APPROXIMATION OF COMMON FIXED POINTS FOR A FAMILY OF NON-LIPSCHITZIAN SELF-MAPPINGS

TAE HWA KIM

ABSTRACT. In the present paper, we first give some examples of self-mappings which are of strongly asymptotically nonexpansive type, not strictly hemicontractive, but satisfy the property (H). It is then shown that the modified Mann and Ishikawa iteration processes for a family $\Im = \{T_n : n \in \mathbb{N}\}$ of self-mappings $T_n : K \to K$, defined by $x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_n x_n$ and $x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_n ([1 - \beta_n)x_n + \beta_n T_n x_n]$, respectively, converge strongly to the unique common fixed point of such a family \Im in general Banach spaces.

1. Preliminaries

Let X be a real Banach space and X^* the dual space of X. Let $U = \{x \in X : ||x|| = 1\}$ be the unit sphere of X. The norm of X is said to be $G\hat{a}teaux$ differentiable (and X is said to be smooth) if the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists for each x and y in U. It is said to be uniformly Gâteaux differentiable if for each $y \in U$, this limit is attained uniformly for $x \in U$. The norm is said to be Fréchet differentiable if for each $x \in U$, the limit is obtained uniformly for $y \in U$. Finally, the space X is said to have a uniformly Fréchet differentiable norm (and X is said to be uniformly smooth) if the limit is attained uniformly for $(x, y) \in U \times U$.

The normalized duality mapping J from X into the family of nonempty subset of X^* is defined by

$$J(x) = \{ f \in X^* : ||f||^2 = ||x||^2 = \langle x, f \rangle \},\$$

where $\langle x, f \rangle$ denotes the value of f at x. It is an immediate consequence of the Hahn-Banach theorem that J(x) is nonempty for each $x \in X$. Moreover, it is known that J is single valued if and only if X is smooth, while if X is uniformly smooth, then the mapping J is uniformly continuous on bounded sets.

Let X be a real Banach space and let K be a nonempty subset of X (not necessarily convex) and $T: K \to K$ a self mapping of K. There appear in the literature two definitions of an asymptotically nonexpansive mapping. The weaker definition (cf. Kirk[19]) requires that

$$\limsup_{n \to \infty} \sup_{y \in K} (\|T^n x - T^n y\| - \|x - y\|) \le 0$$

¹⁹⁹¹ Mathematics Subject Classification. 47H09, 47H10.

Key words and phrases. strongly asymptotically nonexpansive type, strictly pseudocontrictive (or hemicontractive), the property (H), common fixed points.

^{*} Supported by Korea Research Foundation Grant (KRF-99-015-DI0014).

for every $x \in K$ and that T^N is continuous for some $N \geq 1$. The stronger definition (briefly called asymptotically nonexpansive as in [15]) requires each iterate T^n to be Lipschitzian with Lipschitz constants $L_n \to 1$ as $n \to \infty$. For further generalization of an averaging iteration of Schu [25], Bruck et al. [4] introduced a definition somewhere between these two: T is asymptotically nonexpansive in the intermediate sense provided T is uniformly continuous and

(1.1)
$$\limsup_{n \to \infty} \sup_{x,y \in K} (\|T^n x - T^n y\| - \|x - y\|) \le 0.$$

In this paper, we consider the self mapping of K satisfying only (1.1) without the assumption of uniform continuity of T. Throughout we shall refer to such a mapping as strongly asymptotically nonexpansive type.

A mapping $T: K \to X$ is said to be *pseudo-contractive* [26] if for all $x, y \in K$ there exists $j \in J(x-y)$ such that

$$\langle Tx - Ty, j \rangle \le ||x - y||^2.$$

In [18], Kato discovered the relationship between pseudocontractive mappings and accretive mappings, proving

Lemma 1.1 [18]. Let $x, y \in X$. Then $||x|| \le ||x + \alpha y||$ for every $\alpha > 0$ if and only if there exists $j \in J(x)$ such that $\langle y, j \rangle \ge 0$.

Applying Lemma 1.1, we know that a mapping T is pseudocontractive if and only if (I - T) is accretive, i.e., the inequality

$$||x - y|| \le ||x - y + r\{(I - T)x - (I - T)y\}||$$

holds for all $x, y \in K$ and all $r \ge 0$.

In the sequel, we need the following two lemmas for the proof of our main results. The first is actually Lemma 1 of Petryshyn [23] and the second is Lemma 2 of Liu [21]. For the first result, Asplund [1] also proved a general result for single-valued duality mappings, which can be used to derive this lemma and more recently this lemma was revisited by Haiyun-Yuting [16].

Lemma 1.2 [23]. For any $x, y \in X$ and $j \in J(x + y)$,

$$||x + y||^2 \le ||x||^2 + 2\langle y, j \rangle.$$

Lemma 1.3 [21]. Let $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ be three nonnegative real sequences satisfying

$$a_{n+1} \le (1 - t_n)a_n + b_n + c_n$$

with $\{t_n\} \subset [0,1], \ \sum_{n=0}^{\infty} a_n = \infty, \ b_n = o(t_n), \ and \ \sum_{n=0}^{\infty} c_n < \infty. \ Then \lim_{n \to \infty} a_n = 0.$

A mapping $T: K \to X$ is said to be strictly pseudo-contractive [8], [26] (or strong pseudo-contraction [9]) if there exists t > 1 such that for all $x, y \in K$ there exists $j \in J(x - y)$ such that

$$\operatorname{Re}\langle Tx - Ty, j \rangle \le \frac{1}{t} ||x - y||^2.$$

Let F(T) denotes the set of all fixed points of T, i.e., $F(T) = \{x \in K : Tx = x\}$. If $F(T) \neq \emptyset$, the mapping $T: K \to X$ is said to be *strictly hemicontractive* [8] if there exists t > 1 such that for all $x \in K$ and $x^* \in F(T)$ there exists $j \in J(x - x^*)$ such that

$$\langle Tx - x^*, j \rangle \le \frac{1}{t} ||x - x^*||^2.$$

Using Lemma 1.1, it is easy to check [8] that the strict hemicontractivity of T is equivalent to the following inequality

$$||x - x^*|| \le ||(1 + r)(x - x^*) - rt(Tx - x^*)||$$

holds for all $x \in K$, $x^* \in F(T)$ and r > 0.

For an example of a Lipschitzian self-mapping which is not strictly pseudocontractive but strictly hemicontractive, see [8].

Motivated by the definition of strict hemicontractivity, we can consider a mapping $T: K \to K$ satisfying the following property, i.e., there exists t > 1 such that for all $x \in K$ and $x^* \in F(T)$ ($\neq \emptyset$) there exists $j \in J(x - x^*)$ such that

(H)
$$\limsup_{n \to \infty} \langle T^n x - x^*, j \rangle \le \frac{1}{t} ||x - x^*||^2.$$

Note that any mapping $T: K \to K$ which is both strictly hemicontractive and asymptotically nonexpansive satisfies the property (H). Indeed, since T is strictly hemicontractive and asymptotically nonexpansive, we have

$$\langle T^n x - x^*, j \rangle \leq \frac{1}{t} \|T^{n-1} x - x^*\|^2 \leq \frac{1}{t} L_n^2 \|x - x^*\|^2.$$

Taking \limsup on both sides, since $L_n \to 1$ as $n \to \infty$, T satisfies (H).

First we give two examples of the discontinuous self-mappings which are strongly asymptotically nonexpansive type, not strictly hemicontractive, but satisfies the above property (H).

Example 1.1. Let $X = \mathbb{R}$ with the usual norm $|\cdot|$ and let K = [0,1]. Let $a_n = \frac{1}{n}$ for each $n \in \mathbb{N}$. Then, construct a discontinuous mapping T as follows. On the each subinterval $[a_{n+1}, a_n]$, the graph of T consists of all rational numbers of the sides of the isosceles triangle with base $[a_{n+1}, a_n]$ and height a_{n+1} and zeros for irrational numbers in K. Thus, $Ta_n = 0$ and, if x_n denotes the midpoint of $[a_{n+1}, a_n]$, then $Tx_n = a_{n+1}$. If we further define T0 = 0, $T: K \to K$ is not continuous but clearly $F(T) = \{0\}$. Since $T^n x \to 0$ uniformly as $n \to \infty$, T is strongly asymptotically nonexpansive type. Obviuosly, T satisfies the property (H) but is not strictly hemicontractive.

Example 1.2. Let $K = [0,1] \subseteq \mathbb{R}$ and define $Tx = \frac{1}{4}$ if $x = \frac{1}{4}, 1$, Tx = 1 for $x \in [0,\frac{1}{2}] \setminus \frac{1}{4}$, and $Tx = \frac{1}{2}$ for $x \in (\frac{1}{2},1]$. Note that for all $x \in K$, $T^n x = \frac{1}{4} \in F(T) = \{\frac{1}{4}\}$ for $n \geq 3$. Then $T: K \to K$ is a discontinuous mapping of strongly asymptotically nonexpansive type which is not nonexpansive. Obviously, T satisfies the property (H). However, T is not strictly hemicontractive.

Here we give an example of the discontinuous self-mapping with the property (H) which is strongly asymptotically nonexpansive type, not asymptotically nonexpansive.

Example 1.3. Let $K = [0,1] \subseteq \mathbb{R}$ and let φ be the Cantor ternary function. Define $T: K \to C$ by

$$T(x) = \begin{cases} x/2 & \text{if } 0 \le x \le 1/2, \\ \varphi((1-x)/2) & \text{if } 1/2 < x \le 1. \end{cases}$$

Note that $T^n x \to 0$ uniformly on K. Therefore, T is a discontinuous mapping of strongly asymptotically nonexpansive type with the property (H). But it is not asymptotically nonexpansive because φ is not Lipschizian continuous on $[0, \frac{1}{2}]$. Note that T is also *strictly* hemicontractive.

Recall that a mapping $T: K \to X$ is said to be strongly accretive [3] (or [29]) if there exists a positive number k such that for each $x, y \in K$ there is $j \in J(x-y)$ such that

$$\langle Tx - Ty, j \rangle \ge k ||x - y||^2.$$

Using Lemma K again this is equivalent to

$$||x - y|| \le ||x - y + r\{(T - kI)x - (T - kI)y\}||,$$

for all r > 0, where I denotes the identity mapping of X. Without loss of generality, we can assume $k \in (0,1)$. Then it was known [2] that the similar connection between strict pseudocontractivity and strong accretivity is that a mapping $T: K \to K$ is strictly pseudocontractive if and only if I - T is strongly accretive, i.e., the inequality

$$||x - y|| \le ||x - y + r\{(I - T - kI)x - (I - T - kI)y\}||$$

holds for any $x, y \in K$ and r > 0, where $k = \frac{(t-1)}{t} \in (0,1)$.

It is well known that if $T: K \to X$ is continuous and strictly pseudocontractive, then T has a unique fixed point (see Corollary 1 of Deimling [12]). Furthermore, if $T: X \to X$ is continuous and strongly accretive, then T is surjective, i.e., for a given $f \in X$, the equation Tx = f has a unique solution.

Recently, the convergence problems of Ishikawa and Mann iteration sequences (cf. Ishikawa [17] and Mann [22]) have been studied extensively by many authors (see Chidume [5-8], Chidume and Osilike [9-11], Deng [13], Deng-Ding [14], Haiyun-Yuting [16], Liu [20], Liu [21], Reich [24] and Tan-Xu [27]) for strictly pseudocontractive (or strongly accretive) mappings.

Especially, Liu [20] proved, using the inequality (1.3), that the Mann iteration process converges strongly to the unique fixed point of a Lipschitzian and strictly pseudo-contractive mapping, which extends corresponding results of [5-8], [27] and [29] to the general Banach spaces as follows.

Theorem 1.1 [20]. Let K be a nonempty closed, convex and bounded subset of a Banach $space\ X\ and\ let\ T:K o K\ be\ Lipschitzian\ and\ strictly\ pseudocontractive\ mapping.$ Then the sequence $\{x_n\}_{n=1}^{\infty}$ generated by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T x_n, \quad x_1 \in K,$$

with $\{\alpha_n\} \subset (0,1]$ satisfying

$$\sum_{n=1}^{\infty} \alpha_n = \infty, \quad \alpha_n \to 0,$$

converges strongly to $q \in F(T)$ and F(T) is a singleton set.

Subsequently, Haiyun-Yuting [16] proved by using Lemma 1.2 that the Ishikawa iteration process converges strongly to the unique fixed point of a continuous and strictly pseudocontrative map without Lipschitz assumption in a real uniformly smooth Banach space.

Theorem 1.2 [16]. Let K be a nonempty closed, convex and bounded subset of a real uniformly smooth Banach space X. Assume that $T:K\to K$ is a continuous strictly pseudocontractive mapping. Let $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ be two real sequences satisfying (i) $0 < \alpha_n, \beta_n < 1$ and $\alpha_n \to 0, \beta_n \to 0$ as $n \to \infty$;

- (ii) $\sum_{n=1}^{\infty} \alpha_n = \infty$.

Then the Ishikawa iterative sequence $\{x_n\}_{n=1}^{\infty}$ generated from an arbitrary $x_1 \in K$ by

$$\begin{cases} x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T y_n, \\ y_n = (1 - \beta_n)x_n + \beta_n T x_n, & n \ge 1, \end{cases}$$

converges strongly to the unique fixed point of T.

On the other hand, Chidume and Osilke [9] proved with the similar method of the proof as in [20] that the Ishikawa iteration process also converges strongly to the unique fixed point of a uniformly continuous and strictly pseudo-contractive mapping in a real Banach space.

Theorem 1.3 [9]. Let K be a nonempty closed, convex and bounded subset of a real Banach space X. Suppose $T: K \to K$ is a uniformly continuous and strictly pseudocontractive mapping. Then, the sequence $\{x_n\}_{n=1}^{\infty}$ generated from an arbitrary $x_1 \in K$ by

$$\begin{cases} x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T y_n, \\ y_n = (1 - \beta_n)x_n + \beta_n T x_n, & n \ge 1, \end{cases}$$

converges strongly to $q \in F(T)$ and F(T) is a singleton set. Here, $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences in [0,1] satisfying

$$\sum_{n=1}^{\infty} \alpha_n = \infty, \quad \lim_{n \to \infty} \alpha_n = 0 = \lim_{n \to \infty} \beta_n.$$

In 1995, Liu [21] introduced the Ishikawa iteration process with errors as follows:

(1.4)
$$\begin{cases} x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T y_n + u_n, \\ y_n = (1 - \beta_n)x_n + \beta_n T x_n + v_n, & n \ge 1, \end{cases}$$

where $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences in [0,1] such that (i) $\sum_{n=1}^{\infty} \alpha_n = \infty$, $\lim_{n\to\infty} \alpha_n = 0$, (ii) $\{\beta_n\}$ is bounded, (iii) $\{u_n\}$ and $\{v_n\}$ are summable sequences in X, and T is a Lipschitzian strongly accretive mapping in a uniformly smooth Banach space X.

1n 1998, Xu [28] intoduced the Ishikawa iteration processes emphasizing the randomness of errors as follows:

(1.5)
$$\begin{cases} x_{n+1} = \alpha_n x_n + \beta_n T y_n + \gamma_n u_n, \\ y_n = \hat{\alpha}_n x_n + \hat{\beta}_n T x_n + \hat{\gamma}_n v_n, \end{cases}$$

where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\hat{\alpha}_n\}, \{\hat{\beta}_n\}, \{\hat{\gamma}_n\}$ are sequences in [0,1] such that (i) $\lim_{n\to\infty} \beta_n = 0$, $\sum_{n=0}^{\infty} \beta_n = 0$, (ii) $\lim_{n\to\infty} \hat{\beta}_n = \infty$, (iii) $\lim_{n\to\infty} \hat{\gamma}_n = 0$, $\sum_{n=0}^{\infty} \gamma_n < \infty$, (iv) $\alpha_n + \beta_n + \gamma_n = \hat{\alpha}_n + \hat{\beta}_n + \hat{\gamma}_n = 1$, and $\{v_n\}, \{u_n\}$ are bounded suquences in Banach space X, an T is a strongly pseudocontractive mapping in unifor mly smooth Banach space X.

In these respects, it seems natural to ask whether the above theorems are still valid for a family $\Im = \{T_n : n \in \mathbb{N}\}$ of self-mappings $T_n : K \to K$ which satisfies the property (H) type (as the definition replaced T^n in (H) by T_n). For our affirmative argument, consider the similar iteration process with errors of (1.5) as follows:

(1.6)
$$\begin{cases} x_1 \in K, \\ x_{n+1} = \alpha_n x_n + \beta_n T_n y_n + \gamma_n u_n, \\ y_n = \alpha'_n x_n + \beta'_n T_n x_n + \gamma'_n v_n, & n \ge 1, \end{cases}$$

where $\{u_n\}$ and $\{v_n\}$ are two bounded sequence in K; $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$, $\{\alpha'_n\}$, $\{\beta'_n\}$, $\{\gamma'_n\}$ are real sequences in [0,1] satisfying the conditions

$$\alpha_n + \beta_n + \gamma_n = \alpha'_n + \beta'_n + \gamma'_n = 1,$$

for all $n \ge 1$.

Lemma 1.4. Let K be a nonempty closed and convex subset of a Banach space X. Let two iterative sequences $\{x_n\}$ and $\{y_n\}$ be given as in (1.6) for a family $\Im = \{T_n : n \in \mathbb{N}\}$ of self-mappings $T_n : K \to K$, $n \in \mathbb{N}$. Put $B := \{x_n : n \in \mathbb{N}\} \cup \{y_n : n \in \mathbb{N}\} \ (\subset K)$, $q \in F(\Im) := \bigcap_{n \in \mathbb{N}} F(T_n)$ and

$$c_n := \max\{0, \sup_{x \in B} (\|T_n x - q\| - \|x - q\|)\}.$$

Then

(1.7)
$$||x_n - q|| \le d + 2 \sum_{k=1}^{n-1} c_k, \quad ||y_n - q|| \le d + 2 \sum_{k=1}^{n-1} c_k + c_n,$$

for $n \in \mathbb{N}$, where

$$d := \max \{ \sup_{n \ge 1} \|u_n - q\|, \sup_{n \ge 1} \|v_n - q\|, \|x_1 - q\| \}.$$

Proof. The proof employs mathematical induction. Since $||x_1 - q|| \leq d$ and

$$||y_1 - q|| = ||\alpha'_1 x_1 + \beta'_1 T x_1 + \gamma'_1 v_1 - q||$$

$$\leq \alpha'_1 ||x_1 - q|| + \beta'_1 ||T x_1 - q|| + \gamma'_1 ||v_1 - q||$$

$$\leq \alpha'_1 ||x_1 - q|| + \beta'_1 (c_1 + ||x_1 - q||) + \gamma'_1 ||v_1 - q||$$

$$\leq (\alpha'_1 + \beta'_1 + \gamma'_1)d + \beta'_1 c_1$$

$$\leq d + c_1,$$

(1.7) holds for n = 1. Suppose (1.7) holds for n = k, i.e.,

$$||x_k - q|| \le d + 2\sum_{j=1}^{k-1} c_j, \quad ||y_k - q|| \le d + 2\sum_{j=1}^{k-1} c_j + c_j.$$

Then, for n = k + 1, we have

$$\begin{aligned} \|x_{k+1} - q\| &= \|\alpha_k x_k + \beta_k T_k y_k + \gamma_k u_k - q\| \\ &\leq \alpha_k \|x_k - q\| + \beta_k \|T_k y_k - q\| + \gamma_k \|u_k - q\| \\ &\leq \alpha_k \|x_k - q\| + \beta_k (c_k + \|y_k - q\|) + \gamma_k \|u_k - q\| \\ &\leq \alpha_k (d + 2 \sum_{j=1}^{k-1} c_j) + \beta_k c_k + \beta_k (d + 2 \sum_{j=1}^{k-1} c_j + c_k) + \gamma_k d \\ &= d + 2(\alpha_k + \beta_k) \sum_{j=1}^{k-1} c_j + 2\beta_k c_k \\ &\leq d + 2 \sum_{j=1}^k c_j \end{aligned}$$

and

$$||y_{k+1} - q|| = ||\alpha'_{k+1}x_{k+1} + \beta'_{k+1}T_{k+1}x_{k+1} + \gamma'_{k+1}v_{k+1} - q||$$

$$\leq \alpha'_{k+1}||x_{k+1} - q|| + \beta'_{k+1}||T_{k+1}x_{k+1} - q|| + \gamma'_{k+1}||v_{k+1} - q||$$

$$\leq \alpha'_{k+1}||x_{k+1} - q|| + \beta'_{k+1}(c_{k+1} + ||x_{k+1} - q||) + \gamma'_{k+1}||v_{k+1} - q||$$

$$\leq (\alpha'_{k+1} + \beta'_{k+1})||x_{k+1} - q|| + \beta'_{k+1}c_{k+1} + \gamma'_{k+1}d$$

$$\leq (\alpha'_{k+1} + \beta'_{k+1})(d + 2\sum_{j=1}^{k} c_j) + \beta'_{k+1}c_{k+1} + \gamma'_{k+1}d$$

$$\leq d + 2\sum_{j=1}^{k} c_j + c_{k+1}.$$

Therefore, by mathematical induction, (1.7) holds for all $n \in \mathbb{N}$.

2. Main results

We first begin with an easy observation of the property (H) type. The first equivalent is

$$\liminf_{n\to\infty} \langle x - T_n x, j \rangle \ge \frac{(t-1)}{t} \|x - x^*\|^2.$$

Let $x \neq x^*$. For a fixed ϵ with $0 < \epsilon < \frac{(t-1)}{t}$, it follows from the property (H₁) that there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$,

(H₂)
$$\langle x - T_n x, j \rangle \ge (\frac{t - 1}{t} - \epsilon) \|x - x^*\|^2$$

= $k_{\epsilon} \|x - x^*\|^2$,

where $k_{\epsilon} := (\frac{t-1}{t} - \epsilon) \in (0,1)$. This inequality is obviously equivalent to

$$(H_3)$$
 $(T_n x - x^*, j) \le (1 - k_{\epsilon}) ||x - x^*||^2, \quad \forall n \ge n_0.$

For employing the method of the proof in [20], we need the following equivalent form of the property (H_2) by virtue of Lemma 1.1:

$$||x - x^*|| \le ||x - x^*| + r\{(I - T_n - k_{\epsilon}I)x - (I - T_n - k_{\epsilon}I)x^*\}||$$

for all $n \ge n_0$ and all r > 0.

Using the property (H₃), Lemma 1.3 and 1.4, we are now ready to present the following

Theorem 2.1. Let K be a nonempty closed and convex subset of a Banach space X. Suppose a family $\Im = \{T_n : n \in \mathbb{N}\}$ of self-mappings $T_n : K \to K$, $n \in \mathbb{N}$ satisfies the property (H) type. Suppose $F(T) \neq \emptyset$ and put

$$c_n = \max\{0, \sup_{x,y \in K} (\|T_n x - T_n y\| - \|x - y\|)\},$$

so that $\sum_{n=1}^{\infty} c_n < \infty$. Then the modified Ishikawa iterative sequence $\{x_n\}_{n=1}^{\infty}$ generated by (1.6) converges strongly to the unique common fixed point of \Im in K, where

(i)
$$\lim_{n \to \infty} \beta_n = \lim_{n \to \infty} \beta'_n = \lim_{n \to \infty} \gamma'_n = 0;$$

T.H. KIM

(ii)
$$\sum_{n=1}^{\infty} \beta_n = \infty \quad and \quad \sum_{n=1}^{\infty} \gamma_n < \infty.$$

Proof. Since $F(T) \neq \emptyset$, take $q \in F(T)$. Lemma 1.4 immediately gives

$$||x_{n+1} - q|| \le M$$
, $||y_{n+1} - q|| \le M$,

for all $n \in \mathbb{N}$, where $M := d + 2 \sum_{n=1}^{\infty} c_n < \infty$. Lemma 1.2 and the property (H₃) yields

$$||x_{n+1} - q||^2 = ||\alpha_n(x_n - q) + \beta_n(T_n y_n - q) + \gamma_n(u_n - q)||^2$$

$$\leq \alpha_n^2 ||x_n - q||^2 + 2\beta_n \langle T_n y_n - q, j_n \rangle + 2\gamma_n \langle u_n - q, j_n \rangle$$

$$\leq \alpha_n^2 ||x_n - q||^2 + 2\beta_n \langle T_n x_{n+1} - q, j_n \rangle$$

$$+ 2\beta_n \langle T_n y_n - T_n x_{n+1}, j_n \rangle + 2\gamma_n \langle u_n - q, j_n \rangle$$

$$\leq \alpha_n^2 ||x_n - q||^2 + 2\beta_n (1 - k_{\epsilon}) ||x_{n+1} - q||^2 + 2\beta_n d_n + 2\gamma_n M^2,$$

for $j_n \in J(x_{n+1} - q)$ and for all $n \ge n_0$, where $d_n := \langle T_n y_n - T_n x_{n+1} \rangle$. We first claim that $j_n \to 0$ as $n \to \infty$. In fact, by the parameter conditions (i) and (ii) we get

$$||y_{n} - x_{n+1}|| = ||(y_{n} - q) + (q - x_{n+1})||$$

$$= ||\alpha'_{n}(x_{n} - q) + \beta'_{n}(T_{n}x_{n} - q) + \gamma'_{n}(v_{n} - q)$$

$$- \alpha_{n}(x_{n} - q) - \beta_{n}(T_{n}y_{n} - q) - \gamma_{n}(u_{n} - q)||$$

$$\leq (|\beta'_{n} - \beta_{n}| + |\gamma'_{n} - \gamma_{n}|)||x_{n} - q|| + \beta'_{n}||T_{n}x_{n} - q||$$

$$+ \gamma'_{n}||v_{n} - q|| + \beta_{n}||T_{n}y_{n} - q|| + \gamma_{n}||u_{n} - q||$$

$$\leq (\beta'_{n} + \beta_{n} + \gamma'_{n} + \gamma_{n})||x_{n} - q|| + \beta'_{n}(c_{n} + ||x_{n} - q||) + \gamma'_{n}||v_{n} - q||$$

$$+ \beta_{n}(c_{n} + ||y_{n} - q||) + \gamma_{n}||u_{n} - q||$$

$$\leq 2(\beta'_{n} + \beta_{n} + \gamma'_{n} + \gamma_{n})M + c_{n}(\beta_{n}\prime + \beta_{n}) \to 0 \quad \text{as } n \to \infty.$$

Therefore, since $c_n \to 0$ as $n \to \infty$, we get

$$||T_n y_n - T_n x_{n+1}|| \le [||T_n y_n - T_n x_{n+1}|| - ||y_n - x_{n+1}||] + ||y_n - x_{n+1}||$$

$$\le c_n + ||y_n - x_{n+1}|| \to 0 \quad \text{as } n \to \infty.$$

Since $||j_n|| = ||x_{n+1} - q|| \le M$, this gives

$$|d_n| = |\langle T_n y_n - T_n x_{n+1}, j_n \rangle|$$

$$\leq ||T_n y_n - T_n x_{n+1}|| \cdot ||j_n|| \to 0 \quad \text{as } n \to \infty.$$

On the other hand, since $\sum_{n=1}^{\infty} \beta_n = \infty$ and $\beta_n \to 0$ as $n \to \infty$, we can choose $n_1 \ (\geq n_0)$ so that $\beta_n > 0$, $1 - 2\beta_n(1 - k_{\epsilon}) > 0$, and $2k_{\epsilon} - \beta_n > 0$ for all $n \geq n_1$. Then, the above inequality (2.1) can be written as follows:

APPROXIMATION OF COMMON FIXED POINTS

Since $\frac{2k_{\epsilon}-\beta_n}{1-2\beta_n(1-k_{\epsilon})} \to 2k_{\epsilon}$ as $n \to \infty$ and $k_{\epsilon} \in (0,1)$, there exists a $n_2 \ (\geq n_1)$ such that

$$\left| \frac{2k_{\epsilon} - \beta_n}{1 - 2\beta_n (1 - k_{\epsilon})} - 2k_{\epsilon} \right| \le k_{\epsilon}$$

for all $n \geq n_2$. This implies that $k_{\epsilon} \leq \frac{2k_{\epsilon} - \beta_n}{1 - 2\beta_n(1 - k_{\epsilon})}$, that is,

$$\frac{(1-\beta_n)^2}{1-2\beta_n(1-k_{\epsilon})} \le (1-k_{\epsilon}\beta_n)$$

for all $n \ge n_2$. The inequality (2.2) can be expressed as follows.

$$||x_{n+1} - q||^2 \le (1 - k_{\epsilon}\beta_n)||x_n - q||^2 + \frac{2\beta_n d_n}{1 - 2\beta_n (1 - k_{\epsilon})} + \frac{2\gamma_n M^2}{1 - 2\beta_n (1 - k_{\epsilon})},$$

for all $n \ge n_2$. Then it follows from Lemma 1.3 that the sequence $\{x_n\}$ strongly converges to the unique fixed point q of T. Finally, we prove that $F(T) = \{q\}$, a singleton set. If $p \in F(T)$, by using the property (H), we obtain

$$||p - q||^2 = \langle p - q, j \rangle$$

$$= \limsup_{n \to \infty} \langle T_n p - q, j \rangle$$

$$\leq \frac{1}{t} ||p - q||^2,$$

for $j \in J(p-q)$, Since t > 1, we have q = p. \square

Remark. In view of the examples 1.1 and 1.2, the above theorem is a new approach of the strong convergence problems of iterative sequences to the unique fixed point of discontinuous non-Lipschitzian self-mappings which are not strictly hemicontractive (hence, not strictly pseudocontractive).

Taking $\beta'_n = \gamma'_n = 0$ for all $n \ge 1$ in (1.6), as a direct consequence of Theorem 2.1, we have the following

Corollary 2.1. Let K be a nonempty closed convex subset of a Banach space X. Suppose a family $\Im = \{T_n : n \in \mathbb{N}\}$ of self-mappings $T_n : K \to K$, $n \in \mathbb{N}$ satisfies the property (H) type. Suppose $F(T) \neq \emptyset$ and put

$$c_n = \max\{0, \sup_{x,y \in K} (\|T_n x - T_n y\| - \|x - y\|)\},$$

so that $\sum_{n=1}^{\infty} c_n < \infty$. Then the modified Mann iterative sequence $\{x_n\}_{n=1}^{\infty}$ with errors generated by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_n x_n, \quad x_1 \in K$$

with $\{\alpha_n\}_{n=1}^{\infty} \subset (0,1]$ satisfying

$$\sum_{n=1}^{\infty} \beta_n = \infty, \quad \sum_{n=1}^{\infty} \gamma_n < \infty, \quad and \quad \lim_{n \to \infty} b_n = 0,$$

strongly converges $q \in F(T)$ and F(T) is a singleton set.

As a direct consequence of Theorem 2.1, we obtain the following

Theorem 2.2. Let K be a nonempty bounded closed convex subset of a Banach space X. Suppose a family $\mathfrak{F} = \{T_n : n \in \mathbb{N}\}$ of Lipschitzian self-mappings $T_n : K \to K$, $n \in \mathbb{N}$ satisfies the property (H) type. Suppose $F(T) \neq \emptyset$ and $\sum_{n=1}^{\infty} (L_n - 1) < \infty$, where $L_n(\geq 1)$ is the Lipschitz constant of T_n . Then the modified Ishikawa iterative sequence $\{x_n\}_{n=1}^{\infty}$ with errors generated by (1.6) converges strongly to the unique fixed point of T in K, where

(i)
$$\lim_{n \to \infty} \beta_n = \lim_{n \to \infty} \beta'_n = \lim_{n \to \infty} \gamma'_n = 0;$$

(ii)
$$\sum_{n=1}^{\infty} \beta_n = \infty \quad and \quad \sum_{n=1}^{\infty} \gamma_n < \infty.$$

Proof. Note that

$$c_n = \max\{0, \sup_{x,y \in K} (\|T_n x - T_n y\| - \|x - y\|)\}$$

$$\leq (L_n - 1)\delta(K),$$

where $\delta(K)$ denotes the diameter of K. Note that all assumptions of Theorem 2.1 are fulfilled, \square

Taking $\beta'_n = \gamma'_n = 0$ for all $n \ge 1$ in (1.6), as a direct consequence of Theorem 2.2, we have the following

Corollary 2.2. Let K be a nonempty bounded closed convex subset of a Banach space X. Suppose a family $\Im = \{T_n : n \in \mathbb{N}\}$ of Lipschitzian self-mappings $T_n : K \to K$, $n \in \mathbb{N}$ satisfies the property (H) type. Suppose $F(T) \neq \emptyset$ and $\sum_{n=1}^{\infty} (L_n - 1) < \infty$, where $L_n(\geq 1)$ is the Lipschitz constant of T_n . Then the modified Mann iterative sequence $\{x_n\}_{n=1}^{\infty}$ with errors generated by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_n x_n, \quad x_1 \in K$$

with $\{\alpha_n\}_{n=1}^{\infty} \subset (0,1]$ satisfying

$$\sum_{n=1}^{\infty} \beta_n = \infty, \sum_{n=1}^{\infty} \gamma_n < \infty, \quad and \quad \lim_{n \to \infty} b_n = 0,$$

strongly converges $q \in F(T)$ and F(T) is a singleton set.

Remark. Note that if each $T_n: K \to K$ is L_n -Lipschitzian with $\limsup_{n\to\infty} L_n < 1$, then $\Im = \{T_n: n \in \mathbb{N}\}$ is of (H) type.

REFERENCES

- 1. E. Asplund, Positivity of duality mappings, Bull. Amer. Math. Soc. 73 (1967), 200-203.
- 2. J. Bogin, On strict pseudo-contractions and a fixed point theorem, Technion preprint series No. MT-219, Haifa, Israel, 1974.
- 3. F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875–882.
- 4. R. E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math. 65(2) (1993), 169-179.

APPROXIMATION OF COMMON FIXED POINTS

- 5. C. E. Chidume, Iterative approximation of fixed points of Lipschitz strictly pseudo-contractive mappings, Proc. Amer. Math. Soc. 99(2) (1987), 283–288.
- C. E. Chidume, An iterative process for nonlinear Lipschitzian strongly accretive mappings in L_p spaces, J. Math. Anal. Appl. 151 (1990), 453-461.
- 7. C. E. Chidume, Approximation of fixed points of strongly pseudo-contractive mappings, Proc. Amer. Math. Soc. 120 (1994), 545-550.
- 8. C. E. Chidume, Fixed point iterations for strictly hemi-contractive maps in uniformly smooth Banach spaces, Numer. Funct. Anal. & Optimiz. 15 (1994), 779-790.
- 9. C. E. Chidume and M. O. Osilke, Iterative solutions of nonlinear accretive operator equations in arbitrary Banach spaces, Nonlinear Analysis 36 (1999), 863-872.
- 10. C. E. Chidume. M. O. Osilke, Ishikawa iteration process for nonlinear Lipschitz strongly accretive mappings, Math. Anal. Appl. 192 (1995), 727-741.
- 11. C. E. Chidume. M. O. Osilke, Fixed point iterations for strictly hemi-contractive maps in uniformly smooth Banach spaces, Numer. Func. Anal. Optim. 15 (1994), 779-790.
- 12. K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374.
- 13. L. Deng, An iterative process for nonlinear Lipschitzian and strongly accretive mappings in uniformly convex and uniformly smooth Banach spaces, Acta Appl. Math. 32 (1993), 183–196.
- 14. L. Deng and X. P. Ding, Iterative approximation of Lipschitz strictly pseudo-contractive mappings in uniformly smooth Banach spaces, Nonlinear Anal. TMA 24 (1995), 981–987.
- 15. K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
- 16. Z. Haiyun and J. Yuting, Approximation of fixed points of strictly pseudocontractive maps without Lipschitz assumption, Proc. Amer. Math. Soc. 125 (1997), 1705–1709.
- 17. S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44(1) (1974), 147-150.
- 18. T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1964), 508-520.
- 19. W. A. Kirk, Fixed point theorems for non-lipschitzian mappings of asymptotically nonexpansive type,, Israel J. Math. 17 (1974), 339-346.
- 20. L. Liu, Approximation of fixed points of strictly pseudocontractive mapping, Proc. Amer. Math. Soc. 125 (1997), 1363-1366.
- 21. L. S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, Jour. Math. Anal. Appl. 194 (1995), 114–125.
- 22. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
- 23. W. V. Petryshyn, A characterization of strictly convexity of Banach spaces and other uses of duality mappings, J. Funct. Anal. 6 (1970), 282-291.
- 24. S. Reich, An iterative procedure for constructing zeros of accretive sets in Banach spaces, Nonlinear Anal. TMA 2 (1978), 85–92.
- 25. J. Schu, Iterative contraction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991), 407-413.
- J. Schu, Approximating fixed points of Lipschitzian pseudocontractive mappings, Houston J. Math. 19 (1993), 107–115.
- 27. K. K. Tan and H. K. Xu, Iterative solution to nonlinear equations and strongly accretive operators in Banach spaces, J. Math. Anal. Appl. 178 (1993), 9-21.
- 28. Y. Xu, Ischikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl. 224 (1998), 91-101.
- 29. X. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proc. Amer. Math. Soc. 113(3) (1991), 727-731.

DIVISION OF MATHEMATICAL SCIENCES, PUKYONG NATIONAL UNIVERSITY, PUSAN 608-737, KOREA E-mail address: taehwa@dolphin.pknu.ac.kr