integer k, we have

A ~ ~ ~ — —

hro(0) = hrguenrg (@ % - % 0) = htrgurnrg(§5 - % 8) = H( x--- % ).
k k k

In particular, if o 1s the Bernoulli shift of an infinite product X of the n-point space
for an integer n and p is the state on C(X) given by the product of the uniform

measure, then for each k € N

Ppysexp(g* - %0) =htyeup(ogx---x0)=logn = H(G*---*35).
k k k

Proof. We apply Corollary 4.3 to B = C*(Z) of the cyclic group Z; and ¢ which

is the trace 7z, . we denote it by 7. Then
hrg (é) = htrgar, (é * idg, ).

On the other hand, we apply Theorem 4.2 to B = C*(G) and 8 = f. Let us take

Zy, as the group G in Theorem 4.2 . Then

~ ~

htrgun, (6 % idz,) =htr swrg(§ % --- % §)

> H(8) = hy(6).
If we consider HieZ G; as the gourp G, where G; = Z,, for all 1 € Z, then we

have the result on the Bernoulli shift. O
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