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1 Introduction

Let 2 C R™ be a bounded domain with smooth boundary 8, p > n and f € C(Q) such

that f > 0 in €.
At first, we shall consider the variational problem

inf{|IDolf” - [ fudalv € WeP(@)}, (1)

where || - || is the standard norm in L?(Q2, R™) defined as follows;

lwll = (f [w(@)Pda)s

for w € LP(2,R") and | - | is the Euclidean norm in R".
T. Bhattacharya-E. DiBenedetto-J. Manfredi [5] and B. Kawohl [13] showed that the
limit function of minimizers of the variational problem (1), as p — oo, is the distance

function from the boundary of .
We are interested in what is the limit function of minimizers of the variational problem

with the norm equivalent to the standard one. For simplicity, we shall consider the following
norm defined by
n
1
lolly = (3 il )

for w = (wn,...,w,) € L*(2,R").
With this norm, we are concerned with the variational problem

inf{||Dol[f — /Q Fodz|v € WEP(Q)). 2)

However, it seems hard for us to verify that by using a direct method as in [5] or [13], the
limit function is a distance function corresponding to our norm.

On the other hand, to determine the limit function, we recall the following result by R.
Jensen [10] for the limit PDE derived from (1); the limit function of minimizers of (1), as

p — 00, satisfies
min{|Du(z)| - 1,-Axu(z)} =0 in Q (3)
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in the viscosity sense, where the oo-Laplacian is given by
Aot = (D*uDu, Du).

Since the above PDE (3) is not of divergence form, we need the notion of viscosity solutions
as weak solutions.

We note that the oo-Laplacian was introduced by G. Arronson to characterize the “ab-
solutely minimizing Lipschitz extension” (AMLE for short). Recently, R. Jensen in [10]
proved that the AMLE can be characterized as a unique viscosity solution of

—Apu(z)=0 in Q

under the given inhomogenious Dirichlet boundary condition. To show the uniqueness of
viscosity solutions of the above, R. Jensen treated (3)-type auxiliary equations.

Our strategy is as follows:

(1) Derive the limit PDE associated with (2).

(2) Obtain a uniqueness result for the PDE.

(3) Characterize the limit of minimizers of (2) as a unique solution of the PDE.
(4) Look for a distance function from 92 which is also a solution of the PDE.

In the section 3, we prove the comparison principle for this limit PDE. However, as will
be seen, this PDE has serious discountinuity, which violates the standard argument to
show the comparison principle for viscosity solutions. We avoid this difficulty imposing an
extra assumption for solutions. ’

In the section 4, we show that a distance function, which corresponds to our problem,
satisfies the limit PDE. :

In the section 5, we consider other equivalent norms in the variational problem and derive
equations which the corresponding limit function satisfies. However, we cannot prove the
comparison principle for this PDE in general.

2 Limit of minimizers as p— oo

In this section we derive the PDE for the limit function of minimizers of (2). First,
we derive the Euler equation associated with the variational problem (2). It is not hard
to show that the minimizer of (2) satisfies the Euler equation in the viscosity sense (c.f.,
Theorem 1.29 in [12]);

Proposition 1. Let u, be the minimizer of (2). Then, u, satisfies the PDE
—p(p—1) Z |ua, (x)|p—2uf$i$i (z) — f(z) =0 in Q (4)
i=1

in the wiscosity sense.
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First, we get the gradient estimate of the minimizer u, uniformly in p > n; there exists

a constant C > 0 such that
|Duplle@) <€ in Q

for all p > n. Hence, we can see that {u,},~, has a subsequence converging to some
Lipschitz function uniformly in 2. Dividing the PDE (4) by

p(p — 1) max |up,(z)],

and then, sending p — oo, we can derive the limit PDE which the limit function of u,

satisfies in the viscosity sense.

Proposition 2. Let u, be the minimizer of (2). Then, there exist u € W*°({) and a
subsequence p; — 0o as j — oo such that

Up, > u as j—oo uniformlyin £,
and that u satisfies the limit PDE
min{G(Du(z)) — 1, F(Du(z), D*u(z)} =0 in Q (5)
i viscosity sense. Here,

G(g) = max |g| , F(g,X)=- > Xy

i€l[q]

and Ilg] ={i € {1,...,n}|G(q) = |ail}
for ¢ = (q1,...,qx) € R" and X = (X;;) € S™, where S™ denotes the set of all n x n
symmetric realvalued matrices.

For the reader’s convenience, we recall the definition of viscosity solutions. Consider
functions F: R" x S" - Rand w: Q — R.

Definition. We call w a viscosity supersolution (respectively, subsolution) of E{Dw, D*w)
0 in Q if and only if for any z €  and 9 € C?,
E*(Dy(z), D*¢(z)) > 0
(respectively, E.(Dy(x), D*)(z)) < 0)

provided u — 1 has a local minimum at z (respectively, a local maximum in z).
We also call w a viscosity solution of E(Dw, D*w) = 0 in Q if and only if it is a viscosity
sub- and supersolution of it.

Here, E* and E, are, respectively, upper and lower countinuous envelopes, i.e.,

E*(q,X) = limsup{E(¢, X);|§— gl <€ and |X -X|<¢},
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E.(g,X) = liminf{E(¢, X);§ —ql <¢ and |X-X|<¢}
for allp € R™ and X € S™.

We give an equivalent definition with the semi-jets. First, we define sub- and super-
semijets of functions of second order.

Definition. For w € C(2) and z € ,

3

w(y) > w(z)+{g,y — z)
J2w(z) =4 (¢,X) e R* x S" +3(X(y—2),y — ) s
+o(lz —yl?) as y—=z |
f w(y) < w(z) +{g,y —2)
J*tw(r) =< (¢,X) € R* x S +2(X(y— =),y — x)
+o(lz —yl?) as y—oz

v
~

\
Proposition 3. ([6]) Let E : R" x S®™ —» R. w € C() is a viscosity subsolution of
E(Dw,D?*w) = 0 in Q if and only if

/

E.(g,X) <0

for all x € Q and (¢, X) € J>Tw(z).
Similarly, w € C(R) is a viscosity supersolution of E(Dw, D*w) = 0 in , if and only
E*(¢,X) <0
for allz € Q and (¢,X) € J> " w(x).
Here, J»~w(z) and J>*w(z) are the graph-closure of J>*w(x);

El(a:k,pk,Xk) €N x R"xS"”
J2tw(z) =< (p, X) € R® x S| such that (pg, Xi) € J>tw(zy)
l | and limk—-)oo(mlc,pk,xk) = (x7p’X) J

We present representation formulas for F* and F,.
Lemma. For ¢ = (q,...,q,) € R" and X = (X;;) € 5™,

F*(q,X) = max{—)_ Xul® # I C I[q]},

iel

F.(q,X) =min{-)_ Xu|0 #1 C I[q]}.

i€l
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3 Comparison principle

In what follows, we often omit writing the terminology “viscosity”.

Because of the discountinuity of F' with respect to p-variables, the PDE for supersolutions
is different from that for subsolutions in general. Thus, we cannot apply the standard
argument to prove the comparison principle for (5). Avoiding this difficulty, we assume a
concavity property for solutions in our comparison principle.

We remark that when 2 is convex and f = 1, it is known that the power concavity
of the minimizer of the variational problem (1), which is proved by S. Sakaguchi in [21].
Hence, throughout this and next sections, we assume f = 1. Modifying the proof in [21],
we obtain the following.

o1
Theorem 4. Let Q2 be convex and u, the minimizer of (2). Then, up” is concave in

Q.

Idea of proof of Theorem 4. We first consider appropriately approximate equations, which
is the Euler equation derived from the following variational problems,

inf{ /Q S (efo]? + Jug, ) Bd — /@ vdzlv € WP(Q)).
i=1

Then, we apply Kennigton’s maximum principle to uz(,”‘l)/”, where u,, is the weak solution
of the associated Euler equation.

p=1 _
Since up” converges to lim,_, u, uniformly in €2, We can easily get the following.

Corollary 5. Let Q be convez, u, the minimizer of (2), and {uy,}jen a subsequence
constructed in Proposition 2. Then, the limit function

u = lim u,.
j—00 Pj

18 concave in 2.

We shall restrict our comparison principle to the concave functions to characterize the
limit function. More precisely, we can show the eomparison principle under the local
concavity assumption which is a weaker assumption than concavity.

Definition. Let u € C(Q2) and z € Q. Then, u is called locally concave at z € Q if and
only if
Ir >0 s.t. u isconcavein B,(x)

Also, u is called locally concave in Q if and only if u is locally concave at z for all z € Q.

Remark. We note that the local concavity is defined even if €2 is not convex. Moreover,
if Q is convex and u is locally concave in §2, then u is concave. To see this, we assume that
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there exists (z,y) € Q) s.t.
S={te (0,Dutr+ (1 —1t)y) < tu(z) + (1 —t)u(y)} #0

Because of the countinuity of u, S is an open set. For ty € (0,1) \ S, if it exists, using the
local concavity of u, we see that there exists r > 0 such that (to — r, 2o +7) C (0,1)\ S,
i.e., S is a closed set with a relative topology. Thus, we get S = (0,1). But, this is a
contradiction to the local concavity.

We prove the comparison principle under the local concavity restriction.

Theorem 6. Let u € C(Q) be a subsolution of (5) and v € C(Y) be a supersolution of
(5). Moreover, we impose an eztra assumption; v is locally concave in (). Then, we have

sup(u — v) = sup(u — v).
o0 Q

Idea of proof.

Let us suppose supgq(u — v) < supg(u — v).

We construct a strict subsolution @ and a locally concave strict supersolution v, which are
sufficiently close to u and v, respectively. Thus, we may suppose supyq (&—7) < supq(@—7).
At a maximum point zo of % — ¥, the gradient of & and 7 are equal at least formally;
Du(zy) = Dv(xp). Moreover, we get

D?u(zq) < D*0(xy). (6)
Since ¥ is a strict supersolution, we have

G(Dv(zp)) — 1 > 0.
Thus, we have G(Du(zy)) — 1 > 0. Hence, we get

- Z Ug,z; (.’L‘o) < 0.
i€I[Du(w0))
On the other hand, (6) yields
Dzﬂ(.'lio) < 0

in view of the local concavity of ¥. This is a contradiction.

Remark. We note that the local concavity assumption in this comparison principle may
be changed to a weaker one;

VeeQ V(g X)e P ulz) Viellg X;<Oo.
In view of Theorem 6, we verify that the full sequence convergence to a unique Lipschitz
continuous function.
Colloraly 7. Let §) be convex and u, the minimizer of (2). Then, there ezists a unique
function u € W3™(Q) such that

u, > u as p— oo uniformly in 0
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4 The limit function

In the variational problem (1), the limit function of minimizers is the distance function
from 0. In this section, we show that the limit function of our variational problem (2)

also becomes a distance function from 0f).

Definition. We set n

y€oQ =1

We expect d; to be the limit function. To check this, we use the previous comparison
principle. We first list some properties on dj.

Proposition 8. Let Q be conver. Then, d, is concave.

It is easy to see that if {2 is convex, then d; satisfies the (local) concavity assumption in
our comparison principle and the following inequality holds

- Z Ug;z; (CC) 2 0

i€I[Du(z)]

in the viscosity sense.

Proposition 9. d; is a solution of

G(Du(z))—1=0 in Q

From Propositions 8 and 9, we can easily prove that d; solves (5) in the viscosity sense;
Proposition 10. Let Q be convezx. Then, d; is a viscosity solution of (5)
Thus, in view of Theorem 6, we get the following.

Theorem 11. Let Q be convez and u, the minimizer of (2). Then, we have

Jim, up(z) = di(z) uniformly in

5 Other norms

We consider other norms equivalent to the standard one in this section.
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5.1 1In the case of the norm | - ||
We consider the norm || - ||« defined by

|wlloo = Jmax. |lwil|pey for w € LP(R™,Q).

We can see that the minimizer of the variational problem (1) with this norm satisfies the

following inequalities

p(p - 1) illlla?fn{—l“zi(x)|p_2uzim.- (33)} - f(.’L‘) >0 in Q

p(p— 1) min {~|uz, (&)P s, (0)} — /(@) <O in ©

in the viscosity sense. We thus formally get the inequalities, as p — oo, which are satisfied
by the limit function in the viscosity sense.

min{G(Du(z)) — 1, F%(Du(z), D*u(z))} >0 in Q,
min{G(Du(z)) — 1, Fx(Du(z), D*u(z))} <0 in Q. (7)

Here, Fl(g,X)= maX;er(q)(—Xii) provided I[q] ={1,...,n},
A max;erg(—Xis V 0) otherwise,

and Fc;(q, X) — { mlniEI[‘]]E_X’ii) pI'OVlded I[Q] = {1, s n}7 (8)

min;egiq(—Xis A0)  otherwise,

for ¢ € R™ and X = (X;;) € S™

However, if u € C%(Q) such that I[Du(z)] # {1,...,n} for all z € £, then it is a
subsolution of (6). Thus, the comparison principle for these inequalities cannot be expected

(see [9]).

5.2 1In the case of a mixed norm.

We next consider the norm which is the sum of above norms, || - ||1, || - || and || - ||cos
i.e., we define the norm of functions w € LP(Q, R") as follows; for fixed sets @ # I; C

{1,...,n} (j=1,2,3)such that U}_,I; = {1,...,n},

1
lwlle = (1P (w)Zoy + 22 willZo o) + max l[willzsq))?s
i€l

Where fOI‘ q= (qla 3 'aqu) € Rn, Pl(q) = (Zieh ‘IZ)%
Then, we formally get the inequalities, which the limit of minimizers of the corresponding

variational problem solves.

min{G(Du(z)) — 1, F*(Du(z), D*u(z))} > 0 in ,
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min{G(Du(z)) — 1, F~(Du(z), D*u(z))} <0 in Q.
Here, for ¢ = (q1,...,q,) € R", X = (X;;) € S"and J C {1,...,n},

Fq,X) ==Y qaXu— Y, GXu+ fiy(0X),

k,lel; kEIz[q]
Ilg] = {i € It|G(a) = |asl}
(0 provided J =0,

(g, X) =< max;ecs(—q?Xy) provided J = I3,
| max;es(—¢2 X V0) otherwise,

(0 provided J =0,
f7(g, X) =14 minjes(—¢2Xy) provided J = I3,
| minges(—¢?Xi A0) otherwise.

Indeed, we may verify that the limit of minimizers is a solution of the above inequalities

in the viscosity sense.
We can show that the comparison principle holds between a viscosity super- and subso-
lutions under certain assumptions for I;. However, we cannot prove that the limit function

of minimizers is concave even if {2 is convex (see [9]).
For the reader’s convenience we give a list of papers on L*-Laplacian, which we do not

mention here.
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