
Crystal Voronoi Diagram and Its Applications

Kei KOBAYASHI and Kokichi SUGIHARA

Graduate School of Engineering, University of Tokyo
Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

{keikoba, $\mathrm{s}\mathrm{u}\mathrm{g}\mathrm{i}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{a}$} $Q\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{X}.\mathrm{t}.\mathrm{u}$-tokyo. $\mathrm{a}\mathrm{c}$. jp

Abstract: This paper studies the multiplicatively weighted crystal-growth Voronoi diagram,
which describes the partition of the plane into crystals with different growth speeds. This
type of the Voronoi diagram is defined, and its basic properties are investigated. The analytic
equation describing the boundary curve is given for a simple case. For the general case, an
approximation algorithm is proposed. This algorithm is based on a finite difference method,
called a fast marching method, for solving a special type of a partial differential equation.
The proposed algorithm is applied to the planning of a collision-free path for a robot avoiding
enemy attacks.

Keywords: crystal Voronoi diagram, fast marching method, $\mathrm{c}\mathrm{o}\mathrm{U}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}$-free path

1 Introduction

Suppose that various types of crystals grow from
different start points in the plane with different
speeds. Then, the plane is partitioned into indi-
vidual crystal regions; this partition is called the
multiplicatively weighted crystal-growth Voronoi
diagram, which is the topic of this paper.

A number of types of generalized Voronoi di-
agrams have been proposed on the basis of dif-
ferent types of weighted distances, including the
aditively weighted Voronoi diagrams, the multi-
plicatively weighted Voronoi diagrams, and the
compoundly weighted Voronoi diagrams $[2, 3]$.
However, the multiplicatively weighted crystal-
growth Voronoi diagram is quite different from
the others, because a crystal cannot enter into
the area which is already occupied by another
crystal. A crystal with a high speed should grow
around avoiding slowly growing crystals. Hence,
the “distance” between two points at a given time
should be measured by the length of the short-
est path that avoids crystal regions generated by
that time. In this sense, the computation of this
Voronoi diagram is very hard.

The concept of the multiplicatively weighted
crystal-growth Voronoi diagram was first pro-
posed by Schaudt and Drysdale [1]. They pre-
sented an $\mathrm{O}(n^{3})$ approximation algorithm for n

crystals. Indeed, it is difficult to compute this

diagram strictly, and their approximation algo-
rithm is the only algorithm proposed so far.

This paper studies this Voronoi diagram from
various points of view. First, for the case of only
two crystals, we derive an analytic expression of
the boundary curve of the diagram. Secondly,
we present a new approximation algorithm for
constructing the Voronoi diagram for a general
case. This algorithm is based on a finite dif-
ference method for solving a partial differential
equation [4], and generates an approximation of
the Voronoi diagram in the form of a digital pic-
ture. The time complexity does not depend on
the number of crystals; it depends on the size of
the pixels in the digital picture. Thirdly, we apply
this Voronoi diagram to the search of the shortest
path for a robot that moves among enemy robots.

The structure of the paper is the following. In
Section 2, we review the definitions and the fun-
damental properties of the ordinary Voronoi dia-
gram, the multiplicatively weighted Voronoi dia-
gram, and the multiplicatively weighted crystal-
growth Voronoi diagram. In Section 3, we present
an analytic expression of the boundary of the
Voronoi diagram with two crystals. In Section 4,
we construct a new algorithm for approximately
computing the multiplicatively weighted crystal-
growth Voronoi diagram. In Section 5, our algo-
rithm is applied to another variant of the gen-
eralized Voronoi diagram, and in Section 6, it

数理解析研究所講究録
1185巻 2001年 109-119 109

is applied to the collision-free path planning for
robots. In Section 7, we give the conclusion.

2 Multiplicatively Weighted
Crystal-Growth Voronoi Di-
agram

2.1 Ordinary Voronoi Diagram

Let $S=\{\mathrm{P}_{1}, \mathrm{P}_{2}, \cdots, \mathrm{p}_{n}\}$ be a set of n points in
the plane. For each P_{i} , let $R(S, \mathrm{P}_{i})$ be the set of
points that are nearer to P_{i} than to other $\mathrm{P}_{j}’ \mathrm{s}$

$(j\neq i)$, that is,

$R(S;\mathrm{P}_{i}.)=\{\mathrm{P}|!|\mathrm{P}-\mathrm{P}i||<||\mathrm{P}-^{\mathrm{p}_{j}}||, j\neq i\}$,
(1)

where $||\mathrm{P}-\mathrm{Q}||$ denotes the Euclidean distance
between the two points P and Q. The plane is
partitioned into $R(S;\mathrm{P}_{1}),$ $R(S;\mathrm{p}_{2}),$ $\cdots,$ $R(S;\mathrm{P}_{n})$

and their boundaries. This partition is called the
Voronoi diagram for S , and the elements of S are
called the generators of the $\mathrm{V}\mathrm{o}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{i}$ diagram. The
region $\tilde{R}(S;\mathrm{P}_{i})$ is called the Voronoi region of P_{i} ,
and the boundary lines of the Voronoi diagram
are called Vororioi edges. Fig. 1 $\mathrm{s}\dot{\mathrm{h}}_{\mathrm{O}\mathrm{W}}.\mathrm{s}$ an example
of the Voronoi diagram.

Figure 1: Voronoi diagram.

In the following subsections we generalize the
concept of the Voronoi diagram. In order to avoid
confusion, the above-defined Voronoi diagram is
sometimes called the ordinary Voronoi diagram.

2.2 Multiplicatively Weighted Voronoi
Diagram

Let $S=\{\mathrm{P}_{1},\mathrm{P}_{2}, \cdots, \mathrm{p}_{n}\}$ be the set of points in
the plane, and v_{i} be a positive real assigned to

P_{i} for $i=1,2,$ $\cdots,$ n . For any point P , we call
$||\mathrm{P}-^{\mathrm{p}_{i}}||/v_{i}$ the multiplicatively weighted distance,
and call v_{i} the weight assigned to P_{i} . We define
region $R_{\mathrm{m}}(S;\mathrm{P}_{i})$ by

$R_{\mathrm{m}}(S;\mathrm{P}_{i})$

$=$ $\{\mathrm{P}|||\mathrm{P}-^{\mathrm{p}_{i}}||/v_{i}<||\mathrm{P}-^{\mathrm{p}_{j}}||/v_{j}, j\neq i\}$,
(2)

that is, $R_{\mathrm{m}}(S;\mathrm{P}_{i})$ denotes the set of points
that is closer to P_{i} than to any other
P_{j} in terms of the multiplicatively weighted
distance. The plane is partitioned into
$R_{\mathrm{m}}(S;\mathrm{P}1),$ $R\mathrm{m}(S;\mathrm{P}2),$ $\cdots,$ $R_{\mathrm{m}}(s;\mathrm{P}_{n})$. This par-
tition is called the multiplicatively weighted
Voronoi diagram $[2, 6]$.

A boundary of two Voronoi regions is a part of
a circle, which is known as the Apolonius circle
[7].

Fig. 2 shows an example of a multiplicatively
weighted Voronoi diagram; the numbers in the
parentheses represent the weights of the genera-
tors.

Figure 2: Multiplicatively weighted Voronoi dia-
gram.

Note that the multiplicatively weighted dis-
tance is defined as the Euclidean distance mul-
tiplied by $1/v_{i}$, but not by v_{i} . This definition
is intuitively natural because a larger weight im-
plies a larger Voronoi region $R_{\mathrm{m}}(S;\mathrm{P}_{i})$. In other
words, we can interpret v_{i} as the velocity of a ve-
hicle assigned to P_{i} , and the weighted distance
$||\mathrm{P}-\mathrm{p}_{i}||/v_{i}$ as the time required by the vehicle to
travel from P_{i} to P. Hence the multiplicatively
weighted Voronoi diagram can be understood as
the partition of the plane according to which ve-
hicle can reach in the shortest time.

110

In the multiplicatively weighted Voronoi dia-
gram, a region $R_{\mathrm{m}}(S;\mathrm{P}_{i})$ may be disconnected.
Indeed, a generator with a large weight gets an
area that is beyond the regions of generators with
smaller weights.

2.3 Multiplicatively Weighted
Crystal-Growth Voronoi Diagram

As in previous sub-
sections, let $S=\{\mathrm{P}_{1,2,,n}\mathrm{p}\ldots \mathrm{p}\}$ be the set of
generators in the plane and v_{i} be the weight as-
signed to P_{i} . Suppose that for each i , the i-th
crystal grows from P_{i} by its own speed v_{i} . The
$\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{t}\dot{\mathrm{a}}\mathrm{l}\mathrm{s}$ can grow only in empty area; they cannot
intrude into those areas that are already occupied
by other crystals. Hence, a faster crystal must go
around slower crystals. Thus, unlike the multi-
plicatively weighted distance, the time required
for the i-th crystal to reach P is not determined
by P and P_{i} only; it depends also on the locations
and speeds of other crystals.

In this sense, the resulting crystal pattern
is different from the multiplicatively weighted
Voronoi diagram. This crystal pattern is
called the multiplicatively weighted crystal-growth
Voronoi diagram, or the crystal Voronoi diagram
for short.

In the crystal Voronoi diagram, each crystal
behaves as an obstacle against other crystals.
Hence, for a point P in the i-th crystal region
the distance from P_{i} to P should be measured
along the shortest path completely included in
the crystal.

Fig. 3 shows the crystal Voronoi diagram for
two generators with weights 1 and 2.

If all the growth speed v_{i} are the same, the crys-
tal Voronoi diagram coincides with the ordinary
Voronoi diagram.

Note that, unlike the multiplicatively weighted
Voronoi diagram, the Voronoi region of a crys-
tal Voronoi diagram is always connected. This is
because a crystal cannot jump in the process of
growing.

3 Analytic Solution for the
Simplest Case

In this section we consider the simplest case, that
is, the crystal Voronoi diagram for two genera-

Figure 3: Multiplicatively weighted crystal
Voronoi diagram.

tors. This case was already studied by Schaudt
and Drysdale [1]; they stated that the boundary
curve is a logarithmic spiral, but they did not
give an explicit expression of this curve. Here,
we derive the analytic expression of this curve
explicitly.

Let P_{1} and P_{2} be two generators with the
weights (i.e., the growth speeds) v_{1} and v_{2} , re-
spectively. Without loss of generality we assume
that $v_{1}<v_{2}$. Let us define $k\equiv v_{2}/v_{1}$. More-
over, let the coordinates of the generators be
$\mathrm{P}_{1}=(0,0)$ and $\mathrm{P}_{2}=(a, 0)$, as shown in Fig. 4.

Figure 4: Analysis for the two-side case.

First, we consider the portion of the boundary
to which both of the crystals reach without ob-
secured by the other. Point P on this portion of
the boundary satisfies

$||\mathrm{P}-^{\mathrm{p}_{i}}||/v_{i}=||\mathrm{P}-^{\mathrm{p}_{j}}||/v_{j}$. (3)

Let the coordinates of P be (x, y) . Then, this

111

equation can be rewritten by

$(x- \frac{a}{k^{2}-1})^{2}+y2=\frac{k^{2}}{(k^{2}-1)^{2}}a^{2}$. (4)

This is the circle formed by the points from
which the distance to P_{i} and that to P_{j} have the
consstant ratio k . This circle is called the Ap-
polonius circle [7].

Let C_{1} be the Appolonius circle represented by
eq. (4). Form P_{2} , let us draw the two tangent
lines to C_{1} . Then, they touch C_{1} at two points,
say Q_{1} and Q_{2} . Let Q_{1} be the tangent point in
the $y>0$ area, and Q_{2} be the tangent point in the
$y<0$ area. Both Q_{1} and Q_{2} are on the y axis.
Hence, any point P on C_{1} that satisfies $x\geq 0$

is visible from both P_{1} and P_{2} , that is, the line
segment connecting P to P_{1} and that connecting
P to P_{2} do not intersect C_{1} except at P. This
means that the portion of C_{1} that satisfies $x\geq 0$

belongs to the boundary of the crystal Voronoi
diagram.

On the other hand, the portion of C_{1} that sat-
isfies $x<0$ is not on the boundary of the crystal
Voronoi diagram, because this portion is not vis-
ible from P_{2} . In the area $x<0$, the crystal start-
ing at P_{2} should go around avoiding the other
crystal. Let this portion of the boundary of the
crystal Voronoi diagram be $r(\theta)$ represented by
the polar coordinate system, that is, $r(\theta)$ be the
distance from the origin to the boundary point in
the direction that forms angle $\theta,$ $\pi/2<\theta<\pi$,
with respect to the positive x axis.

The curve $r(\theta)$ satisfies

$\int_{\pi/2}^{\theta}\sqrt{r(\phi)^{2}+r’(\phi)^{2}}\mathrm{d}\phi+\frac{ak}{\sqrt{k^{2}-1}}=k\cdot r(\theta)$. (5)

Suppose that we devide the both sides of this
equation by v_{2} . Then, the first term in the left-
hand side represents the weighted length from Q_{1}

to $r(\theta)$ along the boundary of the crystal Voronoi
diagram, and the second term in the left-hand
side represents the weighted distance from P_{2}

to Q_{1} . Hence, the left-hand side represents the
weighted distance from the generator P_{2} to the
point $r(\theta)$ along the shortest path $\mathrm{a}\mathrm{v}\dot{\mathrm{o}}i\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$ the
other crystal area. The right-hand side, on the
other hand, represents the weighted distance from
P_{1} to $r(\theta)$, that is, the weighted length of the line
segment from P_{1} to $r(\theta)$. Since the two crystals
meet at $r(\theta)$, their weighted distance from P_{1} and

P_{2} , respectively, should be the same, and hence
eq. (5) should be satisfied.

Since the curve $r(\theta)$ should pass through the
point Q_{1} , we get

$r(T/2)= \frac{a}{\sqrt{k^{2}-1}}$. (6)

From $\mathrm{e}\mathrm{q}\mathrm{s}$. (5) and (6), we obtain

$r(\theta)=\frac{a}{\sqrt{k^{2}-1}}\exp\frac{\theta-\pi/2}{\sqrt{k^{2}-1}}$. (7)

This equation represents alogarithmic spiral cen-
tered at $\mathrm{P}_{1}[8]$.

Since the boundary of the crystal Voronoi dia-
gram is symmetric with respect to the x axis, we
obtain the portion of the boundary for $\pi<\theta<$

$3\pi/2$ in a similar manner.
Summing up all the above discussions, we get

the boundary of the crystal Voronoi $\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}\mathrm{r}\mathrm{a}.\mathrm{m}’$

. as

$r(\theta)=\frac{a}{\sqrt{k^{2}-1}}\exp\frac{\theta-\pi/2}{\sqrt{k^{2}-1}}$

$(\pi/2<\theta<\pi)$, (8)

$r(\theta)=\frac{a}{\sqrt{k^{2}-1}}\exp\frac{3\pi/2-\theta}{\sqrt{k^{2}-1}}$

$(\pi<\theta<3\pi/2)$, (9)

$(x+ \frac{a}{k^{2}-1})^{2}+y2=\frac{k^{2}}{(k^{2}-1)^{2}}a^{2}$

$(0\leq\theta\leq\pi/2,3\pi/2\leq\theta<2\pi).(10)$

This is the analytic expression of the boundary
between the two crystals.

4 Simulation of the Crystal
Growth

It is difficult to obtain the boundary for three
or more crystals in t.he analytic form. In this
section we consider a method for computing the
boundary curves approximately. For this purpose
we employ the fast marching method for solving
a certain type of a partial differential equation.

4.1 Fast Marching Method

4.1.1 Eikonal Equation

Let $\Omega\subset \mathrm{R}^{2}$ be a bounded region in the plane,
and Γ be its boundary. Let $F(x)$ be a real-valued
functions satisfying $F(x)>0$ for any $x\in\Omega$.

112

Furthermore, let $g(x)$ be a function on Γ . We
consider a nonlinear partial differential equation

$|\nabla u(x)|=F(x)$ in Ω (11)

with a boundary condition

$u(x)=g(x)$ on Γ , (12)

where $F(x)$ and $g(x)$ are known and $u(x)$ is un-
known. The equations (11) is called the Eikonal
equation.

Assume that $1/F(x)$ represents the speed of a
moving object at point x in Ω , and that $g(x)=0$
on F. Then, the solution $u(x)$ of the above
Eikonal equation can be interpreted as the short-
est time required for the object initially on the
boundary Γ to reach the point x . Therefore,
we can use this equation to represent the behav-
ior of the growth of a crystal. In particular, if
$F(x)=\infty$ in some area, this area behaves as an
obstacle because the speed (i.e., $1/F(x)$) in this
area is considered 0 . This property is suitable to
our purpose, because the areas occupied by crys-
tals behave as obstacles to other crystals. In what
follows, we assume that $g(x)=0$ on F.

To solve the equation (11) together with the
boundary condition (12), Sethian $[4, 5]$ proposed
a finite-difference method, called the fast march-
ing method. In the finite-difference method, the
unknown continuous function $u(x)=u(x, y)$ is
replaced by a finite set of values at discretized
points

$u_{i,j}=u(\dot{i}\triangle x,j\triangle y)$, (13)

where Δx and $\triangle y$ are small values representing
the interval for discretization in the x and y di-
rections. We set the values of $u_{i,j}’ \mathrm{s}$ on Γ being
0 , and starting with these boundary points, we
compute the values of the other $u_{i,j}’ \mathrm{s}$ in the in-
creasing order of the reach time.

Apparently similar techniques have already
been used in digital picture processing; they are
called distance-transformation methods [9]. In
these methods, the distance values at discretized
points are computed one by one by checking the
four-neighbor points (i.e., the immediately left,
right, upper, and lower points) or the eight-
neighbor points (i.e., the four-neighbor points
plus the left-upper, right-upper, left-lower, and
right-lower points). Usually the obtained dis-
tance is either L_{1} -distance or L_{∞} -distance, which

is different from what we want to obtain, i.e., the
Euclidean distance. Algorithms for obtaining the
Euclidean distance are also proposed in digital
image processing [10, 11, 12, 13], but they cannot
treat the obstacles, and hence cannot be applied
to our purpose.

4.1.2 Finite-Difference Equation in the
First Marching Method

Using the discretized value $u_{i,j}$, Sethian proposed
finite-difference approximations of the equation
(11). The most basic approximation is the first-
order finite-difference equation defined by

$[\max(D_{i,j}^{-\mathcal{I}}u, -D_{i}+,jxu,0)^{2}$

$+ \max(D_{i}^{-y},uj’-D^{+y}u, 0)i,j]^{1/}22$

$=$ $F_{i,j}$, (14)

where

$D_{i,j}^{-x}u= \frac{u_{i,j}-u_{i1,j}-}{\Delta x}$, (15)

$D_{i,i}^{+x}u= \frac{ui+1,j-u_{i},j}{\triangle x}$, (16)

$D_{i,j}^{-y}u= \frac{u_{i,jj1}-u_{i},-}{\Delta y}$, (17)

$D_{i,i}^{+y}u= \frac{u_{i,j+1}-ui,j}{\triangle y}$, (18)

$F_{i,j}=F(i\triangle x,j\triangle\dot{y})$. (19)

The reason why the maximum is taken in
eq. (14) is the following. Recall that the solu-
tion $u_{i,j}$ can be interpreted as the shortest time
at which an object starting from the boundary
Γ reaches the point $(\dot{i}\Delta_{X}.j\text{ノ}\triangle y)$. Suppose that
this object passes through the point $(i\triangle x,j\triangle y)$

in the positive x direction. Then, $D_{i,j}^{-x}u$ $>$

0 and $-D_{i,j}^{+x}<0$, and hence $D_{i,j}^{-x}u$ is taken
by the first maximum in the left-hand side of
eq. (14). On the other hand, if the object passes
through $(i\Delta x,j\triangle y)$ in the negative x direction,
then $D_{i,j}^{-x}<0$ and $-D_{i,j}^{+x}u>0$ and consequently
$-D_{i,j}^{+x}$ is taken. If the object motion has no x

component at $(i\Delta x,j\triangle y)$, then $D_{i}^{-x},ui=D_{i,j}^{+x}u=$

0 . The second maximum in eq. (14) behaves sim-
ilarly if we replace the x direction with the y di-
rection. In this way, the maximums in eq. (14)
are intended to choose the upwind finite differ-
ence to approximate $|\mathrm{v}u(x)|$ in eq. (11). This
is reasonable because we want to compute the

113

time along the shortest path from the boundary
to each point $(\dot{i}\triangle x,j\triangle y)$.

Eq. (14) is used to compute the unknown value
$v_{i,j}$ from given u values at the upwind neighbor
points and given $F_{i,j}$.

Sethian also proposed the second-order approx-
imation of eq. (11) by

$=F_{i,j}$,

(20)
where

$switCh_{i}^{\pm x},=j\{$

1, if $u_{i\pm 2,j}$ and $u_{i\pm 1,j}$ are
known and $u_{i\pm 2,j}\leq u_{i\pm 1,j}$,

0 , otherwise
(21)

and $switCh_{i,j}\pm y$ is defined similarly.
The coefficient switch in eq. (20) is necessary,

because $F(x)$ depends on x so that the shortest
path might be curved, and consequently $u_{i-2,j}$,
for example, might not be known even if the
upwind-neighbor value $u_{i-1,j}$ is known.

For our purpose of computing the crystal
Voronoi diagram, we use the first-order approxi-
mations to choose the upwind neighbors, and use
the second-order approximation to compute the
value $0.\mathrm{f}u_{i,j}$.

4.1.3 Original Fast Marching Algorithm

The original fast marching algorithm proposed by
Sethian is as follows.

Algorithm 1 (Fast marching method)
Step 1 (Initialization). Cover the region Ω

with grid points $(i\triangle x,j\triangle y)$. Initialize KNOWN
to be the set of all grid points on the boundary
Γ , and TRIAL to be the set of all points that are
one-grid far from KNOWN, and FAR to be the set
of all the other points. Initialize the value $u_{i,j}$ as
$u_{i,j}=0$ for points in KNOWN, $u_{i,j}= \inf$ for points
in FAR, and determine the value of $u_{i,j}$ according
to eq. (20) for points in TRIAL.

Step 2 (Main loop). Repeat Steps 2.1 to 2.5.
2.1. From TRIAL choose and delete the point,

say Q , with the smallest u value, and add it to
KNOWN.

2.2. For each of the four neighbors of Q that
is in FAR, move it from FAR to $\mathrm{T}\mathrm{R}\mathrm{l}\mathrm{A}\mathrm{L}$.

2.3. For each of the four neighbors of Q that
are in TRIAL, compute the u value using eq. (20).
(If the point already has the u value, recompute
and update it.)

2.4. If $\mathrm{T}\mathrm{R}\mathrm{l}\mathrm{A}\mathrm{L}$ is empty, stop. Otherwise go to
2.1. 1

If we use a heap for representing and manip-
ulating the set $\mathrm{T}\mathrm{R}\mathrm{l}\mathrm{A}\mathrm{L}$, this algorithm runs in
$\mathrm{O}(N\log N)$ time for N grid points. Refer to $[4, 5]$

for the details of this algorithm.

4.2 Computation of the Crystal
Voronoi Diagram

We apply the fast marching method to the simu-
lation of the growth of crystals. We discretize the
region in which we want to compute the crystal
structure into grid points, and assign the genera-
tors to the nearest grid points, say $\mathrm{P}_{1},$ $\mathrm{P}_{2},$

$\cdots,$
$\mathrm{P}n$.

Let N be the total number of the grid points. We
assign sequential numbers to all the grid points,
and name them as $\mathrm{Q}_{1}.’ \mathrm{Q}_{2},$ $\cdots,$

Q_{N} . Basically
we follow Algorithm 1, but in several points we
change it in the following way.

First, for each grid point Q_{j} , we assign the
“crystal name” $\mathrm{C}\mathrm{N}\mathrm{A}\mathrm{M}\mathrm{E}[\mathrm{Q}_{j}]$, which represents the
ordinal number of the crystal to which Q_{j} be-
glongs. The value of $\mathrm{C}\mathrm{N}\mathrm{A}\mathrm{M}\mathrm{E}[\mathrm{Q}_{j}]$ is either an
integer from 1 to n or “NONE”. At the initial
stage, we set $\mathrm{C}\mathrm{N}\mathrm{A}\mathrm{M}\mathrm{E}[\mathrm{P}k]=k$ for all the gener-
ators $\mathrm{P}_{k},$ $k=1,2,$ $\cdots,$ n , set $\mathrm{C}\mathrm{N}\mathrm{A}\mathrm{M}\mathrm{E}[\mathrm{Q}_{j}]=k$

for grid point Q_{j} that is one-grid far from P_{k} ,
and set $\mathrm{C}\mathrm{N}\mathrm{A}\mathrm{M}\mathrm{E}[\mathrm{Q}_{j}]=\mathrm{N}\mathrm{o}\mathrm{N}\mathrm{E}$ for the other grid
points. Whenever the k-th crystal reaches Q_{j} ,
$\mathrm{C}\mathrm{N}\mathrm{A}\mathrm{M}\mathrm{E}[\mathrm{Q}_{j}]$ is changed to k .

Secondly, at the initial stage, we set KNOWN
to be the set $\{\mathrm{P}_{1}, \mathrm{P}_{2}, \cdots,\mathrm{P}_{n}\}$ of the generators.

Thirdly, for the computation of the u value of
a four-neighbor point, say Q_{j} , in TRIAL of the
point Q in Step 1 or in Step 2.3 in Algorithm 1,
we slightly modify the procedure in the following
way.

(i) We read the crystal name $k=\mathrm{C}\mathrm{N}\mathrm{A}\mathrm{M}\mathrm{E}[\mathrm{Q}]$,
and use the growth speed of the k-th crystal, that
is, we substitute $F_{i,j}=1/v_{k}$ to eq. (20).

(ii) We use the u values of only those points
Q_{l} that are included in the k-th crystal, i.e.,

114

$\mathrm{c}_{\mathrm{N}\mathrm{A}\mathrm{M}}\mathrm{E}(\mathrm{Q}_{l})=k$, in solving eq. (20).
(iii) Because of the above modifications (i)

and (ii), the resulting u value is not necessary
smaller than the previous value. Hence, only
when the recomputed u value is smaller than the
present value, we update the u value, and change
CNAME $[\mathrm{Q}_{j}]$ to k .

The output of the fast marching method mod-
ified as described above can be interpreted as the
crystal Voronoi diagram in the sense that each
grid point Q_{j} belongs to the crystal $\mathrm{C}\mathrm{N}\mathrm{A}\mathrm{M}\mathrm{E}[\mathrm{Q}_{j}]$.

Fig. 5 shows the behavior of the algorithm.
Here, the square region was replaced by $400\cross 400$

grid points and 15 generators were placed. Fig. 5
(a) and (b) show the frontiers of the crystals at
the stage where the fastest crystal grows 30 times
the grid distance and 100 times the grid distance,
respectively. Fig. 5 (c) shows the final result.

5 A Generalization of the
Crystal Voronoi Diagram

The distance in the multiplicatively weighted
Voronoi diagram is defined along a straight line
segment no matter whether it crosses other re-
gions, while in the crystal Voronoi diagram the
distance is measured along the path completely
included in one crystal region. We can consider a
mixture of these two distances and thus can de-
fine a new type of a generalization of the Voronoi
diagram.

Suppose that, instead of crystals, different
species of plants start growing at $\mathrm{p}_{1},$ $\mathrm{p}_{2},$

$\cdots,$
P_{n}

in a field, and that they can grow at their own
speeds in an empty space whereas at slower
speeds when they enter regions with other plants.
We partition the field into regions according to
which plant reaches first. We call this partition a
generalized crystal Voronoi diagram.

The speed of growth can be formulated in the
following way. Suppose that the plants starting
from $\mathrm{p}_{m_{1}},$ $\mathrm{p}_{m_{2}},$

$\cdots,$
$\mathrm{p}m_{n}$ reach point P in this or-

der. Then, we define the speed at P of the plant
starting from $\mathrm{P}_{m_{k}}$ as

$f_{m_{k}}(\mathrm{p})=f(\mathrm{P}_{m}, \mathrm{P}1m2’\ldots,m_{k}\mathrm{P})$. (22)

This means that the speed at the point P of
the plant growing from $\mathrm{P}_{m_{k}}$ depends also on the
plants that have already reached P.

Note that, if

$f_{m_{k}}(\mathrm{p})=\{$

$f(\mathrm{P}_{m_{k}})$ $(k=1)$,
0 $(k\neq 1)$, (23)

then the resulting partition is the crystal Voronoi
diagram, whereas if

$f_{m_{k}}(\mathrm{p})=f(\mathrm{P}_{m_{k}})$ for any k , (24)

then the resulting partition is the multiplica-
tively weighted Voronoi diagram. Thus, our
new diagram is a generalization of both the
crystal Voronoi diagram and the multiplicatively
weighted Voronoi diagram.

The new diagram can also be computed
approximately by our modified fast marching
method; the only change is to substitute our new
grow speed to $1/F_{i,j}$ in eq. (20).

Examples of the generalized crystal Voronoi di-
agrams are shown in Fig. 6. In this example, we
use the speed defined by

$f_{m_{k}}(\mathrm{P})=\{$

$f(\mathrm{P}_{m_{1}})$ $(k=1)$,
$a\cdot f(\mathrm{P}_{m_{1}})$ $(k\neq 1)$. (25)

The diagrams (a), (b), \cdots , (k) in this figure cor-
respond to the cases $a=0.0,0.2,0.4,0.6,0.8,1.0$,
1.2, 1.4, respectively. The diagram with $a=0.0$
coincides with the crystal Voronoi diagram, and
the diagram with $a=1.0$ coincides with the mul-
tiplicatively weighted Voronoi diagram. It might
be interesting to note that the change of the dia-
gram is not gradual, but is drastical around some
value of a (around $a=0.8$ in the example in
Fig. 6).

6 Application to Path Plan-
ning

6.1 Fast Marching Method for
Collision-Free Path

Sethian applied the fast marching method to
the collision-free path among static obstacles [4].
Here, we extend his idea, and propose a method
for finding a collision-free path among moving
competitive robots. First, let us review the
Sethian’s idea [4].

The Eikonal $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}_{0,\mathrm{n}}$

.
(11) can be written in

the integral form as

$u(x)= \min_{\gamma}\int_{A}^{x_{F}}(\gamma(\tau))\mathrm{d}\mathcal{T}$, (26)

115

${ }$.
${ }$

${ }$

Q. .

$.\%.\mathrm{O}$

${ }$

(a) $\mathrm{t}=30$

Figure 5: Simulation of crystal Voronoi diagram by the fast marching method (t means the radius of
the fastest growing crystal when the width betwen grids is one).

Figure 6: Generalized crystal Voronoi diagrams growing at the a times faster velocity in other crystals.

where A is a start point, γ is a path from A to
x in Ω . Thus, $u(x)$ represents the shortest time
in which a robot can move from A to x . Suppose
that we get $u(x)$ for every point x in Ω using the
fast marching method. Next, for any point B in
Ω , the solution $X(t)$ of equation

$X(t)=-\nabla u$, $X(0)=B$ (27)

gives the shortest path from A to B .
This idea can be extended to the case where the

robot has its own shape instead of just a point.
Suppose, for example, that a moving robot is a
rectangle. Let (x, y) be the location of the center
of the robot and θ be the angle of the longer edge
of the rectangle with respect to the positive x

direction; we measure the angle counterclockwise.
Thus the position and the posture of the robot
can be represented by a point (x, y, θ) in a three-
dimensional parameter space.

Next for each θ , we find the region in which the
robot cannot enter without colliding the obsta-
cle, as shown by the shaded area in Fig. 7. The
boundary of this region can be obtained as the
tragectory of the center of the robot that moves
around keeping in contact with the obstacle. For
this fixed θ , to consider the rectangular robot
moving around the original obstacle is equivalent
to consider a point robot moving around the ex-
tended region. Thus, we can reduce the problem
of the moving robot among the obstacles to the

116

problem of a moving point among the enlarged
obstacles.

represents the angular velocity. The coefficient α

represents the ratio of the time to translate the
robot by unit length over the time to rotate the
robot by unit angle.

(a) Fi rst state of a robot and (b) The $*r$ea wher. the r obot \cdot

s center
an obstacle. $\mathrm{c}\cdot \mathrm{n}\mathrm{n}\mathrm{o}\mathrm{t}$ ente $r.\mathrm{h}\cdot n$ it rotates at

an ang le of θ .

Figure 7: The area where where the robot’s center
cannot enter.

However, this reduction should be done for
each value of θ . Hence, we discretize θ as well
as x and y , and construct the three-dimensional
grid structure as shown in Fig. 8. A fixed value
of θ corresponds to a horizontal plane, in which
we extend the obstacles.

A V

Figure 8: 3-dimensional space of fast marching
method for robot navigation.

Sethian used the fast marching method to solve
the Eikonal equation

$[(\frac{\partial u}{\partial x})^{2}+(\frac{\partial u}{\partial y})^{2}+\alpha(\frac{\partial u}{\partial\theta})^{2}]1/2=1$ (28)

in the three-dimensional (x, y, θ) space. The par-
tial derivatives $\partial u/\partial x$ and $\partial u/\partial y$ represent the
x and y components of the velocity while $\partial u/\partial\theta$

6.2 Extension to Competitive Robots

Here we consider the situation where our robot
moves among enemy robots. Suppose that our
robot has an arbitrary shape while the enemy
robots are circles, and each robot has its own ve-
locity. Our robot wants to move avoiding enemies
from the start point to the goal as fast as possible,
while the enemy robots try to attack it. In this
situation we want to find the worst-case optimal
path from the start point to the goal.

For this purpose, we can apply the first march-
ing method. The only difference from Sethian’s
path planning is that the obstacles are not static;
they move with the intention to attack our robot.
Hence, as we extended Sethian’s fast marching
method to the crystals, we treat the enemy robots
as if they are crystals growing isotropically in ev-
ery direction; these crystal regions represent the
maximum area that the enemy robot can reach.

Fig. 9 shows an example of the collision-free
path found by our method. The five enemy
robots, starting with the initial circles represent-
ing the sizes of the robots, grow their regions by
their own speed. Our robot, on the other hand,
is a rectangle that can translate and rotate. In
Fig. 9, (a), (b) and (c) show the status at some
instants, while (d) shows the whole path of the
robot to reach the goal.

Fig. 10 (a) shows the generated path for the
case that our robot can move faster than in Fig. 9,
while Fig. 10 (b) shows the case that our robot
moves more slowly than in Fig. 9.

7 Concluding Remarks

This paper studied the crystal Voronoi diagram
from the computational point of view. First, we
gave an explicit expression of the boundary of two
crystals. Next, we present a method for comput-
ing the approximated diagram, where we modify
the fast marching method to solve the Eikonal
equation.

The approximation method proposed by
Schaudt and Drysdale [1] requires $\mathrm{O}(n^{3})$ time

117

Figure 9: Optimal answers of the robot navigation problems.

for n crystals, whereas our new method runs in
$\mathrm{O}(N\log N)$ time for N grid points. This time
complexity does not depend on the number of
crystals. Hence our new method will be more ef-
ficient for a large number of crystals.

Furthermore, we extend our method in two di-
rections. First, we generalize the crystal Voronoi
diagram in such a way that the crystals can grow
also in other crystal areas though the speed might
be slower. We also generalize our method to com-
pute this Voronoi diagram. Secondly, we apply
the crystal Voronoi diagram to the collision-free
path planning among enemy robots, and evalu-
ated our method by computational experiments.

One of the main problems for future is to raise
the efficiency of the method. We might decrease
the computational cost by using a couse grid to-
gether with interpolation techniques. We might
also decrease the memory cost by discurding the
u values except around the frontiers of the crys-
tals.

In our application to the path planning among
competitive robots, we assume that the enemy
robots are circles in their shape. To generalize
our method for arbitrary enemy shapes is another

important problem for future. A naive method
is to increase the dimension of the search space,
one for each enemy robot, but this is not a cleaver
strategy from a computational-cost point of view.

Acknowledgements. The authors express
their thanks to Prof. K. Hayami, Mr. T. Nishida
and Mr. S. Horiuchi of the University of Tokyo
for valuable comments. This work is supported
by the Grant-in-Aid for Scientific Research of the
Japanese Ministry of Education, Science, Sports
and Culture.

References

[1] B.F. Schaudt and R.L. Drysdale: Multi-
plicatively weighted crystal growth Voronoi
diagram. Proceedings of the Second Cana-
dian Conference in Computational Geome-
try, North Conway, (1991), pp. 214-223.

[2] F. Aurenhammer: Voronoi diagrams–A
survey of a fundamental Geometric data
structure. ACM Computing Surveys, vol. 23,
no. 3 (1991), pp. 345-405.

118

Figure 10: Optimal answers of the robot navigation problems for other robot velocities.

[3] A. Okabe, B. Boots, and K. Sugihara: Spa-
tial Tesellations–Concepts and Applications
of Voronoi Diagrams. John Wiley, Chick-
ester, 1992.

[4] J.A. Sethian: Fast marching methods. SIAM
Review, vol. 41, no. 2 (1999), pp. 199-235.

[5] J.A. Sethian: Level Set Methods and First
Marching Methodsf Second Edition. Cam-
bridge University Press, Cambridge, 1999.

[6] C.A. Wang and P.Y. Tsin: Finding con-
strained and weighted Voronoi diagrams in
the plane. Proceedings of the Second Cana-
dian Conference in Computational Geometry
(Ottawa, August 1990), pp.200-203.

[7] D. Pedoe: Geometry–A Comprehensive
Courese. Cambridge University Press, Lon-
don, 1970.

[8] M. Berger and B. Gostiaux: Differen-
tial Geometry–Manifolds, Curves, and Sur-

faces. Springer-Verlag, New York, 1988.

[9] A. Rosenfeld and J. Pfalts: Sequential oper-
ations in digital picture processing. Journal
of ACM, vol. 13 (1966), pp. 471-494.

[10] M.N. Kolountzalcis and K.N. Kutulakos:
Fast computation of the Euclidean distance
maps for binary images. Infor. Process. Lett.,
vol. 43 (1992), pp. 181-184.

[11] L. Chen and H.Y.H. Chuang. A fast algo-
rithm for Euclidian distance maps of a 2-

d binary image. Infor. Process. Lett. vol. 51
(1994), pp. 25-29.

[12] H. Breu, J. Gill, D. Kirkpatrick and M.
Werman: Linear time Euclidean distance
transform algorithms. IEEE Transactions on
pattern Analysis and Machine Intelligence,
vol. 17 (1995), pp. 529-533.

[13] T. Hirata: A unified linear-time algorithm
for computing distance maps. Infor. Process.
Lett., vol. 58 (1996), pp. 129-133.

119

