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1. Introduction

In nonstandard analysis, standardizations of internal (or nonstandard) objects have been
studied for constructing standard mathematical objects; e.g. an internal measure space
is converted into a measure space in the standard sense, called Loeb space ([1](2](3][4]).
The standardization of an internal Hilbert space H is called the nonstandard hull of H,
written as 7 (Henson and Moore [5]). Then the standardization of an internal operator
A on H with finite norm is naturally defined on A, In this paper, the standardization
of A shall be called the standard part of A, written as A. A prominent work of Moore
[6] was focused on the case where H is hyperfinite-dimensional, and studied hyperfinite-
dimensional extension of bounded operators on #. On the other hand, in the case where
the norm of A is not finite, it is not straightforward to give an adequate definition of the
standard part of A. Albeverio et al. [4] defined A only when H is hyperfinite-dimensional
real Hilbert space and A is an internal positive symmetric operator on H.

In this paper, we give a definition of A for any internal complex Hilbert space H and
for any internal S-bonded self-adjoint operator A on H, as well as a general consideration
on A so defined, which suggests the adequacy of the definition.

2. Preliminaries

We work in a R;-saturated nonstandard universe [7]. Note that every nonstandard universe
constructed by a bounded ultrapower is N;-saturated.

Let (V,]| - ||) be an internal normed linear space. Define the subspaces p(V, | - ||) and
fin(V, || - [[) of V by
p(Voll- 1) ={&e VIl =0}, fin(Vi]l-[)) ={§ € V] [I£]] <oo}. (1)
We often abbreviate them as (V) and fin(V). Let £ = & + u(V) and V = fin(V)/u(V),
the quotient space. We can naturally define the usual norm || - |Jon V' by ||£]| = °||€]|.
A countably infinite sequence {&; }ien, where & € fin(V, || - ||), approzimately converges to
¢ € V in the norm || - || if

Vee RY3IneNVkeN [k>n = [[€-&] <e] (2)



A sequence {¢; }ien approximately converges to £ € V' if and only if {§l}l€N converges to
£ € V. A sequence {&}ien, where & € fin(V, || - ||), is S-|| - ||-Cauchy if

Ve e RT IneNVEIeN [ki>n = [|&—6&| <e] (3)

A sequence {&;};en is S-|| - |[-Cauchy if and only if the sequence {f,}zeN is Cauchy.

A subset X C fin(V,||-[]) is S-|| - ||-complete if for any S-|| - ||-Cauchy sequence {&;}ien,
there exists £ € X such that {¢;} approximately converges to £ in the norm || - ||. The
subset X is S-|| - ||-complete if and only if X is complete in V, where X = {£|¢ € X}.

The following results, called the hull completeness theorem, is a fundamental property
of an internal normed space (V,|| - ||). See Hurd and Loeb [3] for detail.

Theorem 2.1. The subspace fin(V') is S-complete in || - ||.
Corollary 2.2. (The Hull Completeness Theorem) V is a Banach space.

Let H be an internal Hilbert space, and T : H — H an internal bounded linear
operator such that the bound ||| is finite. The bounded operator T:H — #, called the
standard part of T is defined by the relation 7% = Tz for any z € fin(H).

For further information on nonstandard real analysis, we refer to Stroyan and Luxem-
burg [3] and Hurd and Loeb [2].

3. Several definitions of standard parts

We give several equivalent definitions of the standard part of an internal bounded self-
adjoint operator which is not S-bounded.

The following lemma, which is a basic property for self-adjointness, is used to glve the
first definition of standard parts (see [8]).

Lemma 3.1. Let A be a symmetric operator on a Hilbert space H. Then, A is self-
adjoint if and only if Rng(A £1i) = H.

Let H be an internal Hilbert space, and A an internal bounded self-adjoint operator
on H. Let K = Ker([(A +14)~']")*. Using the unitarity of (A +4)(A —)~", we can easily
check that Ker([(A —1)7}]")* =K. ‘

Proposition 3.2. There exists the unique (possibly unbounded) self adjoint: operator

S on K satisfying
(S+ D) =[(A 4+ _1]”IIC. (4)

Proof. We see ||(A+14)7!|] < oo, and [(4 +4)']" is an bounded normal operator on
#H. The operator T := [(A+14)7']" IIC is a bijection from K to [(4 +i)~}]"K. Hence the
inverse 7! from [(A+1)"!]"K to K is defined. Clearly the operator S = T~! — 1 satisfies
the equation (4).

We will show that S is symmetric. Let 2,2z, € Dom(S) (= [(A +4)~']"K). Then,
we can show that there exist & € x; such that A& € Sz; (i = 1,2) as follows. There
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are y; € K and 7; € H such that (S +4) 'y, = [(A+4)"! "y = z; and n; € ;. Let
& = (A+14) 7. Then & € z; and (A+ )& = n € yi = (S +1)2;. Hence A € Sz;.
Thus, (1, Sz) = °(&1, Als) = °(A&, &) = (Sx1,x3). Therefore, S is symmetric.

To prove the self-adjointness, it is sufficient to show Rng(S +14) = Rng(S — i) = K by
Lemma 3.1. Clearly Rng(S + i) = Rng(7~!) = K. Let € Dom(S), £ € x and A € Sx.
Then we have

(G0s) " 5+ie = (G (A+9g) ~= (5~ i)z (5)
Thus, by the equation (4) with Ker([(4 —4)~!]")* = K, we have
(S-)=[A-97"IK. (6)

Therefore, we can show Rng(S —i) = K in the similar way to the proof of Rng(S+1) = K.
The uniqueness of S is clear. QED

Definition 3.3. Under the condition of Proposgtion 3.2, define the self-adjoint oper-
ator st1(A) on K by (st1(A) +4)~ ' =[(A+19)7!"|K.

The operator st;(A) is called the standard part of A. We see that st;(A) = A when A is
S-bounded.

Definition 3.4. Let A be an internal bounded operator on H, an internal Hilbert
space. Define fin(A) C H by

fin(A) = {¢ € fin}| A € finH}. (7)

Definition 3.5. Let A be an internal bounded self-adjoint operator on H. Let K be
the closure of the subspace [fin(A)]"= {€|¢€ € fin(A)} of H. Define the self-adjoint operator
sta(A) on K by .

eits2(d) = ¢itA|IK. ¢t e R. (8)

We see that {e/i;“ |IK}ser is one-parameter unitary group, since K is invariant under eitA
for all t € R. We also see that it is strongly continuous as follows. Let £ € fin(A). Then,
we have ||(*d/dt)e*¢|| = [lie" AE]| < oo, where *d/dt is the internal differentiation. This
implies that e”Af is continuous with respect to ¢ € R. Thus, eitA g strongly continuous
on fin(4)~++. Hence by Stone’s theorem, sty(A) is uniquely defined.

If Ais S—bounded, sto(A) coincides with A defined in Section 2. This is seen from the

following:
Proposition 3.6. Let A be an internal S-bounded self-adjoint operator. Then,
Gith = gitA. )

for all t € R.
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Proof. For any infinitesimal € € *R{, -

e — 1) ~ A, : ‘ (10)
hélds, because
e (e = I) — Al = [le™ D _(1eA)" /vl < 7' Y (ellAll)"/v!
v=2 v=2

= el —1) —||A| = 0.
Thus, by the permanence principle,
V6 e Ry,Je € Ry, Jt| < e = ||t (e — I) — iA]| < 6. (11)

Hence, we have
lim lle” (e“A I —iA|| = 0. (12)

Thus we have (d/dt)e"A[t —o = iA, where d/dt is the usual differentiation. Because
(e’“‘)teR is one-parameter unitary group, it follows that eitA = gith, QED

Let E (-) be an internal projection-valued measure on *R, i.e., for each internal Borel
set 0 C *R, F(Q) is an orthogonal projection on H such that

(1) B(¢) =0, ECR)=1 | | |

(2) If @ = U, Qn with Q, N Q= ¢ if 1 # m, then E(Q) = s-limy, .o SN E(Q)

(3) E(U)E(2) = E(1 N ). - ’

For r € *R, let H, = Rng(E(-r,r)), the range of E((—r,r)). Let D(E)
Urer+ Hr ﬂﬁn?—l D(FE) is called the standardization domain of E(-). Clearly, D/(TE)J'l =

(UT€R+ H )
For a € R define the orthogonal projection Est 00, a) by
Eg(—00,a] = sup{E(-K,a+¢|D(B)*|K, e c R} (13)
.z I A
= slim E(-n,a+ E”D(E) (14)
Then we see
s-lim Ey(~o0,a] = 0 - (15)
s—llign Ey(-00,a+€ = Ey(—00,a (16)
€
a<b=> ESL(—oo,a] < Est(—oo,b]. (17)

Hence, E‘st(——oo, /] defines a projection-valued measure on R.

Definition 3.7. For any internal bounded self-adjoint operator A, define the self-
adjoint operator st3(A) on D(E)*+ by

sta(A) = / AdEqy (N). (18)
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Proposition 3.8. Let A be an internal bounded self-adjoint operator, and E(-) the
internal projection-valued measure associated with the spectral decomposition of A. Then
. — 11
D(E)*t = fin(A) (19)

Proof. D(E)*+ C fin(A)~1+ is clear. To prove D(E)tL D fin(A)~+L, it is sufficient
to show that for any & € fin(A) "~ there is a sequence &, € D(E) (n € N) such that
Zn — Z. Let 2, = E(—n,n)z (n € *N). Notice that ||A(z — z,)|| > n||z — z,]|. Suppose
||t = zn|| > € for all n € N. By the permanence principle, there is N € *Ng such
that ||z — zn|| > €. Hence, ||[A(z — z,)|| > Nljz — zn|| > Ne ~ oo. This contradicts
[A(z — zn)|l < |Az|| < o0. QED

Theorem 3.9. Let A be an internal bounded self-adjoint operator. Then,
sta(A) = / AEg(N), (20)
and hence sto(A) = st3(A).
Proof. Tt is sufficient to show
(3, exp(itsta(4))2) = [ €5, dBy(N)3) (21)

for all # € fin(A)~1+. Define the internal Borel measure u by u(d)\) = (z, E(d\)z). Let
Ly denote the Loeb measure of y, and L'y the Borel measure on R defined by L'u(Q) =
Lu(st™1[]). We can check that L'y is well-defined (i.e., st™'[Q2] is Luy-measurable for any
Borel set Q C R). We also see that Ly is supported by fin*R, since Lu(*R \ fin*R) <
°(z, E(*R\ (=n,n))z) = °||(1 — E(=n,n))z||?> < (1/n?)°||Az||? for all n € N. Therefore

(£, exp(itsty(A))E) = <§:,@f>
— °<.‘E,6”A£L‘>

— o*/ e“’\du(/\)
‘R
= *edLu(A
/. ceaLu(y
= [ L p(N).
[ e dru()
On the other hand, for a,b € R with a < b,
L'u(a,b) = Lu( |J (a+¢b—¢)
e€RT
= lifgl (z,E(a+€,b—e€)z)
= lif{f(j’ E(a+e,b—e€))
= (%, S'lfén E(a+eb— e)i)
= (&, Ey(a,b)i).
Hence, L'u(Q) = (2, Eg(Q)z) for any Borel set Q@ C R. QED
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Let C € R be a positive constant, and h be an internal Borel function from *R to *C
satisfying the following properties:

h(z)~h(y) iff z=y for all z,y with |z|, |y| < oo,

|h(z)| < C  forall z € *R.
Define the function & : R — C by

h(z) = °h(z),

for 1 € R. We see that h is injective and continuous. Let A be an internal bounded
self-adjoint operator. Notice that h(A) is an S-bounded internal normal operator.

Theorem 3.10. There ezists the unique self-adjoint operator B on fin(A)~++ such
that
h(B) = h(A)|fin(A)~*++. (22)

Moreover, B equals to st3(A).
Proof. By the argument similar to the proof of Theorem 3.9, we can show
(@, (A7) = [ hO)L'R()
R
= [ hO)(& dBa(N)
for any Z € fin(A)~*++. Thus,

h(A)|fin(A Au—/ NdEqg (A

Because h is injective, the unique self-adjoint operator B satisfying (22) is st3(A) =
Jr AdEs(N). QED

Corollary 3.11. Definition 8.8, 8.5 and 3.7 are equivalent, that is, st1(A) = sto(A) =
St3(A).

Proof. Let h(z) =1/(z +1). QED

In section 2, A is defined only when A is an internal S-bounded self-adjoint operator.
Now we can extend the definition so as to include the case where A is an internal bounded
self-adjoint operator which is not S-bounded; A := st;(A) = sty(A4) = st3(A).

Definition 3.12. Let A be an internal linear operator on an internal Hilbert space
H. Let D be an (external) subspace of finH. A is standardizable on D if D C fin(A) and
if for any v,y € D, x ~ y implies Az =~ Ay. In this case, define the operator Ap with
domain D = {Z|z € D}, called the standard part of A on D, by

Apt=Az, zeD. (23)
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" Clearly, A is standardizable on D if and only if D C fin(A), and if A{ ~ 0 for all
& e D with £ = 0. : ( .

Lemma 3.13. An internal bounded operator A is standardizable on fin(A*A).

Proof. First, we prove fin(A*A) C fin(A) as follows. Suppose that ¢ € fin(A). Let
E(-) be the internal spectral projection-valued mesure of the self-adjoint operator A*A.
Then, [|AZ|[? = (€, A* A€) = (€, E[0, JA*AE) + (€, (I - E[0, 1)) A A€) < (&, E[0, 1]A" A€) +
(&, (I — E[0,1])(A*A)%E) < (£, E[0, 1]A*AE) + ||A*A€||*> < oo. Thus, £ € fin(A). Second,
suppose & =~ 0 and ||A*Az|| < co. Then, ||Az||? = (z, A*Az) < ||z||||A*Az|| = 0. QED

Cordllary 3.14. If D C fin'H is invariant under A and A*, A is standardizable on
D. ,

‘The operator B in the above proof is called a hyperfinite extension of A [6].
We use the following lemma in the proof of Theorem 3.16.

Lemma 3.15. Let A be a symmetric operator with domain D C H, a Hilbert space.
Let Dy C D be a dense linear sebset of H and suppose that A|D; is essentially self-adjoint.
Then, A is essentially self-adjoint and A = A|D;.

Theorem 3.16. Let A be an internal _self—adjoint operator on H, and E(-) the
projector-valued spectral measure of A. Then,

A= App) = Apar) (24)

Proof. We can show that AD(E) is essentially self-adjoint e.g. by Nelson’s analytic
vector theorem. Hence, it has one and only one self-adjoint extension, its closure. Thus,
it is sufficient to show that A is an extension of Apgy. If E(-r,7)§ =& (r € RY, € €

—

H), then Ey(—s,s)é = £ (s € RT,s > ). Thus, Apé = A& = [* [*,MdE(\)] "€ =

JEMEG(NE = [AdE4(\E = stz(A) = AE. Therefore A = App). Apm) = Agn(az)
follows from D(E) C fin(A?) and Lemma 3.15. QED

4. The domain of A

A_Deﬁnition 4.1. For an internal bounded self-adjoint operator A on H, define D(A)
" D(A) = {€ € finH | for all t € R, e MA¢ ~ A€ € finH}.

Cle.arly, D(A) is a subspace of H.

Prdpbsition 4.2. An internal bounded self-adjoint operator A is standardizable on
D(A). '
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Proof. Let € € D(A) and ||¢]| ~ 0. We can easily check [le"841A4|| < oo for all ¢ >0,
t % 0. Hence, °||A¢|| < °lle 4 AE]|+ °||(1 —e41) A¢||. By the S-boundedness of e~t14l 4,
the first term equals 0, and by the definition of D(A), the second term equals 0. Thus we
have °||A¢|| = 0. QED

The following lemmas are easily shown.

Lemma 4.3. Let f: *N — *R* be internal and increasing. If f(M) < oo for sorﬁe
M ~ oo, then
lim °f(n) < oco.

n—0o0

Lemma 4.4. Under the same condition to Lemma 4.8, there is K ~ oo such that for
all L ~ oo,

JK)~ (D) i L<K.
Proposition 4.5. Let £ € fin(H). For sufficiently large t =~ 0,
e~tMle € D(A). (25)

Proof. Applying Lemma 4.4 to f(n) = |le”14l/" A¢||, we find that for sufficiently small
K ~ oo and L ~ oo, e IA/K AL ~ e~1AI/L A¢. Thus, for sufficiently large s ~ 0 and ¢ ~ 0,
e SIAIAE ~ e~ A¢. Hence for all z = 0, z > 0,

eIl femtAlg = e=(=H0IAl ge y Ae~tlAlg,
Therefore, e~t41¢ € D(A). QED

Theorem 4.6. Let E(-) be the spectral resolution of A and Ex = E(—K,K) for
K € *R*. For any £ € fin(A),

€ D(A) iff A= EgAE for all K ~ 0. (26)
Remark. The right-hand condition is equivalent to
lim °||(I = Ex)Ag|| = 0. (27)
Proof. Suppose that £ € fin(A) and A(] — Ex)& ~ 0 for all K ~ oco. For any t ~ 0,
there exists a K ~ oo such that ¢t/ =~ 0. Thus,
le4Ag — Agl* ~ e B AL - Br Ag]?
| /11 ¢~ Z AE(V)E|P

= [l - DAPIaBO P

< sup e =1 [* dE(El?
Al<K

= sup e — 11| B g’
M<K

Q
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Hence £ € D(A).

Conversely, suppose £ € D(A) (C fin(A)). Applying Lemma 4.4 to f(n) = ||E,AE||,

we see that for sufficiently small K ~ oo and L ~ oo (L < K),
|ELAE|| ~ || Ex AL]l-

Thus, (Ex — E1) A€ ~ 0, since ||[ELAE — Eg AE|]* = || Ex AE|]® — | ELAE|* = 0. Let t € Rg
satisfy tK ~ oo so that '

| B A€ — e 141 Ag| |
- M1 - ~MdE —tAl

1" A= e hdEe - L g € AAE O
< 1 M= e aBONEl +e K Ag

~ H[KAU—e”WMEOKW

Let L ~ oo satisfy tL =~ 0, so that the above

IN

1/ 2= e aE el +1 AL = e M)dE(E]

(- K, K)\(~L,L)
|1 — e AL + I(Bx — BL) AL
0.

VAN

Thus, for sufficiently small K ~ oo and for any ¢ ~ 0 such that tK ~ oo,
ErAE ~ e 1A AL x A€

Since ||A¢ — Ex AE|| > ||AE — Ex AE|| > 0 if K < K', we have Ex: A§ =~ A holds for any
K'~ 0. QED

Proposition 4.7. Let £ € fin(A). Then, Exé € D(A) for sufficiently small K ~ oo.

Proof. Applying Lemma 4.4 to f(n) = |[E,AE||, we find that for sufficiently small
K. L ~ oo, ExAf ~ ELAE. Thus, if L ~ 0o, L < K, then ||(1 — E)ExAé|| = ||(Ex —
Ep)AE|| = 0. If L > K, clearly (1 — EL)ExA¢ = 0. Hence for all L ~ oo, EgxA{ ~
E EgA€. Thus Ex€ € D(A) by Theorem 4.6. QED

Corollary 4.8. [fin(A)]" = [D(A)], i.e., if £ € fin(A), then there is n € D(A) such
that n =~ €.

Example We have seen that the following relations hold:
fin(A%) c D(A) C fin(A) C fin¥,
[fin(A2)]" C [D(A)}" = [fin(A)]" C #,

114



[fin(A2)]+E = [D(A)H = [fin(A)H C H.

An example of A such that fin(A) \ D(A) # 0 is given as follows. Let v be an
infinite hypernatural number, and H = *C", v-dimensional internal Hilbert space. Define
the internal self-adjoint operator A on H by A(zi,zs,...,2,) = (21,229, ...,vz,). Let
£=1(0,0,...,0,v71). Then we see ¢ € fin(A) \ D(A) from Theorem 4.6. ‘

We also find D(A) \ fin(A2%) # 0; let n = (172,272, ...,v72), then we easily see 7 €

D(A) \ fin(A?). Moreover we find 7 € [D(A)]"\ [ﬁn(A2 ] . In fact, if =~ n, then
°|A%7'|| > limnoe °||A?Enry'|| = limnoe °||A2E,n|| = limnoe \/n = oco. Thus, we have
fi & [fin(4A%)} by Theorem 4.6.

Theorem 4.9. Let £ € fin(A), then

—t|A] _ - —
eent) o tp (S e) =k ()

%0

Proof. Suppose that the right-hand side does not hold. In other words, suppose that

1 -tal 1 '
356R+vneN3te*R,0<t<;L-/\ (9———?—+|A|>§ > €. (29)
By permanence,
1 e tAl -1 :
ElaeR+3Ne*N003te*R,0<t<;l—/\ (fﬂA')f > €. (30)

That is, there is positive infinitesimal ¢ such that ¢~ (e t4l — 1)& % —|A|¢.
Thus, for some 7 € fin(#),

(. Tt -1l

3

Let f(t) = R(n,e"t41¢). By the mean value theorem, for some s € *R with 0 < s <,

_ -l _
o= 1010w (5, SEe) 2 v -t

Therefore, by the difinition of D(A), we have £ € fin(A) \ D(A4).
Conversely, suppose £ € fin(4)\D(A). Then, there is positive infinitesimal ¢, satisfying
e~0lAl|Al¢ % |Al€. Let n = (JA| — el A|)¢ (€ fin(H)). Then this is equivalent to

(my eI AlE) % (n, | AlE). | (31)

Let f(z) = (n,e *4l¢) (z € *R*F). We see that f' is increasing and —oco < f' < 0, and
hence f is decreasing and 0 < f < co. The relation (31) is equivalent to

f(to) % £(0), ' (32)
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We have f(2) 2 f'(to) (z = to) + f(to). Thus we have
05 {00 MW ) -0 -

X ‘T
Let F(z) = [f/(to)(@ — to) + f(to) — F(0))/z, then for c € *R*,
o L L) - fO)

c to B (34)

1
Pleta) = f'(ts) (1- )
By the mean value theorem and —oco < f'(z) <0, we have |(f(z) — f(0))/z| < co. Hence
F(cty) = f'(to) for all ¢ ~ co. Thus, by (32) and (33),

f(cto) - f(0)

0>
cty

>
> Flcto) % £(0), (35)
for all ¢ ~ co. Thus there is ¢ € R* such that for sufficiently large z ~ 0, £2=1©Q _ ¢(0) >
¢. By the permanence principle, for sufficiently small z € R, &)—;ﬂ — f'(0) >e. We
can check the relations

(n(E572) ) - L2210, g a9 - o e

T

for z > 0. Therefore, using the increasingness of (e~*I41=1) /z, z, we have

zl0 "’
z%0

—z|A] _
i (0 ) # (ol

QED

~ Theorem 4.10. Let A be an internal bounded self-adjoint operator. Then, A=

Proof. By Theorem 3.16 and Lemma 3.15, it suffices to show that ADM) is a closed
extension of Agyiz). If £ € fin(42), for any K ~ oo, ||(1 — Ex)A€|| < L||(1 - Ex) A% <
#IlA%¢|| ~ 0. Hence & € D(A), and hence Apqay is an extension of Agn(a2)-

To prove that Apy) is closed, it suffices to show that D(A) = [D(A)]" is complete in
the norm || - [[4 defined by [|€]|4 = €]l + |A€||. Define the internal norm || - || 4 on H by
l1€lla = lIEN + [l A&]l. We can check [|]la = °[[€]|4 for § € D(A).

By Theorem 2.1, fin(A) is S-|| || s-complete. Hence, if the sequence {&;}ien C D(A) (C
fin(A)) is S-|| - || a-Cauchy, then there is £ € fin(A) such that {¢;} approximately converges
to & in the norm || || 4. This & is shown to be in D(A) as follows. Regarding Theorem 4.6,
and & € D(A) (i < 00), this relation leads to °||(/ —Ex)A&, || = lim;o °||(I—Ek)A&| =
0, for any K ~ co. Therefore, from Theorem 4.6, we have { € D(A) and hence any Cauchy

—

sequence in D(A) converges in D(A) in the norm || - ||4. QED
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Theorem 4.11. The domain D(A) is mazimal. That is, if D(A) C S-C fin(H) and
A is standardizable on S, then'S = D(A). o

Proof. Suppose that D(A) ¢ S C fin(H) and that A is standardizable on S. Let
n € S. By Corollary 4.8 and n € fin(A), there is £ € D(A) such that &€ ~ 7. By
the definition of D(A) and the standardizability on S, for all positive infinitesimal ¢,
e~ An ~ et AE ~ A & An, since |le~4l]| < 1. Thus, n € D(A). QED

Proposition 4.12. Let A be an internal positive operator on H. Then, for any n €
fin(A37), |
Inf *(¢, A) = inf °(n, EaAn). (36)
Proof. Suppose n =~ . If a < 00, (n, E,An) ~ (£, E,AE) < (€, AE), that is,
Ve € RY, Va < 0o, (n, E,An) < (€, A€) +¢,
Thus, by the permanence principle,
Ve € RY, 3K ~ o0, Yo < K, (n,E An) < (€, Ag) +e.
By saturation,
3K ~ oo, Ve e R, YVa < K, (1, EaAn) < (£, Af) +¢

Hence we have
JK ~ o0, °(n, ExAn) < °(£, Af).

It follows that infen, °(€, AE) > infaneo °(n, EaAn).
On the other hand, we see that for all a ~ oo, || — Eanl|? < o !||AZ(n — Ean)||? <
a~1|Azn|2 ~ 0. Hence,

Va ~ oo, mf (€, AE) < °(Ean, AE.n) = °(n, E,An).

Thus it follows that infer, °(€, AS) < infaneo °(n, EaAn). QED
Proposition 4.13. Let A be an internal positive operator and n € fin(A). Then,

inf °(¢, A¢) = (i, An). (37)

Proof. From Proposition 4.12, we see infen, °(€, AE) = infamco (7, EaAn). By Theo-
rem 4.10 and Proposition 4.7, for sufficiently small a ~ oo, °(n, E,An) = °(Eqn, AE.n) =
(Ean, AEqan) = (1, An). QED

Definition 4.14. Let A be a internal bounded positive operator, and D C fin(Az).
The sespuilinear form (-, A-) is standardizable on D if (&, Am) =~ (&, Ang) for all
fly§27771,772 € D with 51 ~ §2 and h = 2.



Proposition 4.15. Let D be a subspace of fin(H) and A > 0. Then, (-, A-) is stan-
dardizable on D if and only if A3 is standardizable on D.

Proof. Suppose that At is star}dardizable on D. Then A3¢ ~ A%n for any £,m € D
with € ~ 7. Thus, (€, A) = ||Az¢|? ~ [|A7n||> = (n, An). Conversely, suppose that
(-, A"} is standardizable on D. Then for any £,7 € D with £ ~ 7, ||A2€ — Ap|? =

|AZ (€ = m)[I? = (€ —n, A(§ = m)) = 0. QED
ACo,r_gllary 4.16. The set D(A%) is a mazimal domain of (-, A-), and °(£, An) =
(AZE, A%i) for any €, € D(A?).
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