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Abstract

In this paper, we introduce a homeomorphism to connect the Lévy Laplacian to the Number
operator. Moreover we also give a relationship between a stochastic process generated by some
function of the Lévy Laplacian and the semi-group generated by the Number operator.

1. Introduction

An infinite dimensional Laplacian, the Lévy Laplacian, was introduced by P. Lévy [17]. This
Laplacian was introduced into the framework of white noise analysis initiated by T. Hida [4]. L.
Accardi et al. [1] obtained an important relationship between this Laplacian and the Yang-Mills
equations. It has been studied by many authors ( see [1, 2, 3, 5, 7, 8, 13, 15, 16, 18, 21, 22, 23,
24 etc]).

In the previous papers [25,26] we obtained stochastic processes generated by the powers of an
extended Lévy Laplacian and also in [29] we obtained stochastic processes generated by some
functions of the Laplacian.

The purpose of this paper is to present recent developments on stochastic processes generated
by functions of the Lévy Laplacian acting on white noise distributions based on the idea in [29]
and to give a stochastic expression of an equi-continuous semigroup of class (Cp) generated by
the Laplacian related to an infinite dimensional Ornstein-Uhlenbeck process following [27].

The paper is organized as follows. In Section 2 we summarize some basic definitions and
results in white noise analysis. In Section 3 we introduce a Hilbert space as a domain of the
extended Lévy Laplacian which is self-adjoint on the domain following our previous paper [27],
and we give an equi-continuous semigroup of class (Cy) generated by some functions of the
extended Lévy Laplacian. In the last section we give a stochastic expression of a semigroup
generated by some function of the Number operator.

2. Preliminaries

In this section we assemble some basic notations of white noise analysis following [7, 12, 15,
19].
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Let L2(R) be the Hilbert space of real-valued square-integrable functions on R. We take the
space E* = §'(R) of tempered distributions with a probability measure yu which satisfies

[ explite, )} du(z) = exp (—%1&3) | ceB=S®)

where (-,-) is the canonical bilinear form on E* x E and | - |¢ is the L2(R)-norm.

The differential operator A = —(d/du)? + u? + 1 is a densely defined self-adjoint operator on
L%(R). There exists an orthonormal basis {e,;v > 0} for L?>(R) such that Ae, = 2(v + 1)e,.
Let E, be the completion of E with respect to the norm |- |, defined by |fl, = |APf|o for f € E
and p € R. Then E, is a real separable Hilbert space with the norm |- |, and the dual space EI'D
of E, is the same as E_, (see Ref. 10). With the projective limit space E of { Ep;p > 0} and
the inductive limit space E* of {E_p;p > 0}, we have a chain of Hilbert spaces: for 0 < p < g,

ECE,CE,Cc*(R)CE_,C E_4CE".

We denote the complex1ﬁcatlons of L2(R), E and E, by LL(R), Ec and Ec p» Tespectively.

Let (L2) = L2(E*,u) be the Hilbert space of complex-valued square-integrable functionals
defined on E* with norm denoted by || - H(] By the Wiener-It6 theorem every ¢ in (L2?) can be
represented uniquely by

Y= Z In(fn)a fn € ch(R)®n7
n=0

where I,, denotes the multiple Wiener integrals of order n € N. Let L2 (R)®" denote the n-fold
symmetric tensor product of L% (R). Moreover, for the (L?)-norm ||<pHo of ¢ we have

0o 1/2
llello = (Z n!Int?)) ;

n=0

where | - | is the norm of L% (R)®™.

For p € R, let ||¢ll, = |[[(A)P¢|lo, where I'(A) is the second quantization operator densely
defined on (L?) by

I'(A)p = Z L.(A®"fn), ¢ = Z Ln(fn)-
n=0 n=0

Ifp>0let (E)y = {p € (L?); ¢, < 0o}. If p < 0, let (E), be the completion of (L?) with
respect to the norm || - ||,. Then (E)p, p € R, is a Hilbert space with the norm || - [|,. It is easy
to see that for p > 0, the dual space (E); of (E), is given by (E)_p. Moreover, for any p € R,
we have the decomposition

-G

where HP is the completion of {I,(f);f € E%"} with respect to || - ||,. Here Egn is the
n-fold symmetric tensor product of Ec. In fact we have H, Y = {L.(f); f € E%’;} for any
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p € R, where E®" is also the n-fold symmetric tensor product of Ec ,. The norm ||¢||, of
¥ = En—o In(fn) € (E) is glven by

. 1/2
”90“11 = <Z n'lfnl?;) ) fn € EC p’

n=0

.where the norm of E®’; is denoted also by | - |p.

The pr0Jectlve limit space (E) of spaces (E)p, p € R is a nuclear space. The inductive limit
space (E)* of spaces (E)p,p € R is nothing but the dual space of (E). The space (E)* is called
‘the space of generalized white noise functionals. The canonical bilinear form on (E)* x (E) is
denoted by < -,->> . Then we have

<< q>:§0>>: Zn'(Fnafn> d) = ZITL(F‘R) € (E)*a Y = Zln(f'n) € (E)7
n=0 n=0 n=0

where the canonical bilinear form on (EE")* x E&" is denoted also by (,-). The Schwarz
inequality takes the form:

| < @,0> | <@l 5llellp, PER.
Since ¢¢(-) = exp ((-,5) - %(5,{)) € (E), the S-transform is defined on (E)* b

S[®](§) =< ®,¢¢>, (€ Ec.

8. An equi-continuous semigroup of class (Cy) generated by a function of the Lévy
Laplacian

Let ® be in (E)*. Then the S-transform S[®] of ® is Fréchet differentiable, i.e.

S[9](¢ + n) = S[@)(€) + SIB(E)n) +o(n),

where o(n) means that there exists p > 0 depending on £ such that o(n)/|n|, — 0 as |n|, — 0.

Fix a finite interval T in R. Take an orthonormal basis {(,}32, C E for L%(T) satisfying the
equally dense and uniform boundedness property ( see [7,15,16,18,24, etc] ). Let Dy, denote the
set of all & € (E)* such that the limit

N-1
Rps(al(©) = Jm ~ N 2 SO )
=0

exists for any £ € E¢ and is in S[(E)*]. The Lévy Laplacian Ay, is defined by

Ard =S 1ALSD
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for ® € Dr. We denote the set of all functionals & € Dy, such that S[®](n) =0 forallnp € F
with supp(n) C T by DI.

Take a generalized white noise functional
¢ = / Fug, ... uy) : €93 .. glana(un) . gy ¢ DT (3.1)
TTI.

feELEM)®,a e Rk=1,2,...,n,

where : - : means the Wick ordering. Its S-transform is given by

S[®](¢) :/ flu)eistu)  giantlun) gy (3.2)
Tn
Theorem 1.[27] A generalized white noise functional ® as in (8.1) satisfies the equation

Apd = 17 Pl Z a2®. (3.3)

We set .
D, — { / f(a): J] ) : due DT; f € E%“}
™ v=1

for each n € N and set Dy = C. Then D,, is a linear subspace of (E)_, for any p > 1. We define
a space D,, by the completion of Dy, in (E)_, with respect to ||-]|_p. Then for each n € NU{0},
D,, becomes a Hilbert space with the inner product of (E)_,. For each n € NU{0}, the operator
A1, becomes a continuous linear operator from D,, into itself satisfying

n
ALl =

mH‘I)H_p for any ® € D,,.

The operator Ay is a self-adjoint operator on D, for each n € N U {0}.

Proposition 2. [27] Let ® =3 520 ®n, V¥ = Y oo Yn be generalized white noise functionals
such that ®, and ¥,, are in D, for eachn € NU{0}. If ® = ¥ in (E)*, then &, = ¥, in (E)*
for each n € NU {0}

Let ay(n) = ( ) . Proposition 2 says that 32 ®,,®, € Dy, is uniquely deter-
mined as an element of . Therefore, for any N € N U {0}, we can define a space E_, y
by

o0
E—p,N:{Z‘I’nE ZaN n)||®x |2 2p < 00,Pp €D,,n=0,1,2,. }
n=0
with the norm ||| - |||-p,~ given by

00 1/2 o~
1l = (z aN<n>||<1>nnz,,) RPRE PR
n=0

n=0
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for each N € NU{0} and p > 1. For any N € NU{0} and p > 1, E_, x is a Hilbert space with
the norm ||| - [||_p n-

Put E_p o = y>1 E—p~ with the projective limit topology. Define a Hilbert space E_p x

by the completion of E_, o, with respect to the norm ||| - |||_, —n given by
00 _ 1/2 o -
NIl -p,-v = <Z OéN(n)“1||<I>n||r‘l1,,) , =) PeE
n=0 n=0

for each N > 0. With the inductive limit space E_, o, = Uny>1E_, _n, for any N > 0, we
have the following inclusion relations:

Epoo CEpNt1 CEpNCE 1 CEpgCE 5 1CEp NCE 5 N 1CE o

The space E_ o, includes D,, for any n € N U {0}. The operator Ay can be extended to a
continuous linear operator defined on E_, _,, denoted by the same notation Ay, satisfying
IAL®l—pn < ||1®]|l-p,v+1, ® € E_pny1, for each N € Z. Any restriction of Ay, is also
denoted by the same notation Ar. Using the simillar method of Theorem 2 in [27}, we have the
following;:

Theorem 3. The operator A, restricted on E_, N1 45 a self-adjoint operator densely defined
onE_, N for each N € Z and p > 1.

Let c(t,z) be a complex-valued bounded function on R? which is differentiable in ¢ and
continuous in, z. There exists a constant M > 0 such that sup, ,|c(t, 2)| < M. For each t > 0
we consider an operator G; on E_, _,, defined by

e = Z (77) ®-

for ® =Y 2 P, € E_, _. Forany ® = 32 (&, in E_, _, there exists N € Z such that
® € E_p n. Then, for any t > 0,p > 1, the norm |||G;®|||_p ~ is estimated as follows:

e[t ) ®-

< MZZGN n)l|@all2, = M2|18]][2, x,

2

NG, = zaN

-p

where ay(n) means a_y(n)"! for N < 0.

Thus the operator G; is a continuous linear operator from E_, _ into itself.

For any p > 1 and complex-valued continuous function h(z), z € R satisfying the condition:

(P) there exists a polynomial 7(z) of z € R such that |h(z)| < r(|z]) for all z € R,
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the operator h(—Ar) on E_, _ is given by
hM-BL)® =20k (%) By, for & =28, € E_p oo

Theorem 4. Let h(z) be a complez-valued bounded function h(z) of z € R such that h(z) is
continuous, h(0) = 0 and c(t,z) = eM?* for all t > 0. If h(z) satisfies the condition (P), then
the family {Gy;t > 0} is an equi-continuous semigroup of class (Cp) generated by h(—AL).

Proof. If there exists a complex-valued continuous function h(z) of z € R such that c(t, 2) =
M)t then it is easily checked that Gy = I, GiGs = Gy for each t,5 > 0. Moreover we can
estimate that

11G:® — G @l = ZON(TL

(o) G“%Oﬁ@m%

aM?® Zaw(n)H‘Pnll2 = 4M2|H<I>H|2,,N <00
n=0 .

(TN

for each. t,tg > 0, N € Z* and & = 300, ®, € E_, n. Therefore, by the Lebesgue convergence

theorem, we get that
Lim Gté Gto(I) 111 E_p7

t—to

for each tg > 0 and ® € E_j, _ . Thus the family {G4;t > 0} is an equi-continuous semigroup
of class (Cp). Let p> 1 and let & = 302 (&, € E_p_. Then, there exists N € Z such that
® € E_p n. Let d; be the degree of the polynomial r in the condition (P). Then we note that

(i)t _ n
( 1 h(wﬂ)@"

By the mean value theorem, for any ¢ > 0 there exists a constant 6 € (0,1) such that

M)t n | Relh( 2 n
e -1 :‘h<m)‘e [ (1) ]2 <Mr<|T')

t

2
2

— h(-B)® (34)

= ZGN (1)

7P,N—d4- n=0

l”Gﬁb——(I)
t

Therefore we get that

2

h(—“—)t
e \I71/" —1 n
— @k (-—) ®, | ®all%,

eﬂ%?_l'hQﬂ)

< 20+ e (1) P,
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2
Since there exists a positive constant C, depending on r such that ay_g (n)r (%’) < Cran(n),

we have o \
S aw_a () (1> 1Ba][2, < co.
=4 T

By (3.4), (3.5) and

lm
t—0

=t )

IT]

the Lebesgue convergence theorem admits

G20 n-Bpe

2
=0.
—'pyN'd'r

lim
t—0

Thus the proof is completed. O
4. A relationship to the Number operator

Let B(p) = Y520(2k + 2)?P|e[3 and set

[E]p,N = {‘P = Zln(fn) € (L2)) Z aN(n)enzﬁ(P)lfnl(Q) < 00, Supp(fn) cT,n=0,1,2,...

n=0 n=0

for p> 0 and N > 0. The space [E], x is a Hilbert space with norm || - |li£), ~ &iven by

o0 1/2
2
lelliE),y = (Z an(n)e™ ﬂ(p)ffnlg)
n=0

for ¢ = 302 o In(fa) € (L?).
Define an operator K on [E|, v by

K[®] = 57 [S[®](e)].

Then we have the following:

(3.5)

}

Proposition 4. Letp > 1 andlet N > 1. Then the operator K is a continuous linear operator

from [Elp v into E_p n.

Proof. Let p>1 and let N > 1. Then for each £ > 1 we can calculate the norm |||K[ga]l||2_p’N

of K[p] for ¢ = 352 In(fz) € [Elpn as follows:

NE[AZn = Y an@iG (€)%, fa)ll2,
n=0 ) )

oo

IA

=0 k1,...ke=03j=1 lv|=¢

2

0o oo £
Z%aN(n)ZE! > [I@ki+2)~% Z%(Fweh@“'@ekz) )
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where v = (11,...,vn) € NU{O}, [v] = v1+-- v, V! = 11! .1 and Fyy = [Ra f(0)®;- 16§V1du
Since there exists ¢ > 0 such that

2

Z H(Zk +2)7%

Z ! <Fv7ek1®"'®ekz>

kl: 7k£’ 0‘7 1 IU' 4
1\ /e ¢
< | fald (Z ‘J) (Z(2k+2)—2p|€k|(2)) ,
wi=eY ) \k=0

we get that

KNP,y < 3 an(n)e™®|f,[2
= llells,

Thus the proof is completed. O

Remark: Regarding K as an operator from [E], y onto K[[E]p n], it is a bijection. Define a
norm [-]_, y on K{[[E], 5] by )

H(I)ﬂ—p,N = ||K~ ‘I>||p,N
for @ € K[[E]pn]. Let K_p v = {® € K|[[E]p n]; [®]-pn < co0}. Then this becomes a Hilbert
space with the norm [-]_, v and the operator K is a homeomorpism from [E], y onto K_p n.

Let [E]p o be the projective limit space of spaces [E], v, N € N. Then the operator K is a
continuous linear operator from [E],  into E_, . Let {X;;t > 0} be a stochastic process with
the characteristic function of X; given by

E[eizxt ] — eth(z)

and let {Gy;t > 0} be an equi-continuous semigroup of class (Cp) generated by h(— Apr) in
Theorem 4. Take a smooth function nr € E with nr = |T| on 7. Define an operator G, acting

on S[E*P: ] by
Gy =SG5S~
Here the space S|E_j ] is endowed with the topology induced from E_j, o, by the S-transform.

Then by Theorem 3.5, {Gi, t> 0} is an equi-continuous semigroup of class (Cy) generated by
the operator h(— AL) where A = SALS™!. Then we have the following theorem.

Theorem 5.[cf. 26, 29] For all F € S[E_p o), the following equality holds

G F(€) = E[F(§ + X]'nr))-
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The operator K implies a relationship between Az and the number operator A on (E)* given
by
N =" nIn(fn) for @ =220 Tn(fa) € (B)"
n=0

Proposition 6. For any ® € [E], v we have

Theorem 7. For any ¢ € [Elp n N (E) we have
Rl Cael(e) = BIRIAE + X7,
where K[p)(¢) = S[pl(¢¥), € € Ec.
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