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1 Introduction

Let $M_{n}$ be the space of $n\cross n$ complex matrices. For simplicity we treat matrices

here, but all our results hold for compact operators on a Hilbert space. Suppose

$A,$ $B\in M_{n}$ are positive semidefinite. We shall study the relations between the

singular values of

$A-B$ and

and those of

$A-|z|B$ , $A+zB$ , and $A+|z|B$

where $z$ is a complex number.

A norm $|||\cdot|||$ on $M_{n}$ is called unitarily invariant if $|||UAV|||=|||A|||$ for

all $A$ and all unitary $U,$ $V$. Every unitarily invariant norm is a symmetric gauge

function of the singular values. See $[3, 7]$ . We always denote the singular

values of $A$ by $s_{1}(A)\geq$ ... $\geq s_{n}(A)$ , and put $s(A)\equiv(s_{1}(A), \ldots, s_{n}(A))$ .

Familiar examples of unitarily invariant norms are the Ky Fan $k$-norms defined

by $||A||_{(k)}-- \sum_{1}^{k}s_{j}(A)$ and the Schatten p–norms: $||A||_{p}=( \sum_{1}^{n}s_{j}^{p}(A))^{1/p}$ ,

$p\geq 1$ . Note that $||\cdot||_{\infty}$ is just the operator (spectral) norm and $||\cdot||_{2}$ is the

Frobenius norm.
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A unitarily invariant norm may be considered as defined on $M_{n}$ for all

orders $n$ by the rule

$|||A|||=||||||$ ,

i.e., adding or deleting zero singular values does not affect the value of the

corresponding symmetric gauge function.

Given $a$ real vector $x=(x_{i})\in \mathbb{R}^{n}$ , rearrange its components as $x_{[1]}\geq\cdots\geq$

$x_{[n]}$ . For $x=(x_{i}),$ $y=(y_{i})\in \mathbb{R}^{n}$ , if

$\sum_{1}^{k}x_{[i]}\leq\sum_{1}^{k}y_{[i]}$ , $k=1,2,$ $\ldots,$
$n$ ,

then we say $x$ is weakly majorized by $y$ , denoted $x\prec_{w}y$ . If the components of

$x$ and $y$ are nonnegative an$d$

$\prod_{1}^{k}x_{[i]}\leq\prod_{1}^{k}y_{[i]}$ , $k=1,2,$ $\ldots,$
$n$

we say $x$ is weakly $log$-majorized by $y$ , denoted $x\prec_{wlog}y$ . See [6] for $a$ discussion

of this topic.

Denote the block diagonal matrix

taneh [4, Remark 5] observe$d$ that if $A,$ $B\in M_{n}$ are positive semidefinite then

$|||A-B|||\leq|||A\oplus B|||$ (1.1)

for every unitarily invariant norm. By the Fan dominance principle $[3, 7]$ , (1.1)

is equivalent to $s(A-B)\prec_{w}s(A\oplus B)$ . We shall show that in fact each singular

value of $A-B$ is not greater than the corresponding singular value of $A\oplus B$ .

In another paper, Bhatia and Kittaneh [5, Thm 1] prove$d$ that for positive

semidefinite $A,$ $B\in M_{n}$ and any complex number $z$

$|||A-|z|B|||\leq|||A+zB|||\leq|||A+|z|B|||$ (1.2)
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for all unitarily invariant norms. Again (1.2) is equivalent to

$s(A-|z|B)\prec_{w}s(A+zB)\prec_{w}s(A+|z|B)$ .

We shall prove that the corresponding weak $\log$-majorizations hold. Since weak

$\log$-majorization implies we$a\mathrm{k}$ majorization $[6,7]$ , our result strengthens (1.2).

2 Main Results

Our first result sharpens (1.1).

Theorem 1 Let $A,$ $B\in M_{n}$ be positive semidefinite. Then

$s_{j}(A-B)\leq s_{j}(A\oplus B)$ , $j=1,2,$ $\ldots,$
$n$ . (2.1)

The following result sharpens (1.2).

Theorem 2 Let $A,$ $B\in M_{n}$ be positive semidefinite. Then for any complex

number $z$

$s(A-|z|B)\prec_{wlog}s(A+zB)\prec_{wlog}s(A+|z|B)$ . (2.2)

The special case $z=i=\sqrt{-1}$ of Theorem 2 says

$s(A-B)\prec_{wlog}s(A+iB)\prec_{wlog}s(A+B)$ . (2.3)

It $\mathrm{h}$as been proved in [2] that for positive $A,$ $B$ an$\mathrm{d}p>1$

$s(A^{p}+B^{p})\prec_{w}s((A+B)^{p})$ . (2.4)
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When $p\geq 2$ , the above relation is refined as follows:

$s(A^{p}+B^{p})\prec_{w}s((A^{2}+B^{2})^{p/2})\prec_{w}s(|A+iB|^{p})\prec_{wlog}s((A+B)^{p})$ . (2.5)

The first relation in (2.5) $\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{s}$

.
$,\mathrm{f},\mathrm{r}\mathrm{o}\mathrm{m}(2.4)$ and the third relation follows

from (2.3). To see the second relation let $T=A+iB$ . This is the Cartesian
decomposition. From $A^{2}+B^{2}=(T^{*}T+TT^{*})/2$ we get

$s(A^{2}+B^{2})\prec_{w}s(|A+iB|^{2})$ .

Note that $f(t)=t^{p/2}$ is convex and increasing on $[0, \infty)$ . By a majorization

principle $[3, 7]$ , applying this $f$ to the preceding $\mathrm{w}\mathrm{e}\mathrm{a},\mathrm{k}$ majorization yields the

second relation in (2.5).

From (2.3) and the results in [1] and [2] it follows that for $0<p\leq 1$ ,

$s(A^{p}-B^{p})\prec_{w}s(|A-B|^{p})\prec_{wlog}s(|A+iB|^{p})$ $\prec_{wlog}$ $s((A+B)^{p})$

$\prec_{w}$ $s(A^{p}+B^{p})$ .

One might wonder whether the weak majorization (2.4) can be replaced by

the stronger $\log$-majorization. The $an$swer is no, even for $p=2$ . Consider the

example

$A=$ , $B=$ .

We have $d\mathrm{e}\mathrm{t}(A^{2}+B^{2})=2>1=\det[(A+B)^{2}]$ .

Recently we have generalized Theorem 1 and the second majorization result

in Theorem 2 to the case of $\tau$-measurable operators affiliated with $a$ semifinite

von Neumann algebra.
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