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ON THE FEKETE-SZEGO AND ARGUMENT
INEQUALITIES FOR STRONGLY CLOSE-TO-STAR
FUNCTIONS :

NAK EUN CHO AND SHIGEYOSHI OWA

ABSTRACT. Let CS(f) be the class of normalized strongly close-
to-star functions of order S in the open unit disk. We obtain
sharp Fekete-Szegt inequalities for functions belonging to the class
CS(B). Some sufficient conditions for close-to-star functions also
are investigated in a sector. Furthermore, we consider the integral
preserving properties for functions in CS(8).

1. Introduction

Let A denote the class of functions f of the form

fZ)=z+> a.2" (1.1)
) n=2
which are analytic in the open unit disk & = {z: z € C and |z| < 1}
and let S be the subclass of A consisting of all univalent functions. We
also denote by S*, K and C the subclasses of A consisting of functions
which are, respectively, starlike, convex and close-to-convex in U (see,
e.g., Srivastava and Owa [18]).

For analytic functions g and h with g(0) = h(0), g is said to be
subordinate to h if there exists an analytic function w(z) such that
w(0) = 0,|w(z)] <1 (2 € U), and g(2) = h(w(z)). We denote this
subordination by g < h or g(2) < h(z).

Let

. zf'(z) | 1+ Az
S[A’B]—{fEA' f(z) 1+ Bz

(zelU; —1§B<A§1)}
and
zf"(z) 1+ Az
= 01
KI[A, B] {feA + 70 =~ 1T B2
The class S*[A, B] was studied by Janowski [5] and (more recently)
by Silverman and Silvia [17]. Applying the Briot-Bouquet differential
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subordination [10, p. 81], we can easily see that K[A, B] C §*[A4, B].
We also note that S*[1,—1] = &* and K[1,—1] = K. Furthermore,
Silverman and Silvia [17] proved that a function f is in S*[4, B] if and
only if ' '

zf'(z) 1-AB A—B .
o) 1-Br| S 1-p @edsBA-L) o (12)
and -
zf'(2) 1—A , o
Re{ f(2) }> 5~ (2€U; B=-1) (1.3)

A classical result of Fekete and Szego [4] determines the maximum
value of |az — pa2|, as a function of the real parameter y, for func-
tions belonging to S. There are now several results of this type in the
literature, each of them dealing with |a3 — pa2| for various classes of
functions (see, e.g., [2,6-8,14]).

Denote by CS(f) the class of strongly close-to-star functions of order
B(B8 > 0). Thus f € CS(B) if and only if there exists g € §* such that

forze U, ,
o) -
e {g(z) =37

For the case § = 1, CS(B) is the class of close-to-star functions in-
troduced by Reade [16]. The close-to-star and similar other functions
have been extensively studied by Ahuja and Mogra [1], Padmanabhan
and Parvatham [12], Paravatham and Srinivasan [13], Sudharsan et.
al. [19] and others. '

In the present paper, we prove sharp Fekete-Szego inequalities for
functions belonging to the class CS(3). Argument properties also are
investigated, which give conditions for close-to-star functions. Further-
more, we consider the integral pieserving properties for functions in the

class CS(f).

2. Results

To prove our main results, we need the following lemmas.

Lemma 2.1 [3,15]. Let p be analytic in U and satisfy Re {p(z)} >
0 for €U, withp(z) =1+ p1z +p22%+---. Then

Ipal <2 (n>1)

and
2 2
D !pll
) g 1AL
|p2 21— 2




Lemma 2.2 [11]. Letp be analytic in U withp(0) =1 and p(z) # 0
m U. Suppose that there exists a point zg € U such that

ag (p)}| < In forll<lwl (1)
and
arg {p(zo)}\ = g-n(O <n<1). - (2.2)
Then '
where
k> l(a + l) when arg {p(z0)} = En (2.4)
— 2 a 27 '
k < —%(a + %) when arg {p(z0)} = —gn, (2.5)
and
{p(20)}7 = ia (a>0). (26)

Lemma 2.3 [9]. Let h be convez(univalent) function in U and w
be an analytic function in U with Re {w(z)} > 0. If p is analytic in U
and p(0) = h(0), then

p(2) + w(2)2p'(2) < h(z) (2 €U)
implies

p(z) < h(z) (z€U).

With the help of Lemma 2.1, we now derive

Theorem 2.1. Let f € CS(B) and be given by (1.1). Then for
B > 0, we have

142014+ B)2(1-20) i u< 5t

2(1-2 _ .

lag — pa3| < 1+2’8+Iéﬂ(1—-‘;#L) zfm%‘ﬁjﬁﬂﬁg,

Z=11+28 iféﬁﬂﬁggﬁ%,
—1+2(1+8)%@2u—-1) ifp> 2%14;%_

For each p, there is a function in CS(B) such that equality holds in all
cases.



Proof. Let f € CS(B). Then it follows from the definition that we
may write :

1@ _ o),

9(2)
where g is starlike and p has positive real part. Let g(z) = z + bo2® +
bsz® + ---, and let p be given as in Lemma 2.1. Then by equating
coefficients, we obtain '

ag = by + Bps
and ‘
BB —1)

as = bg + Bp1bs + —7—17% + Bpa.

So, with £ = 1 — 2u, we have

(a3 — pal) = b + %(x -2+ 8 (pg + %(ﬂz - 1)pf> + Bzp1be. (2.7)

Since rotations of f also belong to CS(f3), we may assume, without
~loss of generality, that a3 — pa3 is positive. Thus we now estimate
Re(az — pa?).

For some functions h(z) = 1+ kiz+ k2% +--- (z € U) with positive
real part, we have zg'(z) = g(z)h(z). Hence, by equating coefficients,
by = ki and b3 = (k2 + k%)/2. So by Lemma 2.1,

Re(b3 + —;—(x - 1)b§> — %Re(kz - —;—kf) - Z%Rekf

SRR \ <1-p+(1+ 2z)p® cos 2¢, (2.8)
where by = k; = 2pe'® for some p in [0,1]. We also have

1 1 1
Re(ps + (95 — Dp?) = Re(pa - 591 + 5 faRert
< 2(1 — 7?) + 2Bzr? cos 26, (2.9)
where p; = 2re® for some r in [0,1]. From (2.7-9), we obtain

Re(as — pa2) <1 — p* + (1 + 2z)p° cos 2¢ + 28((1 — r?)
+Bzr? cos 20 + 2zrpcos(f + @), (2.10)

and we now proceed to maximize the right-hand side of (2.10). This
function will be denote ¥ whenever all parameters except z are held
constant.

Assume that 8/(2(1 + 8)) < p < 1/2, so that 0 < = < 1/(1 + B).
Since the expression —t2 + 28z cos 20 + 2zt is the largest when ¢ =
z/(1 — Bz cos 26), we have
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z
< .
1—fBzxcos20 — 1—pz

—t2 + t2Bz cos 20 + 2zt <
Thus - '

: - 2(1 —2u)
R

and with (2.10) this estiablishes the second inequality in the theorem.
Equality occurs only if

__2(1-2p)
BT T80 —2m)
and the corresponding function f is defined by

¢(x)§1+22:+2,6<1+

2 2 —f
f(z):(l—z)2 (Aifz_i—(l-)‘)i—f-z) » J0) =0,

where

L1+ (-26)(1-2)
21801 —2p).
We now prove the first inequlity. Let p < 8/(2(1 + 3)), so that
z > 1/(1 + B). With 2o = 1/(1 + 3), we have

$(z) = (o) + 2(z — To)(p* cos 26 + 21 cos 20 + 2pPr cos( + ¢)
< P(z0) + 2(z — z0) (1 + B)?
<1+42(1+6)%(1 - 2u),
as required. Equality occurs only if p; = p; = by = 2, b3 = 3, and the
corresponding function f is defined by

O

Let z; = —1/(1 + ). We shall find that ¢(z;) = 1 + 20, and the
remaining inequalities follow easily from this one. By an argument
similar to the one above, we obtain

P(z) < Y1) + 2|z — 24|(1 + B)?
< —1+4+2(1+p)*(2p - 1),

if z < zy, that is, p > (2 + 8)/(2(1 + B)). Equality occurs only if
1 = 2, pp = —2, by = 21, b3 = —3, and the corresponding function f
is defined by

z (l-l-z'z

B
1@ =0y 1—iz)  JO =0



Also, for 0 < A < 1,

P(Az1) = Mp(z1) + (1= A)p(0) < M1+28) +(1 - A)(1+26) = 1+28,

s0, we obtain ¢(z) < 1+2Fforx; <2< 0,ie,1/2< u< (2+
B)/2(1 + B). Equality occurs only if p; = by = 0, py = 2, by = 1, and
the corresponding function f is defined by

P 2%)P '
f0 =2 s =0

We now show that ¥(z;) < 1+ 28. We have

z?p?cos’ (0 + @)

—2 442 20 + 2xtpcos(f + ¢) <
+ t*fz cos 20 + 2xtpcos(d + @) < I~ Brcos20

for real ¢, and so

Bz*(1 + cos2(0 + ¢))) .

2
P(z)—1-26<p ("1+(1+2x)0082¢+ 1 — Bz cos 20

Thus we consider the inequality

Bz*(1 + cos2(6 + ¢)) + (1 — Bz cos 20)(—1 + (1 + 2z) cos 2¢) < 0

with z =7 After some simplifications, this becames

23%sin®pcos®p + 23 cos fsin O sin ¢ + cos®¢ > 0. (2.11)

Now, for all real ¢, we note that

2t? + 2t sin 0 cos ¢ + cos? ¢ > 0,
so, by taking t = Bsin ¢ cos§, we obtain (2.11). Therefore we complete
the proof of Theorem 2.1.

Next, we prove
Theorem 2.2. Let f € A. If

= () (&)}

for some g € K[A, B], then
T
<zn

s (5)] <5

where n (0 < n < 1) is the solution of the equation :

<g-a (@>0; BeR; 0<d<1)
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5= {(0‘ + f)n + potan (lﬂ+ncf>s[;—f{1—t(A,B>}1) (B+#-1)

(a+ B (B = 1)
- (2.12)
and
(A, B) = %sin—1 ( 1A_‘ /53) . (2.13)
Proof. Let
Pla) =gy 1=y

Then, by a simple calculation, we have

(53) (88) oo~ (v 553

Since g € K[A4, B, g € S*[A, B]. If we let

| q(2) = pe's*  (z€U),
then it follows from (1.2) and (1.3) that
5 <P < i
—t(A,B) < ¢ < t(A,B) (B#-1)

and

LA < p < oo
-1< ¢ <1 (B=-1),

where t(A, B) is defined by (2.13).

If there exists a point z € U such that the conditions (2.1) and
(2.2) are satisfied, then (by Lemma 2.2) we obtain (2.3) under the
restrictions (2.4-6).

At first, we suppose that

{p(z0)}7 =ia  (a>0).

For the case B # —1, we then obtain



{7 ()
— arg {(p(ZO))‘”ﬂ <1 + q(io) Z;]EZ(SO)) }

= arg {(p(20))™*?} + arg {(1 -+ ink(pe'3%)1) )
nksin[Z(1 — ¢)] )

p + nk cos[% (1 — ¢)]

nsin[Z{1 — (A, B)}] )

: T 4
> (a+ B)=n+atan™? ( p-
2 2 + ncos[3{1 — t(A, B)}]

= (a+ ﬂ)g—n +atan™! (

o
= 26,

where ¢ and t(A, B) are given by (2.12) and (2.13), respectively. Simi-
larly, for the case B = —1, we have

s {(3) ()] = o=

These evidently contradict the assumption of the theorem.

Next, in the case p(zo)% = —ia (e > 0), applying the same
method as the above, we also can prove the theorem easily. Therefore
we complete the proof of Theorem 2.2.

By setting o =1, §=0, 6 =1, A=1and B = —1 in Theorem
2.2, we have

Corollary 2.1. FEvery close-to-convez function is close-to-star in
U. ;

If we put g(z) = z in Theorem 2.2, then, by letting B — A (A < 1),
we obtain

Corollary 2.2. Iffe A and

am{uw>U@)}

7r
jarg {720} < 3,
where 1 (0 < n < 1) is the solution of the equation :

<%5 (@>0; BER; 0<5<1),

then

6= (a+pB)n+ %a tan~!(n).



For a function f belonging to the class A, we define the integral
operator F, as follows :

c+1

F.(f) = F(/)(2) = /t“gwwt@>0 zell).  (214)

For various interesting developments involving the operator (2.14), the
reader may be referred (for example) to the recent works of Miller and
Mocanu [10] and Srivastava and Owa [18]. '

Finally, we prove

Theorem 2.3. Let f € A.‘,If

| 9(2)
for some g € S*[A, B], then
m
<3M

where the operator F, is given by (2.14) andn(0 < 77 < 1) s the solution
of the equation

arg (f—(—z—)—'y)|<z2r—6 (0<vy<1;0<6<1)

2 -1 3sin Z(1 -t(AB,c))
5= {’7+ = tan ((1+B+c)+i1cos"(1 “H(A,Bc ))) fOTB # -1

n : for B =—1,
when
2 . 4 A-B
t(A, B,c) = —sin <1—AB+C(1—32)) (2.15)
Proof. Let "
o) = 1 (0 ) o) = S

From the assumption for g and an application of Briot- Bouquet differ-
ential equation [10, p. 81], we see that F.(g) € S*[4, B]. Using the
equation

2F)(f)(2) + cFe(f)(2) = (1+9)f(2)

and simplying, we obtain

—L‘(ﬂz—)—v) =p(2)+f£,(—z)—

1—7\yg(2) (2) + ¢
Then, by applying (1.2) and (1.3), we have

q(z) +c= peizzl"’,
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where

—t(A,B,c) < ¢ < t(A,B,c) for B # -1,
when ¢(A4, B, c) is given by (2.16), and

1-A 1+A
{ﬁ—!-c < p < 1+_B+c

1< ¢ <1lforB=-1

Here, we note that p is analytic in U with p(0) = 1 and Re p(z) > 0 in
U by applying the assumption and Lemma 2.3 with w(z) = 1/(g(2)+c).
Hence p(z) # 0 in U. The remaining part of the proof of Theorem 2.3
is similar to that of Theorem 2.2, and so we omit it.

{%+c <p< o

Remark. From Theorem 2.3, we see easily that every function in
CS(0) (0 < & < 1) preserves the angles under the integral operator
defined by (2.14).

By letting A=1-28(0< 8 <1), B=-1, § =1 in Theorem 2.3,
we obtain ‘ ) ’ ’
Corollary 2.3. If fe€ A and

£2)) .

for some g such that

zg'(2) | | .,
Re{g(z)}>ﬂ O0<p<i zeu),

then

E(f) .
Re {Fc(g)}>7 0<y<1; z€elU),

where F, is given by (2.14).

If we ta.ké g(z) = z in Theorem 2.3, then, by letting B — A (A < 1),
we have

Corollary 2.4. If f € A and

o (12

o (B0 <5

<g5 0<y<1; 0<6<1),

then




where F, is given by (2.14) and n(0 < n < 1) is the solution of the

equation
‘5=’7+§Ft‘m—1 (ﬁlc)-
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