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Inertial Sets for Phase Transition Models

Induced by the Variational Principles

EREX-T  FEERKX (Axio ITo)

0. Introduction
We consider one-dimensional non-isothermal phase separation model with con-
straints in the following form, denoted by (PSC):={(0.1)-(0.6)}:

e:=0+A(w) inQ:=0x(0,+00), (0.1)

er — (a(6))zs + 10 = f(z) in Q, (0.2)

Wi = {~Kibaq + 9(w) + Bw) — &(O)N (W)}ee =0 in Q, (0.3)
+[(0)]a(£L, ) + noa(8(£L,t)) = hy for t >0, (0.4)

We (£L,1) = Wee(£,8) =0 for ¢t > 0, (0.5)

0(z,0) = 6p(z), w(z,0)=wo(z) in Q. (0.6)

Here, Q := (—L, L) with a given finite number L > 0; a and § are non-decreasing
and smooth functions; A and g are sufficiently smooth functions; X’ is the derivative
of A; v, k and ny are positive constants; f, h4, 6y and wy are given data.

Physically, this model describes the non-isothermal phase separation phenomena
of the binary alloys composed by two components A and B. The original model
with v = 0 was introduced by Penrose and Fife [13] and in it  represents the
absolute temperature and w the conserved order parameter. Actually, we see from
the kinetic equation (0.3) and the boundary conditions (0.5) of w that

d L .
—/ w(t,z) =0 foranyt >0,
dt J_

that is,

L L

/ w(z,t) = / wo(z)dz =: my for any ¢t > 0.
-L -L

Roughly speaking, in our model the mass quantity is conserved. From this point

of view, throughout this paper it is convenient to introduce a new function v by



the relation v := w — my and consider this function v instead of w. Here, you note
that the fact

L
/ v(z,t)dz =0 for any t > 0.
-L
The typical examples of & and 8 are
a(f) = —% for any 6 > 0

and

1+w
1—w

B(w) := ko log for any w € (—1,1) with some constant kg > 0.

Since the domain of 8 is restricted in the interval (—1,1), this model is a kind
of the phase separation models with constraints. For these models, there have
‘already been some works which guarantees the global existence and uniqueness of
solutions (cf. [2], [9], [14]). But, in these papers they assumed that A is convex
and this assumption is essential. ,

Recently, in [12] we discussed the weak well-posedness (i.e. (global) existence,
uniqueness and weakly continuous dependence upon the data of the solution) with-
out the assumption that A is convex for the case » > 0 and in [7] we constructed
the global attractor for the case v > 0.

But, it is not sufficient to discuss the asymptotic behavior as ¢ = 400 because
we have at least two questions for the global attractor. One is to investigate the
structure of the global attractor. The other is to give the estimate of the speed
under which any solution is attracted to the global attractor. In order to give the
answers to these questions we use the notion of inertial set (sometimes it is called
the exponential attractor), which was established by Eden, Foias, Nicolaenko and
Temam in [3], for the semigroup associated with our system. In consequence, we
proved in this paper that the global attractor has a finite fractal dimension and
the inertial set uniformly attracts all solutions starting from some compact set.

Notation. We fix a positive number L, and put  := (—L, L). For simplicity we

use the following notation:

(1) In H := L?(f2), the usual inner product is denoted by (-,-)g and the norm by

| |a-

(2) V := HY(9) is the Hilbert space with the inner product (-,-)v given by

(v,2)y = (vm‘, ze)g + no{v(L)z(L) + v(~=L)2(-=L)} foranywv, z€V
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and the norm |- |y := (-, -)%_,. The dual space of V is denoted by V*, and the
duality pair between V* and V is denoted by (-,-)y+ v. Furthermore, the
duality mapping F': V — V* is defined by

(Fv,2)yv = (v,2)y foranywv, z€eV.
(3) V* is the Hilbert space equipped with the inner product (-,-)y» given by
(v,2)ys = (v, F12)ys v (= (2, F'0)y. y) for any v, z € V*.

v+ is given by |F~1y|y.

The corresponding norm |v

(4) Hpy is the subspace of H defined by

Hy := {zEH; /Qz(a:)d:z:=0}.

Then, Hy is the Hilbert space by succeeding to the inner product of H, that
is, the inner product (-, ), in Hp is given by

(v,2)H, += (v,2)g  for any v, z € Hp.
Moreover, we define a projection operator g from H onto Hy by

mo[2](z) := 2(z) — —2-}5 A z(y)dy for any z € Q.

(5) HY(Q), H%(Q) and H3(N) are the usual Sobolev spaces; especially, we distin-
guish H!(Q2) from V because of the difference of the inner products through-
out this paper.

(6) Vo := HoN H'(N) is the Hilbert space with the norm |- |y, and the inner
product (-,-)v, given by

(v,2)v, = (Vz,2,)g for any v, z € V.

The dual space of Vp is denoted by Vi, and the duality pair between Vg and
Vo is denoted by (-, ')Vo‘,Vo- Furthermore, the duality mapping Fp : Vo — V'
is defined by

<F0'U,z>Vo‘,Vo = (U)z)Vo for any v, z € Vo.
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(7) Vg is the Hilbert space equipped with inner product (-, -)v; given by
(U,Z)VJ = (U,FJIZ)VO*,VO (= (z, F0~1U>VO‘,V0) for any v, z € VO*-
The corresponding norm |vy. is also given by |Fy 'v|y,.
(8) H :=V* x V", which is the Hilbert space with the inner product

(U, 0)n = (e,8)v= + (v,0)y;y for any U := [e,v], U := [,7] € H.

(9) &€ := H x Vp, which is the Hilbert space with the inner product
(U, )¢ := (e,8)m + (v,7)y, for any U := [e,v], U :=[g,7] € £.

(10) By Ay we mean the Laplacian A with homogeneous Neumann bound-
ary condition, namely, Av = v, in Q with vy(£L) = 0; —Ap is the
maximal monotone operator in Hy with the domain D(—Ap) := {v €
H?(2) N Hy; v, (+L) = 0}.

1. Known results
In this section, let us recall some results established in [7, 12].
Throughout this paper we consider our system under the following assumptions:

(A1) « is a strictly increasing function of C?-class from (0,+o0) onto (—o0,0)
such that
la(r)| > Erg for any r > 0

for some suitable positive constant ¢y and

1i =0, i = —00.
Jim a(r) lim a(r) 00

(A2) B is a non-decreasing function of C2-class from D () := (-1, 1) onto R such
that
rlil_nl B(r) = —oo, lggﬂ(r) = +00.

We fix a non-negative primitive 3 of 8: note (-1,1) C D(B) c [-1, 1].
(A3) X is a C3-function on R with compact support.

(A4) gis a C%-function on R with compact support; we fix a primitive § of g such
that g > 0 on R.



(A5) mg € (-1,1), v >0, x> 0 and ny > 0.
(A6) f € H and hy are negative constants.
(A7) 6o € H, wvp € V.
Now, we define a solution to (PSC):={(0.1)-(0.5)} in a weak variational sense.
Definition 1.1. Let 0 <T' < 400, mg € (—1,1) and define f* € V* by
(f*,2)vev:i=(f,2)g + hyz(L) + h_z(~L) forany z € V.

Moreover, we define a new function v by v := w — mygy. Then, we call a couple of
functions [e, v] a solution to (PSC) on [0, T] if the following properties (i)-(iv) are
satisfied:

(i) e:= 0+ \(v +mg) € WH2(0,T;V*) N L=(0,T; H)(C Cy([0,T]; H)).
(i) v € Wh2(0,T;Vg') N L(0,T; Vo)(C Cu ([0, TT; Vo).
(iii) a(f) € L*(0,T;V) and '

ei(t) + Fa(f(t)) + v8(t) = f* in V* for ae. t € (0,T).

(iv) B(v +mg) € L?(0,T; H) and
Fy v () — kANv(t) + mo[g(v(t) +m0) + B(u(t) +mo) — a(8()) N (v(t) +mo)]
=0 in Hy for a.e. t € (0,7).

Given initial data eg € H and v € Vj, [e,v] is called a solution to the Cauchy
problem (PSC; eg,vp):={(0.1)-(0.6)} on [0,T] if it is a solution to (PSC) on [0,T]
with initial data e(0) = ep and v(0) = vp.

Moreover, [e,v] is called a global solution to (PSC) if it is a solution to (PSC)
on [0,7] for any finite time T" > 0.

Under these situations, we relate the results in 7, 12]. To do so, first of all, we
introduce a functional ® on H x Hp in the following way:
P(e,v) :=j(e — AM(v+mg)) + ¥(v) for any [e,v] € H x Hy,

where
a(z(z))dz alz EL1 9]

+00, otherwise,
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and

Slolty + [ 3(0(a) + mo)dz + [ (v(z) + mo)as,

Q Q
U(v) := if v € V with ﬁ(v +myp) € L1(Q),

+00, otherwise;
note that ¥ is non-negative on Hp by (A2) and (A4). Now, we define a subset D
of £ by

D :={[e,v] € &; ¥(e,v) < +o00}.

Then, according to the results of {7, 12] we see that for each my € (—1,1) and
[eo, vo] € D the Cauchy problem (PSC;eq,vo) has one and only one global solution

[e, v]. Furthermore for any two initial data [eq;, vo;] € D the global solutions [e;, ;)
to (PSC;eg;,v0i) (i = 1,2) satisfy

léz(t) —er(®)[y + [v2(t) i) + C / |va(7) = va(7) 4 dr

< exp (Cz [ a+la@p + Ia(ﬂz(r))l%f)dr) (L.1)

%o+ Ja(s) — va(s)f3)

for aﬁy s, twith0<s<t<+o0.

X (le2(s) — e1(s)

for some suitable positive constants C; (i = 1,2), which are independent of initial
data in D.

Hence, we can define a dynamical system {S(¢)} := {S(¢); t > 0} on D associated
with (PSC) by for each [eg,v0] € D, [e(t),v(t)] = S(t)[eo, vo] is a global solution
to (PSC;eg, vo)-

Moreover, we have already obtained the following propertieé (S1)-(S6) as well
as. the above facts:

(S1) S(0)=1Ion D.
(S2) S(t+s)=S(t)S(s) for any t, s > 0.
(S3) D is positively invariant under {S(t)}+>0, namely, S(t)D C D for any t > 0.

(S4) If [eon,von] € D, [eon,von] — [e,v] in H and {®(eon,v0.)} is bounded,
then S(-)[eon,von] — S(-){eo,vo] in C([0,T];H) for every 0 < T < +o0.
Moreover, if ey, —> eo weakly in H, then S(-)[egn,von] — S(-)[eo,vvo] in
Cw([0, T} E) N Cw([6,T); H x D(—An)) for every 0 < § < T < +o00.
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Before stating the statement (S5) and (S6), we have to prepare a functional J
with some properties. For each n > 0 let us consider a functional J, on D which
is defined by

Jn(e,v) := ®(e,v) — (e,a(60))v+v + nlely + Cs(n) for é,ny le,v] € D,
where a pair [fp,a(6p)] € H x V is a unique pair satisfying
(a(fo), 2)v +v(0o,2)u = (f*, z)v-,v
and C3(n) are chosen, depending only on 7, so that
Jy(e,v) 2 g|e — A(v+mg)|%} for any [e,v] € D.

This is a Lyapunov-like functional for our system. Actually, the following inequal-
ity of Gronwall’s type holds: there exist 7; > 0 and Ny > 0, which are independent
of the initial data [eg,vo] € D, such that

%J(e(t),v(t)) +mJ(e(t),v(t)) <Ny forae. t>0, (1.2)

where J := J,,, and [e(t),v(t)] = S(t)[eo,vo] for any [eg,vo] € D; for the proof of
(1.2) we leave to the paper [7] and it is omitted in this paper. But, we emphasized
that we used the positiveness of v to prove (1.2), namely, v(> 0) plays an important
role to obtain the above inequality.

Now, we state (S5) and (S6):

(S5) (Global estimate) For each finite time T > 0 and bounded subset B(C
&) with sup|, ,jep J(€,v) < +oo there exists a positive constant T'(B,T),
depends upon B and T, such that

1 1 1 1
[t2vt| Lo 0,mvs) + [E20t|L2(0,15v0) + 182 ()| Lo0(0,73v) + [E2 0] 10 (0,112 (02))
+[t2 B + mo)| o, < M(B,T)
for any solutions [e(-),v(-)] with initial datum [eg,vo] € D.

(S6) [7; Lemma 4.2] (Existence of an absorbing set) There exists a subset By of
D satisfying the following properties (i)-(iii):

(i) Bo is weakly compact in £ and supy, ,je g, J(€,v) < +oo.

(ii) By is arcwise connected in the weak topology of £.
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(iii) For each subset B of D with sup(, ,jcp J(€,9) < +oo there exists a
finite time tg > 0 such that

S(t)B C By for any t > tp.

As a result of (S1)-(S6) we have the following theorem.

Theorem 1.1. (cf. [7; Theorem 3.1]; Existence of a global attractor) Assume
that (A1)-(A6) hold. Then the set

s>0t>s

V*XVD

satisfies (i)-(iii) below, where XYY denotes the closure of X inV* x Vp:
(i) A is compact and connected in the weak topology of H x (H?(Q2) N Hy).
(ii) A is invariant under {S(t)}, namely, S(t)A=A for anyt > 0.
(iii) for each subset B (C D) with supy, ,jcp J(&,v) < +00
tl}i?m disty»xv,(S(t)B, A) =0,
where for any subsets X, Y of V* x V}

disty» xv, (X, Y) := sup{inf |z — y|v+xvp}-
zeX YEY

Throughout this paper, we call A a global attractor for the dynamical system
{S(t)} on D associated with (PSC).

2. Main Theorem

We consider our system (PSC) under the same assumptions and use the same
notation as in the previous section.

Before stating our main theorern in this paper, we introduce some notions, which

are important to investigate the large-time behavior of solutions to (PSC).

Definition 2.1. Let X be compact in H and M is a subset of X. Then, M is
called an inertial set in X for {S(t)}, if M has the following properties (IS1)-(1S4):

(IS1) AcMcCX.

(I1S2) M has a finite fractal dimension.
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(IS3) M is positively invariant under {S(t)}, that is,

StMC M foranyt>0.

(IS4) There exist positive constants c¢; and ¢z such that

disty (S(t) X, M) < cie”®2* for any t > 0.

Remark 2.1. From (IS1) and (IS2), we see that the fractal dimension of A is
also finite. Moreover, by using the fact that the Hausdorff dimension is less than
or equal to the fractal dimension it follows that the Hausdorff dimension of A is

finite, too.

Definition 2.2. Let T be a Lipschitz continuous mapping on X with respect to
the strong topology of H. Then, we call that T has a squeezing property on X
with respect to the strong topology of H, if there is an orthogonal projection P,
with finite rank, such that

1
|TU; — TUq|n < gIUz = Uilu
holds for any pair of U, U € X satisfying
|P(TU; = TUr)|u < |(I — P)(TUz = TUL) |n-

QOur main theorem is follows.

Theorem 2.1. There ezist a compact subset X' of H and a finite time t* such
that S* := S(t*) has a squeezing property on X as well as the Lipschitz continuity
on X with respect to the strong topology of H.

And by applying the results of Eden, Foias, Nicolaenko and Temam (cf. [3]) we
get the following corollary to Theorem 2.1.

Corollary to Theorem 2.1. There ezists an inertial set M in X for {S(t)} and

the fractal dimension of M is dominated by the number

log(16Lip(S*)) + 1
log 2 ’

N, max {1,

where Lip(S*) is a Lipschitz constant of S* and N, is the rank of the orthogonal
projection P := P* appearing in the squeezing property of S*.

3. Proof of Theorem 2.1
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In this section, we give some lemmas, which are tools to prove Theorem 2.1.
But, we will not to write their proofs and they are written in [5] in detail.

As the first lemma, we give the global uniform estimates of global solutions
starting from the absorbing set By given in (S6).

Lemma 3.1. For any global solution [e(-),v(:)] := [6(-) + A(v(:) + mo),v(:)] with
initial datum [eg,vo] € By, the following estimates hold:

(i) There ezists a positive constant Ry, depending upon the absorbing set By, such
that
lve ()| + [v(E)|m2(0) + |a(@@)lv + 1B(v(t) +mo)|a < Ro
foranyt>tp, +1
and |

sup I'Ut|L2(t,t+3;Vo) < Ry,
t>tpg+1

where tp, is a finite time satisfying
S(t)Bo C By for any t > tg,.

(ii) (cf. [6; Lemma 3.1]) There exist positive and finite constants 0. and 6* and a
finite time t1(> tp, + 1) such that

6, <0:=e—ANv+mg) <6* on[-L,L] X [t1, +00).
(iii) There ezists a positive constant g9 such that
~1+e<v+mog<l—g on[-L,L] X [t1,+00),
where t; is the same number as in (ii).

It is easy from the global estimate (S5) to prove (i). And the proves of (ii) and
(iii) are quite similar to those of Lemma 3.1 in [6]. We will omit them in this

paper.

Remark 3.1. From Lemma 3.1 without loss of generality we may assume that a
is a bi-Lipschitz strictly increasing function in C2-class with o’ € L§2 (R) and 3 is
a non-decreasing continuous function on [—1,1] as well as continuous on R in C?-
class with compact support, respectively, as long as we consider the solutions to
(PSC) on [t;1, +00) with the initial data in Bp. Moreover, we see that any solution
[e(-),v(+)] to (PSC) with initial datum [eg,vo] € Bo has the following regularities:

e € Wii([tr, +00); H) N L([t1, +00); V), &(8) € Lip([t1, +00); H*(Q)),

loc
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v € L% ([t1,+00); H3(Q)).

From now we assume that a and g satisfy the properties in Remark 3.1, re-
spectively.
In the next lemma, we will give some global uniform estimate with respect to ;
and v;. And this lemma plays a quite important role to prove Theorem 2.1.

Lemma 3.2. Let [e(-),v(-)] be any solution to (PSC) with initial datum [eo, vo) €
Bo. Then, there exists a positive constant Rs such that for each s > t1and T >0

sup {(t=s)l6:(t)lH} + sup {(t—s)|u(t)f3,}
s<t<s+T s<t<s+T

s+T s+T
+/ (t — s)|(a(8)):(t) |3 dt + / (t — 8)|vee(t) %,0. dt < R3

for any [eo,v] € Bo.

Proof. To prove this lemma we consider the following system: for each u € (0, 1),
s € [t1,+00) and T > 0

e’ = (@(@")es + 10" = (@) in Quri=(-L,L) x (s,s+T),  (31)

vp*? = {pvt”® — w0k’ + g(v™* + mo) + B(vH* + myo)
—a(@**) N (v*° +mg)}ae =0 (3.2)
in Qs,r,
+(a(6"°))z(£L,t) + noa(6*°(+L,t)) = hy foranyte€ (s,s+7), (3.3)
vh*(xL,t) = vk (£L,t) =0 for any t € (s,s+ 1), (3.4)
e"?(s) =e(s) v*°(s) =wv(s), (3.5)
where [e(s), w(s)] is any solution to (PSC) at time t = s with initial datum in By.

For this system we have already known the following results (cf. [9, 12]):

(1) The above system has one and only one solution [e**(-),v*'*(:)] on [s, s + T
satisfying the following properties:

(i) e** € Wi2(s,s +T; H)NL>®(s,s + T; V).
(ii) v*® € L*(s,s + T; H*(Q)), vi"° € C([s,s + T); Ho),
vi® € L®(s,s + T; Vo), vly® € L2(s,s + T; Hp).
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(iii) a(6"°) € L*>(s,s+T;V) and
el (t) + Fa(0*°(t)) + vo (t) = f* 'in V* for a.e. t € [s,5 + T).
(iv) B(v** +mp) € L*®(s,s + T; H) and
(Fit + ol (1) — s Nt ()

+mo[g(v**(£) +mo) + B(v** (£) +mo) — a(6"° (1)) X' (v (t) +mo)] = 0
| in Hy for a.e. t € [s,s + T].

(2) For each T > 0 there exists a positive constant R; := R; (T such that
s ' L
le#, |W1-2(s,s+T;V') + I'U“’sh’Vl-z(S,s+T;Vo') -+ 7% IU“’S|W1'2(313+T;I:{0)

7 (6"°) oo (5,041 + [0* | Lo (0,75v0) + |(0%°) | L2(s 6473V
+v** | L2(s s by + 1BOHT +mo)|L2(s 541y < Ra
for any p € (0,1], s > ¢1 and [eg, vo] € Bo.

(3) For each T > 0 there exists a positive constant Ry := Ry(T) such that

|95’5|L2(s,s+T;H) + P |a(@**(®)lv+ sup - |ui"*(t) e
s s+T sSt<s+T

su

<t<
1

+p%  sup v ()| m, + [08°|L2(s s+ ive) < Re
s<t<s+T

for any p € (0,1), s > ¢t; and [eg, vo] € Bo.

From these estimates, we note that there exist positive constants R; (4 < i < 6)

such that
Ry <o'(0"°) < Rs on[-L,L} x [s,s + T),
—~Reg <0"° < Rg on[-L,L] x[s,s+T]

for any p € (0,1}, s > t; and [eg, vo] € By. And we put

Ry = : "(r)| + max |a(r)].
T RO g e

Now, we use the above fact and calculate (d/dt)(3.1) x (a(6*%)):(t) in H x H

to obtain

d[° SO a0,
—L
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(N (v (2) + mo)vy* (), (a(6"))2(t))

< oft ( [ a’(eﬂ"(:c,t))IGi"s(x,t)l"’dx) (36)
L .

~ 2eR}

. ( /L o (0" (@, 1)1} (=, 1) dm)

-L 2

L

+A L) Rl @), [ 1602, 0 do

for a.e. t € [s,s + T

for some suitable positive constants ¢; and c,.
Secondly, we take the inner product between (d/dt)(3.2) and v};°(t) in Hy to

obtain
d

1,8 S K ,S
[0l () s + loty* @1, + = { S0t ()1, }
s + Balol " @), + V(0 (2) + mo)uly (1), ((6"))e(®)r (3.7)

for a.e. t € [s,s + T,

< 3e'fug* ()

where Rg is a suitable positive constant, which is independent of p € (0,1], s > t;
and [eg, vo] € By.
Now we choose € = 1/2, ¢’ = 1/6 and add (3.6) to (3.7) to obtain

d [ [F Q@@ O @R 5 e
E{/L ] da + o O,

+31(@8" DO, + S O + ulvls O, (338)

L _rrpp,s 1,8 2
< Rg(lef"s(t),%{ + 1) (/ (84 (9 ($,t)2)|9t (-'E,t)l dz + glvé"s(t)l%@)

for ae. t € [s,5+ T

for some suitable constant Rg > 0.
By applying the Gronwall’s lemma to the inequality (3.8) x (¢t — s) and using (3),
we derive that there exists a positive constant R;y such that

sup {(t—9)I6 " (W)} + sup {(t- )l ()1}
s<t<s+T s<t<s+T

2
2. dt

s+T s+T
+ [ @ @B+ [ - ot



s+T
[ (= ol Ol de < Rug
for any p € (0,1], s>t and [eo,vo] € Bo.
By letting p | 0, we obtain this lemma. O

In the next step, we will construct X' and give the linearrized system of (PSC)
on [X.
We define the subset X’ of V* x Vj by

X = U S(t)Bo C By,

t>t

where t; is the same number in Section 3. Then, it is easy to check that X satisfies
the following lemma.

Lemma 3.3. X satisfies the following properties (i)-(iv):
(i) A is compact and connected in V* xVy* as well as bounded in V x (HyNH3(Q)).
(ii) X' is positively invariant for {S(t)}:>0, namely, S(t)X C X for all t > 0.
(iii) X is an absorbing set for {S(t)}i>o0.
(iv) For anyt >0, S(t) is Lipschitz on X' with respect to the norm of H.

Now, let [eg;,v0;] € X (i = 1,2) be any two elements and put

lei(t),vi(t)] := S(t)[eos, voi], 6i:=e;i— A(vi +mg), i=1,2,
e:=ey—e, V:=vUs—01, 0:=0, ;91.
Then it is easy to see that the difference equations of [e,v] is described by
ei(t) + F(a(f2(t)) — a(61(¢))) + v0(t) =0 in V* for a.e. t >0, (4.1)
Fo—l'ut(t) — KANvU(t) + mo[p2(t) = p1(t)] =0 in Hy for a.e. t >0, (4.2)

e(0) = ep := eo2 —€p1, v(0) = vp := vpg — Vo1, (4.3)

where

pi = g(v; + mo) + B(vi +mo) — a(0:)N (vi +mg) (G = 1,2).
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Next, in order to rewrite the above difference equation into the linearlized
equation we introduce the functions o; (1 <4 < 7) from R™ into R defined by

: 1
o1(e1,ez,v1,v2) = / o'(e1 +r(ez — e1) — A(vy + r(v2 — v1) + mg))dr,
0

1
og(e1, €2,v1,v2) = / o'(ex +r(ez — e1) — Moy +7(v2 — v1) + my))
0

XX (v1 + r(vg — v1) + mg)dr,

1
o3(v1,v2) = / X (v1 +7(v2 — 1) + mg)dr,
0
1 .
0'4(1)1,1)2) = / g'(v1 + ’I‘(’Uz - 'Ul) + mo)dr,
0
1
os(v1,v2) = / B'(v1 + r(v2 — v1) + myg)dr,
0
1
06(61,627UI:U2) = / a’(el + T'(62 - 61) - )‘(Ul + 'T'('Uz - vl) + mo))
0

X (X (v1 +7(v2 — v1) +my))?dr

1
—/ a(er +r(ez —e1) — A(vy + 7(v2 — v1) +mp))
0
XA (v + r(vg — v1) + mg)dr

and

g7 = 04 + 05 + 0,

wherem =4ifi=1, 2, 6, Tand m=2if m = 3, 4, 5.
Then, it is easily seen that (4.1) and (4.2) can be rewritten in the following form;

e:(t) + F(o1(t)e(t) — oa(t)v(t)) + ve(t) — vos(t)o(t) =0 in V* (4.4)
for a.e. t >0,

Fy'uy(t) — kAnv(t) + molor(t)u(t) — oa(t)e(t)] =0 in Hy (4.5)
for a.e. t > 0,

where Ui(t) = ai(el(t),eg(t),vl(t),v2(t)) (1 S ) S 7)
At first, we note that the following lemma hold.



Lemma 3.4. There ezist positive constants M; and My such that

7
> loi(x, )] < My and oi(z,t) > My, V(z,t) € [-L,L] x [0, +00),

i=1
where [e;(-),vi(-)] (i =1, 2) are solutions to (PSC) with initial data [eq;,ve;:] € X.

Next from Remark 3.1 for each ¢t > 0 we define an operator B(t) with domain
Y:=D(B(t)) =V x (D(—An) N H3(f2)) and range in H by

(BOYW, W)y = (F(o1(t)e — aa(t)v),€)y-
+(Fo[~kANv + o[o7 ()v — o3 (t)e]], B)
forany W:=le,u] €Y and W:=[e,7] € H.

Here, we note from Remark 3.1 the fact that ' C ). Moreover, by means of B(t),
the system (4.5) and (4.6) is equivalent to the following evolution equation:

Ut)+ BRU(t) + GA)U(t) =0 inH forae. t>0, (4.6)

where U(t) := [e(t),v(t)] and G is an operator in H defined by

G(t)U := [ve — vo3(t)v,0] for any U :=[e,v] € H. (4.7) .

As to the operators B(t) and G(t) we easily get the following lemmas. Fur-
thermore, the constants M; (3 < ¢ < 8) in this lemma are independent of any
solutions {e;,v;} (3 =1,2) starting from X.

Lemma 3.5. The following properties (i)-(vi) are fulfilled:
(i) There exists a positive constant M3 such that

(B@)U,U)u| < M3|U|2 foranyU e andt > 0.
(ii) There exists a positive constant My and My such that

U2 < My(B(t)U,U)y + Msv

vy foranyU €)Y andt > 0.

(iii) There exists a positive constant Mg such that

(GU,U)y| < Mg|U|3, for anyU € H and t > 0.

(iv) There exists a positive constant My such that

(B)U,G(t)U)y| < Mq|U|2  foranyU e Y andt > 0.

7



(v) For each t >0, we define an operator By(t) from H x Hy into itself by
By(t)W := [(o1)e(t)e — (02)e(t)v, mo[(07):(t)v = (02)e(t)e]]

for any W := [e,v] € H x Hj.
Then, tﬁere erists a positive constant Mg such that
| 2 2
|(Be(6)W, W) xH,| < Mg {Z (@(@))e®lv + D l(vi)t(t)lvo}
i=1 i=1
x (lelfy + [vlF,)
for any W :=le,v] € H x Hyp and a.e. 120,

where for eachi =1, 2 [e;(-),vi(*)] := [0:(-) +A(vi(*) +m0), vi ()] are solutions
to (PSC) with initial data [eg;,vo;) € X

(vi) Let Z € WL2(Ry;H) such that Z(t) € Y for a.e. t > 0. Then,

%(B(t)Z(t),Z(t))H = (Be(t)Z(t), Z(t)) mxm, + 2(B()Z(t), Z:(t))n
| for a.e. t > 0.

By using the above lemmas, we can actually prove Theorem 2.1, i.e., we can
check the existence of a finite time ¢* and the squeezing property of S* := S(t*).
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