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1 Introduction.

Let $f$ be a continuous map from a dendrite $X$ to itself, $\Omega(f)$ the set of nonwandering points for

$f,$ $P(f)$ the set of periodic points of $f$ and $EP(f)$ and $\overline{EP(f)}$ the set of eventually periodic points

of $f$ and the closure of it, respectively. When $X$ is the interval, in [B], L. Block investigated $\Omega(f)$

and $P(f)$ and showed the followings :

(1) If $\Omega(f)$ is finite, then we have $\Omega(f)=P(f)$ and

(2) $\Omega(f)\subset\overline{EP(f)}$ .

Then, after about 20 years, H. Hosaka and H. Kato examined dendrites and in [HK], they proved

that (1) and (2) satisfy when $X$ is a tree. And they constructed two dendrites $X_{1},X_{2}$ and two

maps $g_{1}$ : $X_{1}arrow X_{1},g_{2}$ : $X_{2}arrow X_{2}$ such that $\Omega(g_{1})$ is finite, $\Omega(g_{1})\neq P(g_{1})$ , and $\Omega(g_{2})\not\subset\overline{EP(g_{2})}$.

Since the sets of branch points of $X_{1}$ and $X_{2}$ are infinite, T. Arai asks the following question :

When the set of branch points of $X$ is finite, do (1) and (2) hold good?
In [HK], they proved many lemmas to show the above (1). An important Lemma 2.6 in many

lemma is able to be extended from a tree to a dendrite with finite branch points.

Theorem 1 (Invariance of the unstable manifold) Let $f$ be a map from a dendrite $X$ with finite
branch points to itself and $p$ a periodic point of $f$ . If $W(p, f)$ is the unstable manifold of $p$, then

$f(W(p, f))=W(p, f)$ .

But, for dendrites with finite branch points which are not trees, the above (1) doesn’t always

come into being.

Example. Let $S$ be a subspace { $re^{i\theta}$ : $n=1,2,$ $\cdots,$ $\theta=2\pi/n$ and $0\leq r\leq 1/n$ } of the complex

plane. For each $m>n$ , there exists a continuous map $f_{m,n}$ : $Sarrow S$ such that $|\Omega(f_{m,n})|=m$ and

$|P(f_{m,n})|=n$ .

But, even if $X$ has finite branch points, the above (2) satisfies.

Theorem 2 Let $f$ be a map from a dendrite $X$ with finite branch points to itself. Then $\Omega(f)\subset$

$\overline{EP(f)}$.

2 Notations and definitions.

Let $X$ be a compact metric space and $f$ a continuous map of $X$ into itself. We denote the n-fold

composition of $f$ with itself by $f\circ\cdots\circ f$ . Let $f^{0}$ denote the identity map. A point $x\in X$ is a
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periodic point of period $n\geq 1$ for $f$ if $f^{n}(x)=x$ . The least positive integer $n$ for which $f^{n}(x)=x$

is called the prime period of $x$ . Especially, $x\in X$ is a fixed point for $f$ if $n=1$ . A point $x\in X$ is
an eventually periodic point of period $n$ for $f$ if there exists $m\geq 0$ such that $f^{n+i}(x)=fi(x)$ for all
$i\geq m$ . That is, $f^{i}(x)$ is a periodic point of period $n$ for $i\geq m$ . A point $x\in X$ is nonwandering
point for $f$ if for any open set $U$ containing $x$ there exist $y\in U$ and $n>0$ such that $f^{n}(y)\in U$ .

We denote the set of fixed points for $f$ , periodic points for $f$ , eventually periodic points for $f$ ,
and nonwandering points for $f$ by $F(f),$ $P(f),$ $EP(f)$ and $\Omega(f)$ , respectively. And $\overline{A}$ denotes the
closure of a set $A$ . Notice that $P(f)\subset\Omega(f),$ $P(f)\subset EP(f),$ $f(P(f))\subset P(f),$ $f(\Omega(f))\subset\Omega(f)$

and $\Omega(f)$ is closed.
An arc is any space which is homeomorphic to the closed interval $[0,1]$ . A continuum is

nonempty, compact and connected metric space. A graph is a continuum which can be written as
the union of finitely many arcs any two of which are disjoint or disintersect only in one or both
of their end points. Rom now on, $X$ denotes a tree by which we mean a graph which contains no
simple closed curve. A dendrite is a locally connected, uniquly arcwise connected continuum. We
say subcontinuum $A$ of a continuum $X$ is of order less than or equal to $\beta$ in $X$ , written $\mathrm{O}\mathrm{r}\mathrm{d}(A,X)$

$\leq\beta$ , provided that for each open subset $U$ of $X$ with $A4\vee\subset U$ there exist an open subset $V$ of.., $X$

such that $A\subset V\subset U$ and $|\mathrm{B}\mathrm{d}(V)|\leq\beta$ , where $\mathrm{B}\mathrm{d}(V)$ means the boundary of $V$ . We say that $A$

is of order $\beta$ in $X$ , written $\mathrm{O}\mathrm{r}\mathrm{d}(A, X)=\beta$, if $\mathrm{O}\mathrm{r}\mathrm{d}(A, X)\leq\beta$ and $\mathrm{O}\mathrm{r}\mathrm{d}(A, X)\not\leq\alpha$ for any cardinal
number $\alpha<\beta$ . A point $x\in X$ is called a branched point of $X$ provided that $\mathrm{O}\mathrm{r}\mathrm{d}(x,X)\geq 3$ . Let
$\mathrm{B}=\{b_{1}, b2, \ldots, bn\}$ be the set of branched points of a dendrite $X$ . For $x\in X\backslash B$ , there exists an
open neighborhood $V$ of $x$ such that $V$ is homeomorphic to $(0,1)$ or $(0,1]$ .

And the unstable manifolds $W(p, f)$ for some periodic point $p$ is as follows:

$W(p, f)=$ {$x\in X|$ for any neighborhood $V$of $p,$ $x\in f^{n}(V)$ for some $n>0$}

Let $X$ be a dendrite and $Y$ a subspace of $X$ . We denote the minimal connected set containing $Y$

by $[Y]$ . Particularly, if $\mathrm{Y}=\{x, y\}$ , then write $[Y]=[x, y]$ .

3 Lemmas.

By the proof of $\mathrm{f}^{\mathrm{Y}}$ , Lemma 2.8], we have the following.

Lemma 1 Let $X$ be a dendrite, $f$ a continuous map from $X$ into itself and $X \backslash B=\bigcap_{j=1}^{\infty}I_{j}$ . If
an open interval $J\subset I_{j}$ for some $j=1,2,$ $\cdots$ satisfies $J\cap P(f)=\emptyset$ , then $J\cap f^{n}(J\cap\Omega(f))=\emptyset$

for any positive integer $n$ .

By the proof of [$\mathrm{H}\mathrm{K}$ , Lemma 2.4], we have the following.

Lemma 2 Let $f$ be a continuous map from a dendrite $X$ to itself and $p$ a fixed point of $f$ . Then
$W(p, f)$ is connected.

Lemma 3 Let $f$ be a continuous map from a dendrite $X$ with finite branch points to itself and $p$

a fixed point of $f$ . Then $f(W(p, f))=W(p, f)$ .

Proof. By the definition, we see that $f(W(p, f))\subset W(p, f)$ . We show that $f(W(p, f))\supset W(p, f)$ .
It suffuices to show that $f^{-1}(z)\cap W(p, f)\neq\emptyset$ for each $z\in W(p, f)$ . We suppose that $f^{-1}(z)\cap$

$W(p, f)=\emptyset$ for some $z\in W(p, f)$ .
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Since $z\in W(p, f)$ , there exist an increasing sequence $n_{1},$ $n_{2},$ $\cdots$ and $x_{i}\in X(i=1,2, \cdots)$ such

that $f^{n}:(x_{i})=z$ for each $i=1,2,$ $\cdots$ and $x_{i}arrow p(iarrow\infty)$ . We notice that $Y=\{f^{n-1}:(x_{i})$ :

$i=1,2,$ $\cdots\}\subset f^{-1}(z)$ . We suppose that $|\{i : y=f^{n_{i}-1}(x_{i})\}|=\infty$ for some $y\in f^{-1}(z)$ . Since
$p$ is a fixed point of $f$ , we have $y\in W(p, f)$ and this is a contradiction. We may assume that
$f^{n:-1}(x_{i})\neq f^{n_{j}-1}(X_{j})(i\neq j)$ . Moreover we may assume that $y_{i}=f^{n_{i}-1}(x_{i})arrow x_{0}(iarrow\infty)$ .

Since $f^{-1}(z)$ is closed, we have $x_{0}\in f^{-1}(z)$ . We suppose that $x_{0}\in\overline{W(p,f)}$ . Since $p$ is a fixed

point of $f,$ $\mathrm{Y}\cap W(p, f)=\emptyset$ and $W(p, f)$ is connected, we have $x_{0} \in\bigcap_{i=1}^{\infty}[p, yi]\subset W(p, f)$ and this

is a contradiction. We may assume that $x_{0}\not\in\overline{W(p,f)}$. We have that $Y\cup\{x_{0}\}$ is contained in a
component $C$ of $X\backslash \overline{W(p,f)}$ . There exists the component $C_{0}$ of $C\backslash \{x_{0}\}$ such that $\overline{C_{0}}\mathrm{n}\overline{W(p,f)}\neq\emptyset$.
If $C_{0}\cap \mathrm{Y}$ is finite, we have $x_{0}\in W(p, f)$ and a contradiction. We may assume that $C_{0}\cap Y$ is

infinite. But since $y_{i}arrow x_{0}(iarrow\infty),$ $Y\cap[\mathrm{p}, x_{0}]\cap C_{0}$ is infinite and is contained in $W(p, f)$ . This

is contadiction.

$X$

$p$ $W(p,$ $Jl$ $0_{0}$ $y_{i}$ $.x_{0}$

Figure 1

Lemma 4 Let $f$ be a continuous map from a dendrite $X$ to itself and $p$ a point of $X$ with

$f^{n}(p)=p(n>1)$ . Then $f(W(p, f^{n}))=W(f(P), f^{n})$ .

Proof. By the definition, we have $f(W(p, f^{n}))\subset W(f(p), f^{n})$ . Thinking of $p$ as $f^{k}(p)$

$(k=1,2, \cdots, n)$ , we have $f(W(f^{k}(p), f^{n}))\subset W(f^{k+1}(p), f^{n})$ . We see that $f^{n}(W(f(p), fn))\subset$

$f^{n-1}(W(f^{2}(p), f^{n}))\subset\cdots\subset f(W(f^{n}(p), f^{n}))=f(W(p, f^{n}))$ . Since $f(p)$ is a fixed point of $f^{n}$ ,

by Lemma 3, we have that $f^{n}(W(f(p), fn)=W(f(p), f^{n})$ . Thus it holds that $W(f(p), f^{n})\subset$

$f(W(p, f^{n}))$ . We conclude that $f(W(p, f^{n}))=W(f(p), f^{n})$ .

4 Proofs.

Proof of Theorem 1. Let $p$ be an $n$-periodic point of $f$ . We have
$f(W(p, f))$

$=f(W(p, f^{n}))\cup f(W(f(p), fn))\cup\cdots f(W(f^{n-1}(p), f^{n}))$ (by $[\mathrm{H}\mathrm{K}$ ,Lemma 2.5])
$=W(f(p), f^{n})\cup W(f^{2}(p), f^{n})\cup\cdots W(f^{n}(p), f^{n})$ (by Lemma 4)

$=f(W(p, f))$ (by [HK,Lemma 2.5])

In [$\mathrm{H}\mathrm{K}$ , Example 1.5], for each point $p\in P(g_{1})$ we have $f(W(p, f))=W(p, f)$ .

22



Question. Let $f$ be a map from a dendrite $X$ to itself and $p$ a periodic point of $f$ . Do we have
$f(W(p, f))=W(p, f)$ ?

Example. Let $S$ be a subspace { $re^{i\theta}$ : $n=1,2,$ $\cdots,$ $\theta=2\pi/n$ and $0\leq r\leq 1/n$ } of the
complex plane. Take integers $m>n$ . We construct a continuous map $f_{m,n}$ : $Sarrow S$ such that
$|\Omega(f_{m,n})|=m$ and $|P(f_{m,n})|=n$ .

First, we construct a continuous map $f$ : $Sarrow S$ such that $\Omega(f)=\{(0,0), (1/2,0)\}$ and
$P(f)=\{(0,0)\}$ . Denote $I_{n}=\{re^{2\pi i/}n : 0\leq r\leq 1/n\}\subset S,$ $J_{n}=\{(x, 0)$ : $1/2+1/2n\leq x\leq$

$1/2+1/2(n-1)\}$ for each $n=2,3,$ $\cdots$ and $J= \{(x, 0) : 1/2<x\leq 1\}=\bigcup_{n=2}^{\infty}J_{n}$.

$(\cup, \cup)$ $(1/\angle,\cup[]$ $J_{3}$ $d_{2}$

Figure 2

Define $f$ ( $\{(x,$ $\mathrm{o})$ : $0\leq x\leq 1/2$ or $x=1/2+1/2n$ for each $n=2,3,$ $\cdots\}$ ) $=\{(0,0)\},$ $f(I_{n})=I_{n-1}$

for each $n>2,$ $f(I_{2})=\{(x, 0) : 0\leq x\leq 1/2\}$ and $f(J_{n})=I_{n}$ for each $n=2,3,$ $\cdots$ . Since
$f^{n}(I_{n})=\{(0,0)\}$ for each $n=2,3,$ $\cdots$ , we have $\Omega(f)\cap I_{n}=\{(0,0)\}$ for each $n=2,3,$ $\cdots$ . And we
see that $\Omega(f)\cap\{(x, 0) : 0<x\leq 1/2\}=\{(1/2,0)\}$.

Since $f^{m}(J)\cap J=\emptyset$ for each $m\geq 1$ , we have $\Omega(f)\cap J_{n}=\emptyset$ . We conclude that $\Omega(f)=$

$\{(0,0), (1/2,0)\}$ and $P(f)=\{(0,0)\}$ .
There exists a continuous map $g:[0,1]arrow[0,1]$ such that $\Omega(g)=P(g)=\{0,1\}$ . See Figure 3.

1

$0$ 1

Figure 3
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Denote the space $S \bigcup_{(0,0)0}=[0,1]$ attached by a point $(0,0)$ of $S$ and a point $0$ of $[0,1]$ . We see that
$S\cup(0,0)=0[0,1]$ is homeomorphic to $S$ . Define $f_{3,2}=f\cup g:S\cup(0,0)=0[0,1]arrow S\cup(0,0)=0[0,1]$ . We
have $|\Omega(f_{3,2})|=3$ and $|P(f3,2)|=2$ .

Denote the space $S \bigcup_{(0,0)}=(0,0)S$ attached by a point $(0,0)$ of $S$ and a point $(0,0)$ of an another
spase $S$ . We see that $S \bigcup_{(0,0}$ ) $=(0,0)S$ is homeomorphic to $S$ . Define $f_{3,1}=f\cup f$ : $S \bigcup_{(0,0}$ ) $=(0,0)Sarrow$

$S \bigcup_{(0,0)(0,0)}=S$. We have $|\Omega(f_{3,1})|=3$ and $|P(f_{3,1})|=1$ .
By the above, we have a continuous map $f_{m,n}$ : $Sarrow S$ such that $|\Omega(f_{m,n})|=m$ and $|P(f_{m,n})|=$

$n$ .

Proof of Theorem 2. We suppose that $\Omega(f)\not\subset\overline{EP(f)}$ , i.e. $V\cap\Omega(f)\neq\emptyset$ , where $V=$

$X\backslash \overline{EP(f)}$. Let $x$ be an element of $V\cap\Omega(f)$ and $W$ the component of $V$ containing $x$ . Since
$V$ is open, $W$ is a neighborhood of $x$ . Since $x\in\Omega(f)$ , there exists a positive integer $n$ such that
$f^{n}(W)\cap W\neq\emptyset$ . Denote $g=f^{n}$ and $T= \bigcup_{i=0}^{\infty}g^{i}(W)$ which is connected containing $x$ . We see
that $\mathrm{Y}=\{g^{i}(x) : i=0,1, \cdots\}\subset T\supset g(T)$ , that $T\cap EP(f)=\emptyset$ and that $\overline{T}$ is a dendrite.

Let $B$ be the set of branch points of $X$ . By [$\mathrm{H}\mathrm{K}$ , Theorem 1.2], we may assume that $\bigcup_{j=1j}^{\infty}I"=$

$\overline{T}\backslash B$ , where each $I_{j}$ is a component $\mathrm{o}\mathrm{f}\overline{T}\backslash B$ . If there exist disjoint integers $i_{1},$ $i_{2}$ and $j=0,1,$ $\cdots$

such that $g^{i_{1}}(x),$ $g^{i_{2}}(x)\in I_{\mathrm{j}}$ , by Lemma 1, then $I_{j}\cap P(f)\neq\emptyset$ and we have a contradiction. We
may assume that $|Y\cap I_{j}|\leq 1$ for each $j$ . This shows that $\overline{Y}\backslash Y\subset B\cap T$ . Since $g(Y)\subset Y$ and
$g(\overline{Y})\subset\overline{Y}$, we have $g(\overline{Y}\backslash \mathrm{Y})\subset\overline{Y}\backslash \mathrm{Y}$ .

We have $n(1)<n(2)<\cdots$ and $b\in B\cap T$ that $|\mathrm{Y}\cap I_{n(j)}|=1$ for each $j$ and that $\{b\}=$

$\bigcap_{j=1}^{\infty}\overline{I_{n}(j)}$. Since $B$ is finite, we have $b\not\in \mathrm{Y}$ and $b\in EP(f)$ . And since $|Y\cap I_{n(j)}|=1$ for each $j$

and $\{b\}=\bigcap_{j=1n}^{\infty}\overline{I(j)}$, we have $b\in T$ . This contradicts because $T\cap EP(f)=\emptyset$ .

Figure 4
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