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1 Introduction

Let us consider the following one-dimensional one-phase Stefan problem for sublinear heat
equations. The problem is to find a curve z = £(t) > 0 on [0,T], 0 < T < oo and a function
u =u(t,z) on (0,T) x (0, 00) satisfying

Uy = gy + Ut in QT ) == {(t,z) : 0 <t <T,0 <z < £(t)}, (1.1)
u(t,0)=0 for0<t<T, (1.2)
u(t,z) =0 for 0 <t < T and z > £(t), (1.3)
¢ (t)(= %E(t)) _ _uy(t0(t) for0<t<T, (1.4)
w(0,7) = ug(z) for z > 0, (1.5)
£(0) = £, (1.6)

where —1 < a < 0, €5 > 0 and uy is a given non-negative initial function.
Throughout this paper we put f(r) = r'*® if r > 0, = 0 otherwise, and denote by SP :=

SP(f, uo, ) the above system (1.1) ~ (1.6).
In our problem « is supposed to be negative. Hence, we need a careful treatment for

sublinear heat equations because of the lack of the Lipschitz continuity of the nonlinear term.
Here, we list some results concerned with uniqueness for the following initial boundary value

problem (P):
v, =Av+v'T  in (0,T) x Q,
v=0 on (0,7) x 04,
v(0,z) = vo(z) for z € Q,

where Q is a domain in R" and v is a given initial function on . It is well-known that the
uniqueness theorem dose not hold generally. Fujita and Watanabe [13] have shown that (P)
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admits a positive solution for vg = 0. If the initial function v, is not identically zero, then the
nonnegative solution of (P) with Q = R" is unique (see Aguirre and Escobedo [1]). Recently,
Cazenave, Dickstein and Escobedo have also established the uniqueness of solutions of (P)
for any bounded domain Q in [11]. Also, we refer to, for instance, [9, 8, 17], for sublinear
elliptic problems.

In case a > 0 the authors have considered the above one-phase Stefan problems and have
shown behaviors of the free boundary of a blow-up solution, and global existence and decay
of a solution with a small initial data [4, 6, 2, 5]. Moreover, the following result A) concerned
with the large-time behavior of a solution to SP for & € (—1,0) was already obtained in [14].

A) If u grows up, then £(t) — oo as t — oc.

In this paper we consider only non-negative solutions because the uniqueness theorem
holds for only them. Our main results are stated as follows: -

1) (Global existence and uniqueness of a solution) The problem SP admits one
and only one non-negative solution on the time interval [0, c0).

2) (Comparison principle) Let {u;, £;} be a non-negative solution of SP(f, ugi, £o;)
on [O,T] for i = 1, 2. If Ug1 < Ugo and 601 < 602, then U < Uy and 81 < éz.

3) (Growing up of a solution) £(t) — oo and u(t,z) — oo for any z > 0 as
t— oo, if ug # 0.

In section 2 we give precise assumptions for data, a definition of a solution of SP and
a theorem concerned with the global existence and the uniqueness without their proof. We
consider the classical solutions, which means that u,, and u; are continuous, because the
strong maximum principle is applied in the proof of uniqueness. When we study large-time
behavior we do not need uniqueness. Then it is not necessary to deal with classical solutions.
In order to simplify our argument we give another definition of a solution of SP in section
3. Also, we shall provide some lemmas to investigate large time behavior. Finally, we shall
prove that the solution with non-zero initial data always grows up.

2 Global existence and uniqueness

We begin with assumptions for data, the definition of a solution and the statement of our
result. Throughout this paper, we use the following notations of function spaces and norms,
CN+([0,T)), |z|len+ oy, CNT(Q) and |z|gn+v (), where N = 0,1,2, v € (0,1),0< T < 00
and Q is a non-cylindrical domain, in general. The precise definitions of these notations are
given in [12; Section 2]. : '

Now we give the definition of a solution of SP(f, ug, 4) in the following way.

Definition 2.1. We call that a pair {u, £} of functions u on (0,7 x (0,00) and ¢ on
[0, 7] is a solution of SP(f,u, %) on [0,T], if the following conditions (S1) ~ (S3) hold:
(S1) u > 0on (0,T)x(0,00), u € WH2(0,T; L*(0, 00)), tiz € C*(Q(T';£)), Uza € C(Q(to, T L))
for any to € (0,77, 3 ~ ' :

¢>0on[0,7] and ¢ € C***([0,T7]),
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where v € (0,1) and Q(to, T; £) = Q(T;£) N {t > to};
(82) ws = uge + f(u) in Q(T}; 4);
(S3) (1.2) ~ (1.6) hold.
Moreover, a couple {u, ¢} is said to be a solution of SP(f, ug, %) on an interval [0,7"),
0 < T' < o0, if it is the solution of SP(f, ug, ¢) on [0,T] for any 0 < T < T".

The next theorem is our main result which shows the existence and uniqueness of our
problem SP(f, ug, £p).
Theorem 2.1. Assume that o > 0 and a nonnegative function ug on [0,00) satisfy
ug € C'*([0,4,]) for some B € (0,1), ug > 0 on (0,4), ue(0) = 0, ug = 0 on [fy,00),
ugz(0) > 0 and upz(by) < 0. Then, there exists one and only one solution {u,t} of
SP(f, ug, £y) on [0,00).

By the proof of the existence and uniqueness, it is easy to get the comparison principle

for SP.
Corollary 2.1. Let T > 0. Fori=1,2 assume that £y > 0 and a nonnegative function

ug; on [0,00) satisfy ug; € C1A([0, byi]) for some B € (0,1), ug; > 0 on (0, 4y;), ue:(0) = 0,
uo; = 0 on [£0i7 OO), UOw(O) > 0 and um(fm) < 0. Let {uz,&} be a solution Of SP(f, u0i7€0i)
on [0,T) fori=1,2. If by; < loe and ug; < ugz on [0,00), then £; < £y on [0,T] and uy < ug
on (0,T) x (0,00). ,

Here, we omit the proofs of the above theorem and corollary because the complete proofs
are given in [7].

3 Auxiliary lemmas

In the final section we shall discuss the asymptotic behavior of solutions of SP. We do not
need a uniqueness theorem when we study the large-time behavior. Hence, we give another
definition of a solution to SP and an existence theorem.

Definition 3.1. A pair {u, ¢} is a solution of SP(f,ug, %) on [0,T] if the following
conditions hold:

(S1’) w > 0 on (0,7) x (0,00), u € Wh2(0,T; L?(0,00)) N L>®(0,T; H'(0,00)), £ > 0 on
[0,T] and £ € W'3(0,T).

(S27) (1.1) holds for a.e. (t,z) € Q(T;£), (1.2) and (1.3) hold, and ¢ (t) = —u.(t, 4(t)-)
for a.e. t € [0,T].

(S3”) u(0,z) = ug(x) for z > 0 and £(0) = 4.

Also, we call that a couple {u,¢} is a solution of SP(f,ug, ) on an interval [0,7"),
0 < T < o0, if it is the solution of SP(f,ug,%) on [0,7] in the above sense for any
0<T<T.

From now on we always consider a solution of SP in the sense of Definition 3.1. The next
theorem guarantees the existence of a solution of SP.
Theorem 3.1. Assume that £y > 0, ug € H'(0,00) C C([0,00)) with ug > 0 on
[0,00), u(0) = 0 and up = 0 on [€y,00). Then, there exists a solution {u, €} of SP(f,uq, %)
on [0,00).
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In order to prove the theorem we introduce the following approximate problem SP, :=
SP(fe, uo, £o) where ¢ > 0 and

£ (r+¢e)tte —elte if r >0,
s (1+a)er otherwise.

Clearly, for each € > 0 f.(0) = 0 and f, is Lipschitz continuous on R. Hence, we obtain
the local existence in time and uniqueness for the approximate problems.
Lemma 3.1. (cf. [15, 8]) Let € > 0. Under the same assumptions as in Theorem 3.1
there exists a positive constant Ty > 0 such that the problem SP. has a unique solution on
[O7T0]-

In order to prove Theorem 3.1 we use the following energy inequality.
Lemma 3.2.  (c¢f. [16; theorem 2.3 and lemma 5.1]) Suppose that the same assumptions
as in Theorem 3.1 hold. Let {u, £} be a solution of SP. on [0,T], T > 0. Then, the
following inequality holds:

1d d .
e () o000 + 5 e Doy + S 1LOP < 5 [ o0 for ace. 1€ [0,T], (31)

where fe(r) = fO fs(g)dg forr € R.

Proof of Theorem 8.1. Let T > 0 and € € (0,1]. By Lemma 3.1 we have a solution
{ue, €} on [0,7;] where 7. > 0. Let [0,7.) be a maximal interval of the exisitence of a
solution of SP.. We assume that 7, < T" and put T, = min{7T, 7. }. Immediately, we obtain

es(t) ~ fs(t) 2 :
| A ®de <8 [T ) Pda + Cate 1),
where 6 > 0 and Cj is a positive constant depending only on §. Integrating it we get
t 1 : 1t
) aer (o + 5 oy + 5 | 1) P

~

1 £e(t)
ltocal3a00) + 0 /0 luc()|dz + Cslu(t)  for ae. £ € [0,T2].
Here, we note that '
Le(t) 9 Le(T) 9 y ~
/ lu (t)]|“dz < 275/ / |uer (T)|“dzdT + 2/ lug|*dx fort e [0, 7],

and
t A
0.(t) < n/ 10.(7)Pdr + Cyt + b for 0 <t < To,
0

where 7 > 0 and C,, > 0.
Consequently,

/|u57 |L2(oe€(f) dr + - ]uex( ILZ(OEE(t /Ilf' |3d7'
|U0z|L2(040)+25 T// |ter (T 20l35d7'+/ e |2dz)

+C5(n /0 10 (7)Bdr + C,T + &) for 0<t <1,
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By choosing § and 7 as sufficiently small numbers it holds that
1 rt 1 1 rt
2 [ er () + Gluse Ol + 7 ) 1

1t 1t i
—2-/0° lugeo|2dz + -2—/0° (e |Pdz + C5C,T + Csby  for 0 <t < T..

In particular, there is a positive constant L; independent of € such that
0.(t) <Ly for0<t< 1.

From the above estimates and Lemma 3.1 the solution {u, £} can be extended beyond time
T. for each € € (0,1). This is a contradiction. Therefore, SP. has a solution on [0, 7] for
each ¢ € (0,1]. Moreover, the above estimates hold for ¢ € {0,T]. Particularly, ()L, for
0<t<T.ande€ (0,1].
Hence, we can take a subsequence {¢,} C {¢} with &, — oo such that
¢, — { weakly in W*(0,T) and in C([0,T]),

ue, — u weakly in W42(0,T; L*(0,00)), weakly* in L*(0,T; H'(0,00)),
and in C([0,7T] x [0, L4]).
It is clear a {u, £} is the solution of SP(f, uo, £) on [0, T7]. ' O

The following inequality is a direct consequence of the proof of Theorem 3.1.
Lemma 3.3. Suppose all assumptions in Theorem 3.1 hold. Let {u, ¢} be a solution of

SP(f,u0,%) on [0,00). Then, it holds that

1d ’ 1 1
|ue()[Z2(0,000) T+ §%|Uz(t)l%2(o,e(t)) + 5!0(75)13 < T a

d o 5., ,
Ei—t/o u***(t)dz for a.e. t € [0,00).

The next proposition is concerned with the convergence of solutions.
Proposition 3.1. Let T > 0. Assume that b, > 0 and ug, € H'(0,00) satisfy the
condition in Theorem 3.1 for each n=1,2,---. Moreover, suppose that lo, — £y asn — 00
where £y > 0 and ug, — uo weakly in H'(0, Mo) and in C([0, Mo]) where Mo = sup,_; 5. fon
and ug € H'(0, My). Let {u,, £y} be a solution of SP(f, uon, lon) on [0,T]. Then, there exrists
a subsequence {n;} such that

ln, — £ weakly in W'3(0,T) and C([0,T7),
Un; — U weakly in W'2(0,T; L*(0, M)), weakly* in L=(0,T; H'(0, M))
and in C([0,T] x [0, M]),

where M = sup{ly(t);n = 1,2,--- andt € [0,T]}. Moreover, {u,£} is a solution of
SP(f, Uo,eo) on [0, T] v

Proof. By using the same argument in the proof of Theorem 2.1 it follows from Lemma
3.3 that {¢,} is bounded in W*3(0, T). Hence, M = sup{ly(t);n=1,2,--- and t € [0, T]} <
0. Moreover, {u,} is bounded in W'2(0,T; L*(0, M)) and L>(0,T; H'(0, M)). Similarly
to the proof of Theorem 3.1 we obtain the assertion of this proposition. |
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4 Large-time behavior

The purpose of this section is to prove Theorem 4.1 concerned with large-time behaviors. In
order to give the statement of the theorem we introduce the following elliptic problem For
each [ > 0 we denote by (P)(!) the following problem:

{ Wep +wT* =0 in (0,0),
w(0) = w(l) = 0.

By Brezis and Oswald [9; Theorem 1] the problem (P) () has one and only one non-negative
non-zero solution w for each [ > 0. Moreover, w > 0 on (0,1) and fj w*dz < oo.

Theorem 4.1.  Suppose that the same assumptions as in Theorem 3.1 hold and uy > cov.
on [0, 4] where co € (0,1] and v, is a non-negative non-zero solution of (P)w(fo). Let {u, £}
‘be a solution of SP(f,ug, %) on [0,60). Then, u and £ grow up as t — 0o, that is, '

{(t) — oo and |u(t,x)| — oo for x >0 ast — oo.
The following proposition will be used in the proof of Theorem 4.1.

Proposition 4.1.  Forl > 0 let w") be a none-negative solution of (P)e(l) with w® # 0.
For each z > 0 w9 (z) = 0o as | — oo.

In order to prove Proposition 4.1 we deal with the following initial boundary value prob-
lem P(l;vp) for I > 0:

v = Ve + 07 in (0,7) x (0,1), | (4.1)
v(t,0) =v(t,l) =0 forte (0,T), ' (4.2)
v(0,z) =vo(x) for z € (0,1). (4.3)

The following lemma guarantees the global existence and the large-time behavior of
solutions of P(;vy). _
Lemma 4.1. Let 1 > 0 and vy € H&(O,l) with vg > 0. Then the following properties
hold. ‘

(1) Let T > 0. Then there ezists a function v € W42(0,T; L*(0,1)) N L*(0,T; Hy(0,1))
satisfying v > 0 on (0,T) x (0,1), (4.1) and (4.3). Moreover,

2 1d 20, < 1 i b ota .
/ joe(t) P + 5= Ivz(t)| dx < 2+adt/0 V(e for ae. t€[0,T].  (4.4)

This means that P(I;vy) has a non-negative solution on [0, 00).
(2) Assume that vy > coveo on (0,1) where ¢o € (0,1] and vy is a non- negatwe solution of
(P)oo(l) with ve # 0. Let v be a solution of P(l;v) on [0,00). Then

v(t) 2 v in C([0,1]) as t — oo.



42

Proof. (1) We can prove this assertion in a similar way to that of Theorem 3.1.
(2) It follows from (4.4) that

¢ 1 1
/0 07 (T) 32047 + [v2(8) 22004y < v0zl7o(0y) + 2+—oz/o |v(7)[***dx for t > 0.
Since 2 + a < 2, there exists a positive constant C; such that
t
/0 [vr (7) [Z2(0yd7 < C1 and |vg(t)[72(y) < Cy for t > 0.

Therefore, we can take a subsequence {¢,} with ¢, — oo such that
v(t,) — oo weakly in H}(0,1) and in C([0,1]) as n — oo,

where U4, is a solution of (P)w (/). In order to accomplish the proof it is sufficient to show
that © # 0 because (P)(l) admits a unique non-negative non-zero solution. Immediately,

we have

14+a

CoVoot = CoVoogz + CoV < CoUoozz + (cov)H"‘ on (0,1).

This inequality together with (4.1) implies that
o [ Newwoo = o0 Patn + [ leovas — wlt)]} P

< [ ((ewma)*= = v (0)) feoven — v(e)]da

0

1 l
< 14+« _ +12
< T leovs) e — (0] P
1 t o
< o lleove = VO] ooy | (covee) *oda
< 2/ I[ CoVoo — l2dx +C'2/ |[covoo — v(t)]T|?dx for a. e. t > 0,

where C} is a positive constant independent of ¢ > 0. By applying Gronwall’s inequality we
get
[coveo —v]T =0 on (0,00) x (0,1),

that is, cyve < v on (0,00) x (0,7). Thus we infer that 0, # 0, that is, Vo = Veo- O

The following lemma is concerned with the comparison principle for solutions of P(/; vp).
Lemma 4.2. Forl > 0 let vy be a non-negative solution of (P)x(l) with vy # 0.
Suppose that for i = 1,2, vo; € H{(0,1) satisfies vo; > Voo 0n (0,1) where co € (0,1], and
vor < vz on (0,1). Let vy be a solution of P(I;ve) on [0,00) and v, € WE([0,00); L2(0,1)) N
L>([0,00); H'(0,1)) satisfy (4.1) with v3(0) = vga and ve(t,0) > 0 and va(t,1) > 0 fort > 0.
Then, vy < vy on (0,00) x (0,1).
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Proof. Similarly to Lemma 4.1, we obtain v; > ¢ovs on [0,00) x (0,). By using this
inequality we observe that '

t/ |[U1 —v2 ]+|2dx+/ |’Ul t)—v2( )]:lzdx

2d
l
< [ (@) — @)l t) - vo(0)]*da
< o [ @Ol - wOl P
< Tolln(®) v B [, (cov)*

= %/Ol [o1(2) — v2(t)]3 *dz + Cs /Ol |[v1(2) — w2 ()] Pdz for ae. ¢ >0,

where Cj is a positive constant independent of ¢. Immediately, we can prove that v; < vo
on [0,00) x (0,1). O

Lemma 4.3.  For [ > 7 let w® be a nonnegative solution of Ps(l) with w® # 0. Then,

it holds: T
w®(z) > sin - for z € (0,1).
Proof. Set z(z) = sin Z2 and let v be a solution of P(l;z) on [0,00). We observe that

2

0=2 = 2pp + er—z—z < 2gg + 21
Similarly to the proof of Lemma 4.2 we obtain z < v on [0, oo) x (0,1). Lemma 4.1 (2)
implies that v(t) = w® in C([0,1]) as t — co. Therefore, 2 < w® on (0,1). O

Proof of Proposition 4.1. Let [ > 0. By uniqueness of the problem (P)oo(l) the non-
negative solution w® can be expressed as '

wO@) =1 [Ty - D@y + ] [ =)Wy forze 0. (49

Now, we assume that [ > 7. Then, Lemma 4.3 implies w¥(z) > sinZZ for z € (0,1). Let
z > 0 and [ > max{r,2z}. Hence, we have

w(@) 2 5 / (1= »)(®)*2 (y)dy

L _ TY\1+a

> l s z(l — y)(sin l) dy
1 7t . TY

> 2 _ -7

2 3 Wa:(l y) sin ldy
xl £, . ~ ‘

> — /2(1—;)s1n§d£——>oo as [ — oo.
T Jr
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Thus we have proved this lemma.
Proof of Theorem 4.1. Firsﬁ, we assume that
Lty < M; fort>0, (4.6)

where M, is a positive constant.
Lemma 3.3 implies

1d ' 1
e (£) 720 0007) + §alux(t)|?;2(o,e(t)) + §lél(t)|3

1 d

e 2+a fe
sradl (t)dz or t € [0,00).

Then we have

¢ 1 1 st
[ s (0B oy + 5lus® ey + 5 [, 1€ Per

L[ e to 2
2+a/0 U (t)da:+/0 |ugg|dxz  for ¢ € [0, 00).

Let ¢ > 0. Then, since —1 < a < 0, by using Poincare’s inequality we obtain

£(t) 0
/ Wo(t)dzr < e /0 lu(t)2dz + K.0(t)
0

IN

£()
eM, /0 lug ()[2d + K.6(t)  for t > 0,

where K, and M, are positive constants depending only on € and «, and Mj, respectively.
By choosing ¢ as 53 we get

t t
/0 | (7) [F200,60r1) @7 + |12 (t) 72000001 +/0 |¢/(7)Pdr < Mj for t > 0, (4.7)

where Mj is a positive constant independent of ¢.
Therefore, we can take a subsequence {t,} with ¢, — oo such that

u(tn) = U weakly in H'(0, M;) and in C([0, M]) as n — oo.

From the assumption (4.6) it follows that £(t) — fx € R as t — oco. On account of
Proposition 3.1 we infer that

U(ty + ) —= u* weakly in W2(0, 1; L*(0, My)), £(t, + -) — £° weakly in W'3(0, 1),
and {u*,£*} is a solution of SP(f, ueo, £oo) On [0, 1]. Moreover, by (4.7) we see that

w(tn + ) — 0 in L2(0,1; L*(0, M)) and £'(¢, +-) — 0 in L*(0, 1).
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Obviously, u*(t) = ue and £*(t) = £y for ¢ € [0, 1] so that u, is a solution of (P)e(feo) and
Uooz (o) = £, (t) = 0. By using Lemmas 4.1 and 4.2 we have

w> cov® on (0,00) x (0, ), (4.8)

because u(t,0) = 0 and u(t,£) > 0 for t > 0. Accordingly, ue # 0. Here, maximum
principle or the expression (4.5) together with the above fact 1mphes Uooz (loo) < 0. This is
a contradiction. Hence, we obtain

{(t) — oo as t — o0, | (4.9)

since £ is the increasing function.

Next, we observe that u(t) € H2(0,£(t)) for a.e. t € [0,00); so that u,(t) € CY2([0, £(¢)])
for a.e. t € [0,00). Also, £ € C?3([0,T]) for each T > 0 since ¢' € L3(0,T). By using
the classical theory (cf. [10; Chapter 19]) for parabolic equations we see that u,, and u; are
continuous on Q(sg, T;¢) for some so > 0 and each 7' > 0. Hence, the strong maximum
principle together with (4.8) shows that u(t) > 0 on (0,£(t)) for ¢ > sp. Moreover, Hopf
Lemma (cf. [10; Theorem 15.4.1]) guarantees that u,(t,£(t)) < 0 and u,(t,0) > 0 for ¢ > so.
Therefore, for s > s, we can take a positive constant ¢ (which may depend on s) satisfying
u(s,z) > cw® on (0,£(s) where w'®) is a non-negative solution of (P)s(£(s)) with w®) # 0.

Here, for s > s we denote by (P)(s) the following problem:

= o+ WO in (5,00) x (0,605),
w)(t,0) = v)(t, 4(s)) =0 fort > s,
v (s,2) = u(s,z) for 0 <z < £(s).

Lemmas 4.1 and 4.2 show that there exists one and only one non-negative solution v®) of
(P)(s) for each s > so. Moreover, by using Lemma 4.2, again, we have

w(t,z) > v (t,z) fort>sand 0 <z <{s)

Lemma 4.1 (2) implies v®)(t) — v in' C([0,£(s)]) as t — oo where v{¥) is a non-negative
solution of (P)wo(£(s)). Proposition 4.1 and (4.9) guarantee that

v¥(z) = oo as s — oo for each z > 0.

Let > 0 and K > 0. Then, there exists a positive number T such that v¥)(z) > K for
s > T. We fix s > Ti. Also, we have [v®)(t,2) — v (z)| < 1 for ¢ > T, where T is some
positive constant. Therefore, ~

u(t,z) > vt z) > v () -1 >K -1 fort>T.

Thus we have proved Theorem 4.1. o O
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